• Nenhum resultado encontrado

Role of FAK signaling in chagasic cardiac hypertrophy

N/A
N/A
Protected

Academic year: 2021

Share "Role of FAK signaling in chagasic cardiac hypertrophy"

Copied!
12
0
0

Texto

(1)

w w w . e l s e v i e r . c o m / l o c a t e / b j i d

The

Brazilian

Journal

of

INFECTIOUS

DISEASES

Original

article

Role

of

FAK

signaling

in

chagasic

cardiac

hypertrophy

Amanda

R.

Tucci

a

,

Francisco

O.

R.

de

Oliveira

Jr

a

,

Guilherme

C.

Lechuga

a

,

Gabriel

M.

Oliveira

b

,

Ana

Carolina

Eleuterio

a

,

Liliane

B.

de

Mesquita

a

,

Priscila

S.G.

Farani

c

,

Constanc¸a

Britto

c

,

Otacílio

C.

Moreira

c

,

Mirian

Claudia

S.

Pereira

a,∗

aInstitutoOswaldoCruz,LaboratóriodeUltraestruturaCelular,Fiocruz,RiodeJaneiro,RJ,Brazil bInstitutoOswaldoCruz,LaboratóriodeBiologiaCelular,Fiocruz,RiodeJaneiro,RJ,Brazil

cInstitutoOswaldoCruz,LaboratóriodeBiologiaMoleculareDoenc¸asEndêmicas,Fiocruz,RiodeJaneiro,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29April2020

Accepted16August2020

Availableonline12September2020

Keywords: Chagasdisease Trypanosomacruzi Cardiachypertrophy Endothelin-1 FAKsignaling

a

b

s

t

r

a

c

t

CardiachypertrophyanddysfunctionareasignificantcomplicationofchronicChagas

dis-ease,withheartfailure,stroke,andsuddendeathrelatedtodiseaseprogression.Thus,

understandingthesignalingpathwaysinvolvedinthechagasiccardiachypertrophymay

providepotentialtargetsforpharmacologicaltherapy.Herein,weinvestigatedthe

implica-tionoffocaladhesionkinase(FAK)signalingpathwayintriggeringhypertrophicphenotype

duringacuteandchronicT.cruziinfection.C57BL/6miceinfectedwithT.cruzi(Brazilstrain)

wereevaluatedforelectrocardiographic(ECG)changes,plasmalevelsofendothelin-1(ET-1)

andactivationofsignalingpathwaysinvolvedincardiachypertrophy,includingFAKand

ERK1/2,aswellasexpressionofhypertrophymarkerandcomponentsoftheextracellular

matrixinthedifferentstagesofT.cruziinfection(60–210dpi).Heartdysfunction,evidenced

byprolongedPRintervalanddecreaseinheartratesinECGtracing,wasassociatedwithhigh

plasmaET-1level,extracellularmatrixremodelingandFAKsignalingactivation.

Upregula-tionofbothFAKtyrosine397(FAK-Y397)andserine910(FAK-S910)residuesphosphorylation

aswellasERK1/2activation,leadtoanenhancementofatrialnatriureticpeptide gene

expressioninchronicinfection.OurfindingshighlightFAK-ERK1/2signalingasaregulator

ofcardiachypertrophyinTrypanosomacruziinfection.Bothmechanicalstress,inducedby

cardiacextracellularmatrix(ECM)augmentandcardiacoverload,andET-1stimuli

orches-tratedFAKsignalingactivationwithsubsequentactivationofthefetalcardiacgeneprogram

inthechronicphaseofinfection,highlightingFAKasanattractivetargetforChagasdisease

therapy.

©2020SociedadeBrasileiradeInfectologia.PublishedbyElsevierEspa ˜na,S.L.U.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mailaddress:mirian@ioc.fiocruz.br(M.C.Pereira).

https://doi.org/10.1016/j.bjid.2020.08.007

1413-8670/©2020SociedadeBrasileiradeInfectologia.PublishedbyElsevierEspa ˜na,S.L.U.ThisisanopenaccessarticleundertheCC

(2)

Introduction

Chagasdisease(CD),aneglectedtropicaldiseasecausedby

Trypanosomacruzi,isconsideredanimportantpublichealth

problem responsible for high rates of morbidity and

mor-tality in Latin America.1 Epidemiological surveillance has

estimated that 8 million people are chronically infected

worldwide,with morethan 10,000 deathsper year.2 Acute

infectionismostlyasymptomatic,whereaschronicinfection

mayremainwithoutsigns(indeterminateform),in60–70%of

infectedpeople,orprogresstodistinctclinicalsymptomsas

neurological,digestive(megacolonandmegaesophagus)and

heartmanifestations.3–5 Cardiomyopathyisarelevant

man-ifestationof CD,affecting 30% ofinfected individuals,and

endemiccountriessuchasBrazil (1.2 millioninfected

peo-ple)andArgentina(1.5millioninfectedpeople)concentrate

42% ofall Chagasic cardiopathy cases.6 Cardiac damage is

progressiveandclassified intodifferent stages(A,B,Cand

D)accordingtotheseverityofcardiacdysfunction.7

Chroni-callyinfectedindividualswithanunalteredelectrocardiogram

(ECG)areconsideredintheindeterminatephaseofCD(stage

A)whilediseaseprogressionleadstoECGabnormalities(stage

B),including arrhythmiasor conduction disorders (B1)and

decreasedleftventricular(LV)ejectionfraction(B2),andalso

signsofheartfailure(stageCandD).7Suddencardiacdeath

due to CD cardiomyopathy reaches annual mortalityrates

between0.2and19.2%,8highlightingtheurgencyofmanaging

thissilentdiseaseinpublicpolicies.

Myocardialhypertrophy, an important pathological

out-come of chronic chagasic cardiomyopathy (CCC), is an

adaptativeresponsetocardiachemodynamicoverload

trig-gered by multifactorial processes, including cardiac injury

due to severe myocarditis and fibrosis.9 Multiple signaling

pathways,includingNF-kB,mediatedbyToll-Likereceptor2

(TLR2)thatmodulatespro-inflammatorycytokines(IL-1␤),10,11

phosphatidylinositide3-kinases(PI3K)/AKT/Nitricoxide(NO)

elicited by increased tumor necrose factor-alpha (TNF-␣)

and/or NF-kB12 and also mitogen-activated protein kinase

(MAPK)throughextracellularsignal-regulatedproteinkinases

1and2(ERK1/2)13–15orCa2+/Calcineurin/nuclearfactorof

acti-vated T cells (NFAT)-dependent mechanism16 mediated by

endothelin-1(ET-1),havebeenimplicatedintheupstream

sig-nalingofcardiac hypertrophiceffectorsinduced byT. cruzi,

resultingintheactivationofhypertrophic-responsivegenes

thatregulatecardiacgrowth.17

ET-1,avasoactivepeptidethatactsthroughG-protein

cou-pledreceptors(GPCRs), endothelinreceptorA(ETAR)and B

(ETBR),is overexpressed in bothacute and chronicphases

ofCD showingelevatedplasmalevelsand highcardiac

tis-sue concentration.18,19 ET-1, that acts in an autocrine and

paracrinemanner,potentiatesthepro-inflammatoryprocess

byup-regulatingcellularadhesionmolecules(ICAM-1,

VCAM-1,and e-selectin), favoring immunesystem cell trafficand

therebyexacerbatingmyocardialcelldamage.17Persistenceof

theparasiteinthechronicphaseofthediseasemodulatesthe

inflammatoryresponsethatsustainshighlevelsofET-1,

capa-bleofinducingcardiachypertrophyandfibrosis.Aremarkable

featureisthatET-1alsomodulateshypertrophicphenotype

indilatedidiopathiccardiomyopathy(DCM)triggeredbyfocal

adhesionkinase(FAK).20However,theparticipationoftheFAK

signalingpathwayinchagasiccardiachypertrophyhasyetnot

beenevaluated.

