• Nenhum resultado encontrado

Observation of the associated production of a single top Quark - and a W Boson in pp collisions at root S=8 TeV

N/A
N/A
Protected

Academic year: 2021

Share "Observation of the associated production of a single top Quark - and a W Boson in pp collisions at root S=8 TeV"

Copied!
17
0
0

Texto

(1)

SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.231802

DOI: 10.1103/PhysRevLett.112.231802

Direitos autorais / Publisher's copyright statement:

©2014

by American Physical Society. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo

(2)

Observation of the Associated Production of a Single Top Quark

and a

W Boson in pp Collisions at

p

ffiffi

s

¼ 8 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 13 January 2014; published 9 June 2014)

The first observation of the associated production of a single top quark and a W boson is presented. The analysis is based on a data set corresponding to an integrated luminosity of12.2 fb−1 of proton-proton collisions atpffiffiffis¼ 8 TeV recorded by the CMS experiment at the LHC. Events with two leptons and a jet originating from a b quark are selected. A multivariate analysis based on kinematic and topological properties is used to separate the signal from the dominant t¯t background. An excess consistent with the signal hypothesis is observed, with a significance which corresponds to 6.1 standard deviations above a background-only hypothesis. The measured production cross section is23.4  5.4 pb, in agreement with the standard model prediction.

DOI:10.1103/PhysRevLett.112.231802 PACS numbers: 13.85.Ni, 12.15.Hh, 13.85.Qk, 14.65.Ha

Since its discovery in 1995 by the CDF[1]and D0[2]

experiments at the Tevatron, studies of the top quark have raised great interest within high energy physics. As the heaviest of all standard model (SM) particles, the top quark potentially plays an important role in electroweak sym-metry breaking as well as in physics beyond the SM. The measurement of the different mechanisms by which top quarks can be produced is instrumental in advancing the understanding of physics at the TeV scale.

Top quarks are produced predominantly in pairs via the strong interaction in proton-proton (pp) collisions but they can also be produced singly via electroweak inter-actions, involving a Wtb vertex. In the SM, single-top-quark production occurs mainly through three processes: t-channel (tqb), s-channel (tb), and associated production of a top quark and a W boson (tW). Single-top-quark production was first observed by the D0[3]and CDF [4]

experiments. The t-channel production mode has been measured by D0 [5,6] and CDF [7] as well as at the Large Hadron Collider (LHC) by the Compact Muon Solenoid (CMS) [8] and ATLAS [9] experiments, while the observation of s-channel production was recently presented through a combination of the results of the CDF and D0 experiments [10]. The tW production cross section is negligible at the Tevatron, but large enough at the LHC to make it accessible. Evidence for this process was presented by both the ATLAS[11]and CMS[12] experi-ments using the7 TeV collision data, with significances of 3.6 and 4.0σ, respectively. This Letter presents the first observation of tW production at a significance of at least

5σ, using data collected with the CMS experiment in pp collisions at pffiffiffis¼ 8 TeV and corresponding to an inte-grated luminosity of12.2 fb−1.

In addition to testing the SM predictions at the electro-weak scale, associated tW production is of interest because of its sensitivity to non-SM couplings of the Wtb vertex

[13–17], while being relatively insensitive to scenarios that affect the other single-top-quark production channels.

The theoretical prediction for the cross section of tW production in pp collisions atpffiffiffis¼ 8 TeV at approximate next-to-next-to-leading order (NNLO) is22.20.6ðscaleÞ 1.4ðPDFÞ pb[18], with the first uncertainty coming from factorization and renormalization scale variations and the second from variations in the parton distribution functions of the proton. At next-to-leading order (NLO), the definition of tW production in perturbative quantum chromodynamics mixes with top-quark pair production (t¯t) [19–21]. Two schemes for defining the tW signal to distinguish it from t¯t production have been proposed: the“diagramremoval”(DR)

[19], in which all doubly resonant NLO tW diagrams are removed, and the“diagram subtraction” [19,22], where a gauge-invariant subtraction term modifies the NLO tW cross section to locally cancel the contribution from t¯t . In this Letter, the DR scheme is used for simulating the signal, but it was verified that the results are consistent between the two methods and any differences are accounted for in the systematic uncertainties.

The analysis is performed using the dilepton decay channels, in which the W boson produced in association with the top quark and the W boson from the decay of the top quark both decay leptonically into a muon or an electron, and a neutrino. This leads to a final state composed of two oppositely charged isolated leptons, a jet resulting from the fragmentation of a b quark, and two neutrinos. The neutrinos escape detection and are only discernible by the presence of missing transverse energy * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(3)

(EmissT ), defined as the magnitude of the vector sum of the

transverse momentum of all reconstructed particles. The primary background to tW production in this final state comes from t¯t production, with Z=γ⋆ events being the next most significant.