FAK,anon-receptorproteintyrosinekinaseessentialfor

cardiac physiology, hasemerged asa protagonistmolecule

ofhypertrophyandheartfailure.21,22FAKsignalingregulates

mechanotransduction and sustains cardiac hemodynamics

through integrinsignaling pathway23 but may alsobe

acti-vatedthroughtransmembranereceptorsasheparansulfate

proteoglycans(HSPG)24andGPCRs,25thelatterhasbeen

sug-gestedasanactivatorofthehypertrophicresponsemediated

byET-1.26FAKisamultidomainscaffoldproteincomposedof

aband4.1,ezrin, radixin,moesin(FERM)domain,acentral

kinasedomainandafocaladhesiontargeting(FAT)domain.

TheautophosphorylationofFAKtyrosineresidue397(Y397)

triggers the recruitment and activation ofSrc-kinase

fam-ily amplifying kinase activity through the phosphorylation

ofother tyrosineresidues(Y576/577,Y861andY925),

regu-latingbiologicaleventsasadhesion,migration,proliferation,

andsurvival.27,28Additionally,FAKserineresidues

phospho-rylation(S722,S843,S846,andS910)modulateshypertrophic

response29 and,interestingly,ET-1 isakeyinducerof

FAK-S910 phosphorylation promoting sarcomere reorganization

andcardiachypertrophy,20thusraisingquestionsaboutthe

role ofFAK signalingcascadeintriggeringchagasic cardiac

hypertrophy.

Inthisstudy,weevaluatedwhetherFAKsignalingmayact

asaregulatorofcardiachypertrophyinChagas

cardiomyopa-thy.FAKactivationwasassessedbyFAK-Y397andFAK-S910

phosphorylationand itsdownstreameffectorinbothacute

andchronicphasesofthemurinemodelofT.cruziinfection.

Materials

and

methods

T.cruziexperimentalinfection

C57BL/6lineagemalemice(15–20g),obtainedfromthe

Insti-tuteofScienceandTechnologyinBiomodels(ICTB,Fiocruz),

were housedata maximumoffiveanimals percage, kept

in a specific-pathogen-free (SPF) room at20–22◦C under a

12/12hlight/darkcycle,50–60%humidityandprovided

ster-ilized water and chow ad libitum. All experimental animal

procedureswereperformedfollowingthelicense(L–015/2017)

approved by the Ethics Committee for Animal Use of the

OswaldoCruzInstitute(CEUA/IOC)andalsofollowing

Brazil-ianLaw11.794/2008andregulationsoftheNationalCouncil

of Animal Experimentation Control (CONCEA). In order to

preserveanimalwelfare,adailyobservationwassupervised

byaPhDveterinarydoctoraimingtoavoidanimalsuffering

andpain.Animalswerehumanelyeuthanizedwheneverearly

endpointsofanimalsufferingbecameapparentsuchasmotor

disturbance,exploratoryactivityand/ormoribundcondition.

Atotalof42micewasdividedintotwogroups:noninfected

(12) andT. cruzi-infected (30)animals. Micewere

intraperi-toneally(i.p.)infectedwithtrypomastigotesformsofT.cruzi

Brazilstrain(105parasites/animal),whilenoninfectedanimals

wereinoculatedwithsterilephosphate-bufferedsaline(PBS).

ParasitemiawasevaluatedbyPizzi-Brenermethod.30Briefly,

(3)

Table1–PrimersandstandardcurveparametersforhypertrophicmarkeramplificationinC57Bl/6miceinfectedwith Trypanosomacruzi.

Mouse gene target

Primersequences Reference Amplicon length

Slope Intercept Coefficientof linearity(r2)

Amplification efficiency(%)

GAPDH Fw5’-GGTTGCCAAACCTTATCA GAAATG-3’ Ribeiro-Romãoetal. [50] 169bp −3.34 11.71 0.99 99.3 Rv5’-TTCACCTGTTCCACAGCC TTG-3’ HPRT Fw5’ TCCCAGCGTCGTGATTAGCGATG-3’ Barreto-Albuquerque [51] 178bp −3.44 21.15 0.98 95.3 Rv 5’-GGCCACAATGTGATGGCCTCCC-3’ ANP Fw 5’-GGATTTCAAGAACCTGCTAGACC-3’ Thisstudy 167bp −3.27 19.69 0.99 102.1 Rv 5-CGTCTCTCAGAGGTGGGTTG-3

thetailveinandexaminedbylightmicroscopy.The

circulat-ingparasiteloadwasmonitoreddailyfrom5thdayofinfection

until50dayspost-infection(dpi).Acuteinfection(30–60dpi)

wasdeterminedbypositiveparasitemiaandtissueparasitism.

Thesurvivinganimalsweremonitoredduringthecourseof

thechronicinfection(90–210dpi).31Theheartwasharvested

frombothnoninfectedandT.cruzi-infectedmicefrom60to

210days.Afterlongitudinallysectioned,halfofthecardiac

tissuewascryopreservedwithTissue-Tekfor

immunohisto-chemicalanalysisandtheremainingtissuewasfragmented

andprocessedforproteinandRNAextraction.Two

indepen-dentexperimentswereperformed.

Electrocardiographicanalysis

Electrocardiographic parameters were evaluated in

non-sedatedmicebyusingtransducerscarefullyplacedunderthe

skin,inaccordancewithachosenpreferentialderivation(DII).

Traceswererecordedwithadigitalsystem(PowerLab2/20)

connectedtoabio-amplifierat2mVfor1s (PanLab

Instru-ments).Thefilterswerestandardizedbetween0.1and100Hz,

and the traces were analyzedby using Scopesoftware for

WindowsV3.6.10(PanLabInstruments).Wemeasuredcardiac

frequency(beatsper minute,bpm)and duration ofthe PR,

QRS,andQTintervalsinmilliseconds(ms)through(i)Pwave:

atriumchambers,(ii)PRinterval:atrioventricularelectric

con-duction,(iii)QRSinterval:ventriculardepolarization,(iv)QT

interval:heartrepolarization,and(v)heartrate,corresponding

tothecardiacfrequency(bpm).Moreover,ECGtracesallowed

foraqualitativeanalysisofheartratechanges(arrhythmias).

WeindividuallyassessedtherelationsbetweentheQT

inter-val and the RR interval to obtain physiologically relevant

valuesforheartrate-correctedQTinterval(QTc)bygivinga

normalizedRRinterval(RR100=RR0/100ms).Next,thevalue

oftheexponent(y) inthe formulaQT0=QTc×RRy100was

assessed,inwhichQT0istheobservedQTandbothQTand

QTcaregiveninmilliseconds(ms).Bytakingthenatural

loga-rithmofeachsideoftheformula(QT0)=In(QTc)+yln(RR100),

theslopeofthelinearrelationbetweenthelog-transformed

QTand RR100 thusdefined the exponenttowhich the RR

intervalratioshouldberaisedtocorrecttheQTfortheheart

rate.32

Indirectimmunofluorescence

Samplesofcardiactissue,frombothnoninfectedandT.

cruzi-infected mice, were frozen inTissue-Tek O.C.T Compound

(Sakura,Zoeterwoude,TheNetherlands)andstoredinliquid

nitrogen.Heartcryosectionswerefixedincoldacetone,

air-driedandstoredat-20◦C.SectionswerewashedinPBSand

thenblockedwithPBScontaining4%serumalbuminbovine

(BSA;PBS+BSA)beforeimmunostaining.Thesampleswere

incubatedovernightat4◦Cwithanti-fibronectin(1:600,Sigma

ChemicalCo.,StLouis-USA)ortype1Collagen(1:400;Life

TechnologiesCo.,Carlsbad,CA-USA)antibodiesfollowedby

washingwithPBS+BSA.Theantigen-antibodycomplexwas

detectedbyincubationfor1hat37◦CwithTRITC-conjugated

secondaryantibody(1:400,Sigma).Afterwashing,thesections

wereincubatedwith4,6-diamidino-2-phenylindole(DAPI),a

DNA staining, and mounted withthe anti-fading DABCO®

(Sigma). Images were acquired under a Zeiss Axio Imager

M2fluorescencemicroscopeusingAxioVision(Zeiss)digital

imageprocessingsoftware.

ForthetypeIcollagenbioimageanalysis,atleastfive

dif-ferentfieldswerecapturedfromeachgroup(uninfectedand

infected),andfluorescenceimagesweresegmentedandthe

meanintensitymeasuredusingKnimeworkflow.33

Proteinextractionandimmunoblottingassays

Noninfected and T. cruzi-infected cardiac tissue

frag-ments were extracted with lysis buffer (Tris 50mM, NaCl

150mM, Triton X-100 1%, pH 8,0) containing protease

([4-(2-Aminoethyl)-benzenesulfonyl-fluoride hydrochloride

(AEBSF),aprotinin,bestatin,Antipain-hydrochloride,

E-64–[N-(trans-Epoxysuccinyl)-l-leucine 4-guanidinobutylamide,

Leupeptin hemisulfate salt, Pepstatin A; Sigma Chemical

Co.) and phosphatase (Cantharidin, (–)-p-Bromolevamisole

oxalateandCalyculinA;Sigma)inhibitors.Asmallaliquotof

(4)

Fig.1–EvaluationofcardiacelectricalconductionsysteminuninfectedandBrazilstrainT.cruzi-infectedC57BL/6mice.(A) Schemeofcardiacelectricalimpulsesshowingtheatrialconduction(Pwave),thetransitionbetweenatriumandventricle (PRinterval),ventriculardepolarization(QRSinterval)andcardiacrepolarization(QTinterval).ECGanalysisofuninfected (circle)andT.cruzi-infectedmice(squares)demonstratednosignificantdifferenceinPwave(B),QRS(D)andQTc(E)intervals duringthecourseofinfection.However,asignificantincreaseinthePRinterval(C)andaslightdecreaseinheartrate(F) wereevidencedininfectedanimals.Statisticalsignificancerelativetop≤0.01betweeninfectedanduninfectedmice.

the Follin–Lowry method, and the loading buffer (62.5mM

Tris–HCl,pH6.8;2%SDS;10%glycerol; 0.01%bromophenol

blue;and5%␤-mercaptoethanol)addedtotherestofthe

pro-teinextractfollowedbyheatingfor5minat100◦C.Atotalof

20–40␮gofproteinwasresolvedbySDS–PAGE(10%)according

to the antigen analyzed. The proteins were transferred to

nitrocellulosemembranes(BioRad,Hercules,CA)intransfer

buffer(25mMTris–HCl192mMglycineand10%methanol,pH

8.3).Membraneswereblockedfor40minwith5%skimmilk

inTris-buffered saline (TBS;50mM Tris-Cl, pH 7.5,150mM

NaCl)containing0.05%Tween20(TBST)priortoanovernight

incubation(4◦C)withspecificantibodies(anti-FAKand

anti-ERK 1/2 antibodies (1:1000) and anti-fibronectin antibody,

1:2500),exceptforphosphorylatedproteinswhoseantibodies

(anti-FAK-Y397,anti-FAK-S910oranti-pERK1/2;1:1000)were

incubatedinTBSTcontaining1%BSA.Then,themembranes

were incubated for 1h with the appropriated horseradish

peroxidase-conjugated second antibody (1:20,000). The

antigen-antibody complex was detected by

chemilumines-cencekit reagents (PIERCE;ThermoScientific, Rockford, IL)

and the membraneswere exposed toHyperfilmTM ECL(GE

Healthcare). All assays were normalized by glyceraldehyde

3-phosphatedehydrogenase(GAPDH)expression,usedasthe

internalcontrol.Densitometricanalysiswasperformedusing

ImageJquantificationsoftwaretomeasuretherelativeband

(5)

Fig.2–ElectrocardiographicanalysisofC57BL/6miceinfectedwithT.cruziBrazilstrain.Heartarrhythmiastypificationby ECGtraces:(A)uninfectedanimals(NI);(B)T.cruzi-infectedmicewithatrioventricularblock(AVB;blackcircle),(C)sinus bradycardia(BRA;blackline),(D)ventricularextrasystole(VE;arrow)and(E)sinusarrhythmia(SA:tracedline).Quantitative analysisofarrhythmiaincidenceinuninfectedandT.cruzi-infectedmice(F).Amarkedincreaseincardiacarrhythmiaswas noticedduringthecourseofT.cruzichronicinfection.

RNAextractionandreversetranscription

Thehypertrophicmarkeratrialnatriureticpeptide(ANP)gene

expressionwasevaluatedonheartfragmentsusinga

combi-nationofTRIzol® (Invitrogen,California,USA)andRNeasy®

mini kit (Qiagen, Austin, Texas, USA) for RNA extraction.