The analysis uses a multivariate technique, exploiting kinematic and topological differences to distinguish the tW signal from the dominant t¯t background. To assess the robustness of the result, two additional analyses were conducted. One involves a fit to a single kinematic variable, the other is based on event counts.

The central feature of the CMS apparatus [23] is a superconducting solenoid with an internal diameter of 6 m , providing a magnetic field of 3.8 T. Within the bore of the solenoid are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke outside the magnet. In addition, CMS has extensive forward calorimetry. The detector covers a region of jηj < 5.0, where the pseudorapidity η is defined as η ¼ − ln½tanðθ=2Þ, where θ is the polar angle.

Data samples are selected based on triggers requiring two leptons (either an electron or muon), one with trans-verse momentum, pT, of at least 17 GeV and a second with

pTof at least 8 GeV. All events are required to have a

well-reconstructed primary vertex[24]. The primary vertex with the largest sum of p2T of associated tracks is chosen.

Electrons are reconstructed from energy deposits in the electromagnetic calorimeter (including energy deposits from radiated photons) matched to tracks in the silicon tracker. Muons, Emiss

T , and jets are reconstructed using the

CMS particle flow (PF) algorithm[25,26], which performs a global event reconstruction. Electrons and muons are required to have pT> 20 GeV and fall within the

pseu-dorapidity range ofjηj < 2.5 for electrons and jηj < 2.4 for muons. Exactly two oppositely charged, isolated leptons are required in the event, and events are rejected if they contain additional leptons passing a looser criteria, for which the pTthreshold is lowered to 10 GeV. In order to

limit the contribution from low-mass dilepton resonances, the invariant mass of the dilepton system, mll(l ¼ e or μ),

is required to be greater than 20 GeV. Events in the ee and μμ final states are rejected if mll is between 81 and

101 GeV , to suppress the Z→ ll process in the same-flavor final states. Additionally, a requirement of EmissT >

50 GeV is applied for these final states.

Jets are reconstructed by clustering PF candidates using the anti-kT algorithm [27] with a distance parameter of

0.5. Selected jets must be within jηj < 2.4 and have pT> 30 GeV. Corrections are made to the jet energies

for detector response as a function of η and pT [28]. Additional corrections are made to subtract energy in the jet from multiple pp collisions (pileup)[29]. Jets originating from the decay of a b quark are tagged based on the

presence of a secondary vertex, identified using a multi-variate algorithm combining tracking information in a discriminant[30]. A working point is chosen, correspond-ing to a b-taggcorrespond-ing efficiency of approximately 70% and with a misidentification rate of 1%–2%. Loose jets, whose discrimination power against t¯t background is discussed later, are defined as jets failing the requirements on pTand

η, but passing the less restrictive selection requirement of pT> 20 GeV and jηj < 4.9, while still passing all other

selection criteria. In particular, loose jets that fall within jηj < 2.4 are classified as central loose jets.

For events passing the dilepton and Emiss

T criteria

described above, a region in which the tW signal is enhanced (signal region) and two regions dominated by background (control regions) are defined. The signal region contains events with exactly one jet passing the selection requirements, which is b tagged (1j1t region). Two control regions enriched in t¯t background are defined as having exactly two jets with either one or both being b tagged (2j1t and 2j2t regions, respectively).

Events from Monte Carlo simulation are used to estimate the contributions and kinematics of signal and background processes. Single-top-quark events are simulated at NLO with thePOWHEG1.0 event generator[31–34]; MADGRAPH

5.1.3 is used for simulating t¯t and single-boson events (V þ jets, where V ¼ W, Z) [35]. Samples are produced using a top-quark mass mt¼ 172.5 GeV, consistent with

its current best measurement[36]. Diboson backgrounds are simulated using PYTHIA 6.426 [37]. In all samples, fragmentation and hadronization are modeled withPYTHIA,

andTAUOLAv27.121.5 is used to simulate τ decays[38].

The CTEQ6L1 and CTEQ6.6M PDF sets[39]are used for samples simulated at leading-order and NLO, respectively. A full simulation of the response of the CMS detector is performed for all generated events using a GEANT4 -based

model [40]. The simulation includes modeling of pileup, with the distribution of the number of interactions in simulation matching that in data. Simulated samples are normalized to the NNLO cross sections for t¯t [σt¯t¼ 245.8þ6.2−8.4ðscaleÞþ6.2−6.4ðPDFÞ pb][41], Z=γ⋆, and W þ jets processes, with approximate NNLO cross sections used for single top quark[18]and NLO for diboson processes. The Z=γ⋆ simulation is reweighted to reproduce the EmissT

distribution observed in data, using events with mllin the

vicinity of the Z-boson mass (81 to 101 GeV) to derive scale factors.