Cardiacfragments(10mg)wereincubatedwithTRIzol®

(Invit-rogen)andstoredatliquidnitrogenuntiluse.Afterward,the

cardiactissuewashomogenizedwiththeUltra-Turraxtissue

Dispenser(IKA,Wilmington,USA)for30s.After200␮l

chloro-formadditionandvigoroushomogenizing,RNAwasextracted

fromaqueousphaseusingaRNeasykit,accordingtothe

man-ufacturer’srecommendations.TheamountoftotalRNAwas

determinedbymeasuringtheabsorbanceat260nmandpurity

at260/280 and 260/230nm ratios, using a

Spectophotome-terPico200(PicodropLtd.,SaffonWalden,UnitedKingdom).

Then,RNA(2␮g)wasreversetranscribedusingtheSuperScript

IIIcDNASynthesisKit(Invitrogen)accordingtothe

manufac-turer’sprotocol.ThecDNAconcentrationwasmeasuredusing

Qubit® ssDNAAssayKit(LifeTechnologies,Eugene,Oregon,

USA)andadjustedto10ng/␮Lfinalconcentration.

Real-timequantitativePCR

ANP gene expression was compared between noninfected

and T. cruzi-infected cardiac tissues using Power SYBR®

GreenMasterMix(LifeTechnologies,CA,USA)RT-qPCR

sys-tem. Forward and reverse primer sequences are shown in

Table 1. PCRcyclingconditions were:thefirst stepat95◦C

for10min,followedby40 cyclesat95◦Cfor15s and60◦C

for 1min. The relative quantification of amplified

prod-ucts was calculated bythe comparative Ct method(Ct)

using glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

andhypoxanthine-guaninephosphoribosyltransferase(HPRT)

as endogenous controls.34 Theamplifications were carried

out inan ABI Prism7500 Fastdevice (Applied Biosystems,

USA).Geneexpressionwasexpressedasfoldchange(2-Ct),

comparedtosamplesfromuninfectedmiceusedas

calibra-tors.Fortheselectionofreferencegenecandidatesandgene

expressionanalysis,theExpressionSuiteSoftwarev1.1(Life

(6)

Statisticalanalysis

StatisticalanalysisandgraphicswereperformedusingR

(ver-sion3.6.0)andRStudio.Statisticaldifferencewasconsideredif

p-value≤0.05usingt-test.AllRT-qPCRassayswereperformed

withbiologicaltriplicatesintwoindependentexperiments.

Resultswereexpressedasthemeans±standarddeviations.

StatisticaltestsfromtheCtvalues(studentt-testor

Mann-Whitneyrank-sumtest)wereperformedwithGraphPadPrism

softwareversion5.00forWindows(GraphPadSoftware,San

Diego,CA,USA).

Results

InanattempttounraveltheroleoftheFAKsignalingpathway

inT.cruzicardiomyopathy,C57BL/6micewereinfectedwith

T.cruzi Brazilstrainand FAKsignalingand its downstream

effector(ERK1/2),actingoncardiachypertrophyprogram,were

analyzed on an acute and chronic infection. The peak of

parasitemia(7×104 parasites/mL) wasobserved at26days

post-infection (dpi) and then declined to an undetectable

level after 45 dpi (data not shown). All mice survived the

acuteinfection(30–60dpi)andprogressedtochronic

infec-tion,showingalterationsinthecardiac electricconduction

systemobservedbyECGparameters.Themain

electrocardio-graphicchangewastheslowingofatrioventricular(AV)nodal

conduction,resultinginaprolongedPRinterval(Fig.1).A

sig-nificantincreaseinthedurationofthePRinterval(p≤0.05)

wasobservedinT. cruzi-infectedmice(43.7±10.2ms)

com-paredtouninfectedgroups(37.1±5.0ms),reflectingadelayin

electricalconductionthroughAVnodeinchronicallyinfected

C57BL/6mice.Anotherstrikingchangewastheincidenceof

atrioventricularblocks(AVB)in67%oftheinfectedmiceat150

dpi(Fig.2).Atrendtowardsadecreaseinheartrate,orsinus

bradycardia(BRA),wasalsoobservedbetweenthegroupsof

uninfectedanimals(627±42 bpm) and thoseinfected with

T.cruzi(598±140bpm),with50%ofinfectedanimalsat180

dpi(Fig.2).Theotherparametersevaluated(Pwave,QRSand

QTintervals)showednosignificantdifferenceinchronically

infectedmice,remainingsimilartouninfectedanimals(Fig.1).

Whenassessingthekineticsofinfection,wefoundalow

incidenceofcardiacarrhythmias(20%)attheacuteinfection

(60dpi)withaprevalenceofBRAandsinusarrhythmia(SA)

amonginfectedanimalgroups.Progressively,thepresenceof

cardiacarrhythmiasbecamemoreprevalentinthe

electrocar-diographictraces,rangingfrom50to67%from120dpiwith

BRA,AVBandsupraventricularextrasystole(VE)asrelevant

eventsinchronicinfection(Fig.2).

Inviewofthefactthatourelectrocardiographicfindings

wereindicativeofheartfailure,revealedbytheimpairment

ofthecardiacelectricalconductionsystemduringthechronic

phaseoftheinfection causingseverearrhythmias, suchas

adecrease inheart rate, sinus bradycardiaand promoting

cardiovascularshock,weconductedouranalysisforthe

detec-tionofendothelin-1(ET-1),ahypertrophicagonistcapableof

activatingtheFAKsignalingpathway.Then,weassessedthe

plasmaticlevelofET-1duringthecourseofT.cruziinfection

byELISA.ElevatedplasmalevelsofET-1weredetectedinboth

acuteandchronicT.cruziinfections (Fig.3).Infectiontimes

Fig.3–ET-1plasmalevelinBrazilstrainT.cruzi-infected

C57BL/6mice.ElevatedET-1levelwasobservedintheacute (60dpi)andchronic(90–210dpi)phasesofT.cruziinfection. A3.4-foldincreaseofET-1level(4.5pmol/mL)wasdetected at120dpicomparedtotheuninfectedanimals(1.3

pmol/mL).ET-1levelswereexpressedasmean(±SD)pMin theplasmaofinfectedanduninfectedC57BL/6mice. Student’st-test:*p<0.05,**p<0.01.

from60to180dpishowedasignificantincreaseinET-1plasma

levelcomparedtothebaselineleveloftheuninfectedgroup

(1.3 pmol/mL).Plasma levelsofET-1 increased3.4-fold and

peakedat120dpi,reachingamaximalvalueof4.5pmol/mL

(Fig.3).

Wefurtherassessediftheabnormalitiesincardiac

hemo-dynamics and the increase of plasma ET-1 level induced

activation ofthe FAK signaling pathway,sincethis protein

tyrosine kinase (PTK) has been highlighted in response to

changesinmechanotransductionmediatedbycellstretching

andcardiacoverload.Ourfindingsdemonstratedthe

activa-tionofFAKsignalingincardiactissueofT.cruzi-infectedmice,

evaluatedbyphosphorylationofbothtyrosine397(Y397)and

serine 910(S910)residues (Fig.4). AlthoughtotalFAK level

wasunalteredinT.cruzi-infectedheart,FAK

autophosphoryla-tionattyrosineresidue397(Y397)wassignificantlyincreased

after90dpi(0.9±0.2),showinganactivationpeakat120dpi

(1.04±0.3) with3.4-fold increasedphosphorylated levelsof

FAK-Y397(Fig.4).AsimilarFAKactivationcurvewasobserved

forphosphorylatedFAK-S910expression.However,highlevels

ofFAK-S910werenoticedat120(1.0±0.1)and180(1.12±0.2)

dpi,increasing3.3to3.6-fold,respectively,comparedto

stan-dardactivationlevelsofuninfectedanimals(0.3±0.08)(Fig.4).

Interestingly,FAKactivationcorrelateswiththeET-1plasma

levelelevationandtheenhancementofbradycardia(50%)in

infected mice. Thus, sinceERK1/2, a member of

mitogen-activated protein kinases (MAP kinase) signaling pathway,

hasbeenimplicatedinthehypertrophicresponsemodulated

byFAK, theexpressionoftotaland phosphorylatedERK1/2

(pERK1/2)werealsoanalyzed.TotalERK1expressionwas

prac-ticallyinvariable,exceptforthedeclineat210dpi,whileits

levelofphosphorylationincreasedthroughoutthecourseof

(7)

Fig.4–ActivationofFAKsignalinginT.cruzichronicinfection.(A)RepresentativeimmunoblotimagesofFAK,FAK-Y397 andFAK-S910.(B)AnincreaseinFAKautophosphorylation(FAK-Y397)inthecardiactissueoccurredattheearlychronic infection(90dpi)andpeakedat120dpi.(C)HighlevelsofphosphorylatedFAK-S910wasnoticedfrom120to180dpi withoutalterationintotalFAKexpression(D).(E)RepresentativeimmunoblotimagesofERK1andphospho-ERK1/2

(pERK1/2).(F)pERK1/2expressionincreasedduringthecourseofT.cruziinfection(60–210dpi),peakingat180dpi.However, nochangeinERK1expressionwasobservedinthecardiactissueofinfectedanimals,exceptthedeclineinERK1levelat 210dpi(G).GAPDHwasusedasaninternalloadingcontrol.Student’st-test:ns-notsignificant,*p≤0.05;**p≤0.01; ***p≤0.001;****p≤0.0001.

(8)

Fig.5–Trypanosomacruzichronicinfectioninduces hypertrophicgeneexpression.IncreasedANPmRNA expression,evaluatedbyRT-qPCR,wasobservedinthe myocardiumofC57BL/6micechronicallyinfectedwithT. cruzi(150–210dpi).HPRTandGAPDHgeneswereusedas endogenouscontrols.ThemeanCtvaluesbetweencontrol andinfectedgroupswereevaluatedusingStudent’st-test

ornon-parametricMann-Whitneyranksumtest.*p≤0.05, **p≤0.01.

theactivation ofERK1/2occurred priortotheactivation of

FAK,butcoincidedwiththeET-1plasmalevelincreases.

Phos-phorylatedERK1/2(pERK1/2)levelpeakedat180dpi(4.7±0.7),

coincidingwiththeFAK-S910peak(Fig.4).

Toaddresswhetherthecardiachypertrophyprogramwas

triggeredinresponsetotheactivationoftheFAK(Y397and

S910residues)—ERK1/2signalingcascade,weinvestigatedthe

atrialnatriureticpeptides(ANP)mRNAexpression,a

hyper-trophic marker, by RT-qPCR. Marked upregulation of ANP

mRNAexpressionwasrevealedinthemyocardiumofinfected

mice. Our results demonstrated that the ANP mRNA level

tendedtoincreaseat120dpi,butasignificant2-foldincrease

intheexpressionofthishypertrophicmarkerwasnoticedin

theBrazilstraininfectedmicefrom150dpionwards(Fig.5).

Additionally, theremodeling ofthe cardiac extracellular

matrix(ECM)hasbeenshowntobeassociatedwith

myocar-dial hypertrophy and heart failure.35 Thus, the myocardial

fibrosis profile was also analyzed in the myocardium of

T.cruzi-infected C57BL/6mice.Thespatial distribution and

ECMcomponentsexpression,astype1collagen(COL1)and

fibronectin(FN),were assessedinthe cardiactissue.Athin

depositionofCOL1(Fig.6)and FN (Fig. 7)wasobserved in

themyocardial interstitiumofuninfectedanimals. Aslight

increase in COL1 deposition, as revealed by fluorescence

images,wasobservedintheinfectedtissueat60and90dpi,

becomingadensefibrillarCOL1fluorescencesignalatalater

timeofinfection(120–210dpi)(Fig.6).Thequantitative

analy-sis,usingKnimebioimagetools,alsoconfirmedtheaugment

intheCOL1expressioninthemyocardiumoftheinfectedmice

(Fig.6).Likewise,FNspatialdistributionanalysisalsorevealed

anintensefluorescentsignal,mainlyafter60dpi,withadense

FNdepositionintheinfectedcardiactissue(Fig.7).Infected

animalsalsoshowedenhancementinFNlevel,demonstrated

byimmunoblottingassay,showingasignificantincrease in

FNexpressionfrom 60dpicomparedtocardiactissuefrom

uninfectedmice(Fig.7).

Discussion

Aplethoraofsignalingpathwayshavebeenimplicatedinthe

pathophysiologyofcardiachypertrophy.Thus,delineatingthe

cellularandmolecularmechanismsunderliningthechagasic

cardiachypertrophyshedslightonChagasdisease

pathogen-esis.Inthisstudy,weaddressedtheroleofFAKsignalinginT.

cruziinducedcardiachypertrophyandheartfailure.

FAKsignalingemergedasakeycardiachypertrophic

reg-ulator in response to biomechanical stress and humoral

stimuli.36Ourdatasuggestthatbothmechanicaland

hyper-trophic agonist stimuli are involved in T. cruzi cardiac

hypertrophic response. Integrin, a transmembrane

recep-torinvolvedinforce transmission,connectsthecontractile

muscleapparatustoextracellularmatrixcomponents(ECM),

regulating the mechanical force. FAK, a key molecule in

mechanosignalling,interactswithintegrinthroughstructural

proteins, astalin and vinculin,in focal adhesionsites and

costameres.37PressureoverloadinducesFAKtyrosine

phos-phorylation and promotes c-Src activation in addition to

downstreameffectors ofFAK, asERK1/2andAKT viaGRB2

andphosphatidylinositol3-kinase(PI3K).21,26,38,39Ourfindings

demonstrated that changes inintegrin-mediated

mechani-cal force, induced by fibrosis leading to pressure overload,

activatesFAKsignalinganditsdownstreameffectorinvolved

in hypertrophic response. The abnormal ECM deposition,

revealed by enhancement of COL-1 and FN expression in

cardiac tissue,causes itsstiffnessand disturbsmechanical

homeostasis, altering integrin-mediated

mechanotransduc-tion.Additionally,disruptionofvinculincostameresinT.cruzi

infected myocardium may alsocontribute toalterations in

the transmissionofcardiaccontraction force.40 Inthis

sce-nario,elevatedFAK-Y397phosphorylationlevelcoincideswith

theECGabnormalities,showingreducedheartrate,prolonged

PRintervalandincreasedrateofarrhythmias(from90dpi)

suggestiveofcardiachypertrophyandheartfailure.

Interest-ingly,aninvitromodelofacuteinfectionbyT.cruziwithhigh

parasiticloadrevealedlossofspatialorganizationand

down-regulationofmechanosensitiveproteinsincardiomyocytes,

suchastalinandpaxilin,inducingadownregulationofthe

FAKsignaling pathwayactivationand therefore,suggesting

adisruptionofintegrin-dependentsignalingtransduction.41

FAKsignalingactivationhasalsobeenshowntobea

benefi-cialeventinischemia/reperfusion,promotingcardiomyocytes

survivalunderstressconditions.ActivationoftheNF-kB

sur-vival signaling pathway, as downstream ofFAK activation,

modulatesFAK-dependentcardioprotectionbyreducing

pro-apoptoticgeneslevel.42

Inadditiontointegrin-regulatedFAKactivation,this

tyro-sinekinaseisalsoactivatedbyET-1,thehypertrophicagonist.

ET-1, a potent vasoconstrictor involved in Chagas disease

pathogenesis,hasbeenreportedtotriggerFAKactivationand

promotes cardiac hypertrophic remodeling.43 As expected,

Brazil strain C57BL/6 mice infection induced ET-1 plasma

level increase and cardiac dysfunction in both acute and

(9)

Fig.6–Enhancementoftype1collagen(COL1)expressioninthemyocardiumofT.cruzi-infectedmice.(A)Distributionof COL1(red)inthecardiactissueofuninfectedmice.AgradualincreaseinCOL1depositionwasnoticedinthemyocardiumat lateracute(60dpi;B)andearlychronicinfection(90dpi;C).DenseCOL1fibrilswereclearlyseenat120(D),150(E),180(F) and210dpi(G).TheincreaseinCOL1expressionwasconfirmedbymeasuringtheCOL1fluorescencesignalwithKnime workflow(H).DAPI(blue)stainednucleus.Bar=10␮m.Student’st-test:**p≤0.01;***p≤0.001;****p≤0.0001.

in patients with Chagas cardiomyopathy44 and also in a

mouse model of T. cruzi chronic infection (Brazil strain),

which evolvedto right ventricular enlargement.15,19 In our

findings, elevated ET-1 levels were associated with ERK1/2

phosphorylation up-regulation, still in the acute phase of

infection (60 dpi). Also, increased ERK1/2 activation

pre-cededFAK-S910 phosphorylation (120 dpi), suggestingthat

FAKundergoesFAK-S910phosphorylationviaERK1/2

signal-ingaspreviouslyreportedfordilatedcardiomyopathy(DCM).20

ET-1stimulatedneonatalratventricularmyocyte(NRVM)

cul-tures, inan ETAR-dependentprotein kinase Cdelta (PKC␦)

activation,inducedERK1/2activationthroughRaf-1—MEK1/2

effectors,resultinginFAK-S910phosphorylationand

sarcom-ere assembly during cardiac myocyte hypertrophy.20 Also,

bi-directional crosstalk between Src and PKC␦ has been

proposedwithET-1stimulatingPKC␦-MEK1-ERK1/2and

Src-MEK1-ERK1/2 pathways20,45 or Src-MEK5-ERK5.20 Sustained

MEK1-ERK1/2activationhasbeenshowntopromotecardiac

hypertrophyandanti-apoptoticeffect.46Additionally,ET-1has

alsobeenhighlighted inT.cruzi infectionduetoits role in

triggeringtheCa2+/calcineurin(Cn)/nuclearfactorofactivated

Tcells (NAFT) signaling pathway,causingthe activation of

fetalgeneprogram.16C57BL/6andBalbcmiceinfectedwith

T.cruziYstrainshowedhighlevelsofET-1andeicosanoids

(cyclooxygenase-2; COX2)associatedwithhigh tissue

para-sitismandmyocarditis.ThecooperativeactionbetweenET-1

andT.cruziinfectionregulatestheincreaseinCOX2expression

byactivatingtheCn/NAFTc4signalingpathwayinHL-1atrial

myocytes,leadingtoANPproduction.16Curiously,ourresults

demonstrated asignificant increase in ANP mRNA

expres-siononlyfrom150dpi, butwithatendencytoincreaseby

120dpi.Althoughhypertrophyhasbeenwellestablishedin

BrazilstraininfectedC57BL/6mice,thisexperimentalmodel

ofT.cruziinfectiongraduallydevelopsdilated

cardiomyopa-thy withan increasein rightventricular internaldiameter

after100dpi.15Incontrast,astudyanalyzingthe

electrocar-diographicprofileofdifferentmicelineageandT.cruzistrains,

asamodelforexperimentalchagasiccardiomyopathy,didnot

showsignificantchangesintheECGofB6miceinfectedwith

Brazilstrain,probablyduetotheshortperiodofinfection

ana-lyzed(upto13weeks).47

Activationofhypertrophicresponseprograminresponse

toT. cruziinfection hasbeen showntodependon Toll-like

(10)

Fig.7–Fibronectin(FN)expressioninchronicallyinfectedC57BL/6mice.(A)FNspatialdistributioninthemyocardiumof uninfectedmice.(B–G)ThickdepositionofFNwasobservedinthecardiactissueofT.cruzi-infectedmice.Intense fluorescencesignalinthemyocardiuminterstitiumwasobservedat60(B),90(C),120(D),150(E),180(F)and210dpi(G). RepresentativeimmunoblottingimageanddensitometricanalysisshowingasignificantincreaseofFNexpressioninacute (60dpi)andchronicinfection(90–210dpi)(H).DAPI(blue)stainedthenucleus.Bar=10␮m.GAPDHwasusedasaninternal controlforproteinnormalization.Student’st-test:*p≤0.05;**p≤0.01;***p≤0.001.

IL-1␤ leveland cardiomyocyte hypertrophy (Petersenet al.,

2005).11 On theother hand,PI3K-AKT/nitricoxide(NO)

sig-nalinghasbeendemonstratedtobeimplicatedinthecardiac

myocyteremodelingofchagasiccardiomyopathy.12 C57BL/6

miceinfectedwithColombianstrain inducedPI3K-AKT/NO

signaling pathwayactivation withcardiac hypertrophy

evi-dencedintheacute(30dpi)andtheearlychronicphase(90

dpi)ofT. cruzi infection,showingincreased mRNAlevel of

hypertrophicmarkers.12AremarkablefeatureisthatERK1/2

andAKThavebeenhighlightedasadownstreameffectorof

FAKactivation37,48 andFAKsignalingmayalsoregulate

NF-kBactivation,49suggestingthatchagasiccardiachypertrophy

mayberegulatedbycomplexregulatoryinteractionsinvolving

interlacednetworksofmultiplesignalingpathways.

Conclusion

Our data contribute with new insights on the regulation

of cardiac hypertrophy induced by T. cruzi infection. We

demonstratedthattheFAKsignalingpathwayregulatesthe

hypertrophic process in chronic chagasic cardiomyopathy.

Cardiac overload induced by ET-1-mediated

extracellu-lar matrix remodeling and tissue damage triggers the

hypertrophicresponseviaET-1-ERK1/2-FAKS910and

integrin-FAKY397-ERK1/2, leading to activation of the fetal gene

program,heartfailureandhypertrophy.Furtherstudieswill

becarriedouttoevaluatetheeffectofFAKsignalinginhibitors

(11)

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Thiswork wassupportedbygrantsfrom theOswaldoCruz

InstituteoftheOswaldoCruzFoundation(Fiocruz),Programa

EstratégicodeApoioàPesquisaemSaúde(PapesVI)/Conselho

NacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq),

Brazil(grant421856/2017-3and424015/2018-8),Fundac¸ãode

AmparoàPesquisadoEstadodoRiodeJaneiro(FAPERJ)(grant

E-26/010.101050/2018)andCoordenac¸ãodeAperfeic¸oamento

dePessoaldeNívelSuperior-Brasil(CAPES)-FinanceCode

001. Theauthors thankAlanderson da RochaNogueira for

technicalsupportandthePlatformofRealTimePCRRPT09A

fromFiocruz,bytheuseoftheequipmentandsupport.

r

e

f

e

r

e

n

c

e

s

1. BonneyKM.Chagasdiseaseinthe21stcentury:apublic healthsuccessoranemergingthreat?Parasite.2014;21:11–21.

2. WorldhealthOrganization2020.

https://www.who.int/chagas/epidemiology/en/.Assessedon 03-06-2020.

3. LidaniKCF,AndradeFA,BaviaL,DamascenoFS,BeltrameMH, Messias-ReasonIJ,etal.Chagasdisease:fromdiscoverytoa worldwidehealthproblem.FrontPublicHealth.2019;7:166–79.

4. NunesMCP,BeatonA,AcquatellaH,BernC,BolgerAF, EcheverríaLE,etal.Chagascardiomyopathy:anupdateof currentclinicalknowledgeandmanagement:ascientific statementfromtheAmericanHeartAssociation.Circulation. 2018;138:e169–209.

5. RassiAJr,RassiA,Marin-NetoJÁ.Chagasdisease.Lancet. 2010;375:1388–402.

6. WorldHealthOrganization.ChagasdiseaseinLatinAmerica: anepidemiologicalupdatebasedon2010estimates=Maladie deChagasenAmériquelatine:lepointépidémiologiquebasé surlesestimationsde2010.WeeklyEpidemiolRecordRelevé ÉpidémiolHebdomad.2015;90:33–44.

7. AndradeJP,MarinNetoJA,PaolaAA,Vilas-BoasF,Oliveira GM,BacalF,etal.ILatinAmericanGuidelinesforthe diagnosisandtreatmentofChagas’heartdisease:executive summary.ArqBrasCardiol.2011;96:434–42.

8. DiToroD,BaranchukA.Suddencardiacdeathinchagas

disease.IntCardiovascForumJ.2016;7.ISSN24093424.

Availableat:

http://icfjournal.org/index.php/icfj/article/view/302.Date

accessed:10mar.2020.

9. NakamuraM,SadoshimaJ.Mechanismsofphysiologicaland pathologicalcardiachypertrophy.NatRevCardiol.

2018;15:387–407.

10.PetersenCA,BurleighBA.Roleforinterleukin-1betain

Trypanosomacruzi-inducedcardiomyocytehypertrophy.Infect Immun.2003;71:4441–7.

11.PetersenCA,KrumholzKA,BurleighBA.Toll-likereceptor2 regulatesinterleukin-1beta-dependentcardiomyocyte hypertrophytriggeredbyTrypanosomacruzi.InfectImmun. 2005;73:6974–80.

12.Roman-CamposD,Sales-JuniorP,DuarteHL,GomesER,Lara A,CamposP,etal.Novelinsightsintothedevelopmentof chagasiccardiomyopathy:roleofPI3Kinase/NOaxis.IntJ Cardiol.2013;167:3011–20.

13.HassanGS,MukherjeeS,NagajyothiF,WeissLM,PetkovaSB, deAlmeidaCJ,etal.Trypanosomacruziinfectioninduces proliferationofvascularsmoothmusclecells.InfectImmun. 2006;74:152–9.

14.MukherjeeS,HuangH,PetkovaSB,AlbaneseC,PestellRG, BraunsteinVL,etal.Trypanosomacruziinfectionactivates extracellularsignal-regulatedkinaseinculturedendothelial andsmoothmusclecells.InfectImmun.2004;72:5274–82.

15.TanowitzHB,HuangH,JelicksLA,ChandraM,LoredoML, WeissLM,etal.Roleofendothelin1inthepathogenesisof chronicchagasicheartdisease.InfectImmun.

2005;73:2496–503.

16.CorralRS,GuerreroNA,CuervoH,GironèsN,FresnoM.

Trypanosomacruziinfectionandendothelin-1cooperatively activatepathogenicinflammatorypathwaysin

cardiomyocytes.PLoSNeglTropDis.2013;7:e2034–45.

17.FreemanBD,MachadoFS,TanowitzHB,DesruisseauxMS. Endothelin-1anditsroleinthepathogenesisofinfectious diseases.LifeSci.2014;118:110–9.

18.PetkovaSB,TanowitzHB,MagazineHI,FactorSM,ChanJ, PestellRG,etal.Myocardialexpressionofendothelin-1in murineTrypanosomacruziinfection.CardiovascPathol. 2000;9:257–65.

19.PetkovaSB,HuangH,FactorSM,PestellRG,BouzahzahB, JelicksLA,etal.Theroleofendothelininthepathogenesisof Chagas’disease.IntJParasitol.2001;31:499–511.

20.ChuM,IyengarR,KoshmanYE,KimT,RussellB,MartinJL, etal.Serine-910phosphorylationoffocaladhesionkinaseis criticalforsarcomerereorganizationincardiomyocyte hypertrophy.CardiovascRes.2011;92:409–19.

21.FranchiniKG.Focaladhesionkinase—thebasisoflocal hypertrophicsignalingdomains.JMolCellCardiol. 2012;52:485–92.

22.MohantyP,BhatnagarS.Structureoffocaladhesionkinasein healthyheartversuspathologicalcardiachypertrophy:a modelingandsimulationstudy.JMolGraphModel. 2018;80:15–24.

23.BershadskyAD,BalabanNQ,GeigerB.Adhesion-dependent cellmechanosensitivity.AnnuRevCellDevBiol.

2003;19:677–95.

24.Wilcox-AdelmanSA,DenhezF,GoetinckPF.Syndecan-4 modulatesfocaladhesionkinasephosphorylation.JBiol Chem.2002;277:32970–7.

25.SalazarEP,RozengurtE.Srcfamilykinasesarerequiredfor integrin-mediatedbutnotforGprotein-coupledreceptor stimulationoffocaladhesionkinaseautophosphorylationat Tyr-397.JBiolChem.2001;276:17788–95.

26.BrancaccioM,HirschE,NotteA,SelvetellaG,LemboG, TaroneG.Integrinsignalling:thetug-of-warinheart hypertrophy.CardiovascRes.2006;70:422–33.

27.KleinschmidtEG,SchlaepferDD.Focaladhesionkinase signalinginunexpectedplaces.CurrOpinCellBiol. 2017;45:24–30.

28.SchallerMD,HildebrandJD,ShannonJD,FoxJW,VinesRR, ParsonsJT.Autophosphorylationofthefocaladhesionkinase, pp125FAK,directsSH2-dependentbindingofpp60src.Mol CellBiol.1994;14:1680–8.

29.SamarelAM.Focaladhesionsignalinginheartfailure. PflugersArch.2014;466:1101–11.

30.BrenerZ.Therapeuticactivityandcriterionofcureonmice experimentallyinfectedwithTrypanosomacruzi.RevInstMed tropSPaulo.1962;4:389–96.

31.Araújo-JorgeTC,DeCastroSL.Questõesdadoenc¸ahumana paratrabalhoemmodelosanimais.In:Araújo-JorgeTC,de CastroSL,editors.Doenc¸adeChagas:manualpara

experimentac¸ãoanimal.RiodeJaneiro:EditoraFiocruz;2000. p.17–9.

(12)

32.MitchellGF,JeronA,KorenG.Measurementofheartrateand Q-Tintervalintheconsciousmouse.AmJPhysiol.

1998;274:H747–51.

33.DietzC,BertholdMR.KNIMEforopen-sourcebioimage analysis:atutorial.AdvAnatEmbryolCellBiol. 2016;219:179–97.

34.LivakKJ,SchimitdgenTD.Analysisofrelativegene expressiondatausingreal-timequantitativePCRandthe 2(-DeltaDeltaC(T))method.Methods.2001;25:402–8.

35.HutchinsonKR,StewartJAJr,LucchesiPA.Extracellular matrixremodelingduringtheprogressionofvolume overload-inducedheartfailure.JMolCellCardiol. 2010;48:564–9.

36.CardosoAC,MacedoPereiraAH,BerteliAmbrosioAL, ConsonniSR,RochadeOliveiraR,BajgelmanMC,etal.FAK formsacomplexwithMEF2tocouplebiomechanical signalingtotranscriptionincardiomyocytes.Structure. 2016;24:1301–10.

37.GrahamZA,GallagherPM,CardozoCP.Focaladhesionkinase anditsroleinskeletalmuscle.JMuscleResCellMotil. 2015;36:305–15.

38.FranchiniKG,TorsoniAS,SoaresPH,SaadMJ.Earlyactivation ofthemulticomponentsignalingcomplexassociatedwith focaladhesionkinaseinducedbypressureoverloadintherat heart.CircRes.2000;87:558–65.

39.FranchiniKG,ClementeCF,MarinTM.Focaladhesionkinase signalingincardiachypertrophyandfailure.BrazJMedBiol Res.2009;42:44–52.

40.MeloTG,AlmeidaDS,deMeirellesMdeN,PereiraMC.

Trypanosomacruziinfectiondisruptsvinculincostameresin cardiomyocytes.EurJCellBiol.2004;83:531–40.

41.MeloTG,AdesseD,MeirellesMN,PereiraMCS.Trypanosoma cruzidown-regulatesmechanosensitiveproteinsin cardiomyocytes.MemInstOswaldoCruz.2019;114:e180593.

42.HakimZS,DiMicheleLA,RojasM,MeredithD,MackCP,Taylor JM.FAKregulatescardiomyocytesurvivalfollowing

ischemia/reperfusion.JMolCellCardiol.2009;46:241–8.

43.EbleDM,StraitJB,GovindarajanG,LouJ,ByronKL,Samarel AM.Endothelin-inducedcardiacmyocytehypertrophy:role forfocaladhesionkinase.AmJPhysiolHeartCircPhysiol. 2000;278:H1695–707.

44.SalomoneOA,CaeiroTF,MadoeryRJ,AmuchásteguiM, OmelinaukM,JuriD,etal.Highplasmaimmunoreactive endothelinlevelsinpatientswithChagas’cardiomyopathy. AmJCardiol.2001;87:1217–20.

45.ChuM,IyengarR,KoshmanY,KimT,SamarelAM. Endothelin-1inducesSerine910phosphorylationoffocal adhesionkinaseviaPKCdelta-andSrc-dependentsignaling pathways.FASEBJ.2010;24.

46.MutlakM,KehatI.Extracellularsignal-regulatedkinases1/2 asregulatorsofcardiachypertrophy.FrontPharmacol. 2015;6:149–57.

47.EickhoffCS,LawrenceCT,SagartzJE,BryantLA,LabovitzAJ, GalaSS,etal.ECGdetectionofmurinechagasic

cardiomyopathy.JParasitol.2010;96:758–64.

48.WeiH,VanderHeideRS.HeatstressactivatesAKTviafocal adhesionkinase-mediatedpathwayinneonatalrat ventricularmyocytes.AmJPhysiolHeartCircPhysiol. 2008;295:H561–8.

49.Crosara-AlbertoDP,InoueRY,CostaCR.FAKsignalling mediatesNF-kappaBactivationbymechanicalstressin cardiacmyocytes.ClinChimActa.2009;403:81–6.

50.Ribeiro-RomãoRP,MoreiraOC,OsorioEY,Cysne-FinkelsteinL, Gomes-SilvaA,ValverdeJG,etal.Comparativeevaluationof lesiondevelopment,tissuedamage,andcytokineexpression ingoldenhamsters(Mesocricetusauratus)infectedby inoculawithdifferentLeishmania(Viannia)braziliensis concentrations.InfectImmun.2014;82:5203–13.

51.Barreto-de-AlbuquerqueJ,Silva-dos-SantosD,PérezAR, BerbertLR,deSantana-van-VlietE,Farias-de-OliveiraDA, etal.TrypanosomacruziInfectionthroughtheOralRoute PromotesaSevereInfectioninMice:NewDiseaseFormfrom anOldInfection?PLOSNegl.Trop.Dis.2015;9:e0003849.

Referências

Documentos relacionados

[Brain Energy Metabolism in Chronic Hepatic Encephalopathy: an in vivo and longitudinal Magnetic Resonance Spectroscopy study on a rat model of Biliary Cirrhosis].. Direitos de C´

Com o aumento do consumo de energia elétrica, a utilização de substâncias químicas, o nível elevado dos impactos ambientais: exploração de recursos naturais, poluição

In the irradiated cardiac tissue a reduction of CD levels (relative to control rats) was observed with all doses used and at all points of time after irradiation, indicating

5: quantification of the acute inflammatory process in the cardiac tissue of mice infected with Trypanosoma cruzi Colombian strain.. Analy- sis of inflammatory infiltration in

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

EPCs: endothelial progenitor cells; NICD: Notch intracellular domain; Wnts: Wnt signaling; MSCs: mesenchymal stromal cells; CPCs: cardiac progenitor cells; RBP-J k :