After the selection, the simulated samples in the 1j1t signal region contain predominantly tW and t¯t events (comprising 16% and 76% of the events, respectively), with a smaller contribution from Z=γ⋆ events (6%). The two control regions are dominated by t¯t production. Event yields in simulation and data in the signal and control regions are shown in TableI.

In order to separate the tW signal from the t¯t back-ground, a multivariate analysis based on boosted decision

(4)

trees (BDT)[42]is used, implemented with the toolkit for multivariate data analysis[43]. The BDT analyzer is trained using 13 variables, chosen for their separation power in distinguishing tW and t¯t , as well as being well modeled in simulation when checked in control regions. The most powerful variables are those involving loose jets in the event: the number of loose jets, number of central loose jets, and the number of loose jets that are b tagged. Other variables with significant separation power are related to the kinematics of the system comprised of the leptons, jets and Emiss

T : the scalar sum of their transverse momenta (HT),

the magnitude of the vector sum of their transverse momenta (psysT ), and invariant mass of the system. A

complete list of the variables used can be found in the Supplemental Material [44]). The distributions of the number of loose jets and the pT of the system in the

1j1t signal region are shown in Fig. 1 for all three final states (ee, eμ, and μμ) combined.

The BDT analyzer provides a single discriminant value for each event. The distributions of the BDT discriminant in data and simulation are shown in Fig.2for the1j1t, 2j1t, and2j2t regions, combining all three final states together. The uncertainty from all systematic sources is deter-mined by estimating their effect on the normalization and shape of the BDT discriminant for all regions and final states. The dominant systematic uncertainties come from the choice of thresholds for the matrix element and parton showering (ME=PS) matching in simulation of t¯t produc-tion and the renormalizaproduc-tion and factorizaproduc-tion scale. The effect of these uncertainties was estimated by producing simulated samples with the value of the ME=PS matching thresholds and renormalization and factorization scale doubled and halved from their respective initial values of 20 GeV and m2tþ

P

p2T (where the sum is over all

additional final state partons), contributing a 14% and 12% uncertainty, respectively, to the measured cross section. The uncertainty due to the value of the top-quark mass used in simulation is estimated by simulating tW and t¯t processes with a varied value for mt, resulting in a 9% effect on the

cross section. The complete list of systematic uncertainties and corresponding effects on the cross section can be found in the Supplemental Material[44].

A simultaneous binned likelihood fit to the rate and shape of the BDT distributions of the three final states in the

three regions is performed. The two control regions are included in the fit to allow for better determination of the t¯t contribution. The distributions for signal and background are taken from simulation. In the likelihood function, for each source of systematic uncertainty u, a nuisance param-eterθu is introduced. The rates of signal and background are allowed to vary in the fit, constrained in the likelihood function by the systematic uncertainties. The excess of events is quantified based on the score statistic q, chosen to enhance numerical stability, defined as

> 20 GeV

T

Number of loose jets, p

0 1 2 3 4 5 6 7 8 9 Events 0 500 1000 1500 2000 2500 3000 3500 4000 Data tW t t +jets * γ Z/ Other Uncertainty , 1j1t -1 = 8 TeV, L=12.2 fb s CMS, [GeV] sys T p 0 20 40 60 80 100 120 140 160 180 200 Events / 4 GeV 0 100 200 300 400 500 600 700 800 Data tW t t +jets * γ Z/ Other Uncertainty , 1j1t -1 = 8 TeV, L=12.2 fb s CMS,

FIG. 1 (color online). The number of loose jets in the event and the pTof the system (p

sys

T ) composed of the jet, leptons, and EmissT

, in the signal region (1j1t) for all final states combined. Shown are data (points) and simulation (histogram). The hatched band represents the combined effect of all sources of systematic uncertainty.

TABLE I. Event yields in the signal and control regions. Yields from simulation are shown with statistical (first) and systematic (second) uncertainties.

1j1t 2j1t 2j2t tW 1500  20  130 790  20  80 220  10  30 t¯t 7090  60  900 12910  80  1320 7650  60  1020 Z=γ⋆, other 670  30  90 370  30  60 36  7  12 Total simulation 9260  70  1040 14070  90  1410 7910  70  1020 Data 9353 13479 7615

(5)

q ¼∂μ∂ lnLðμ ¼ 0; ˆθ0jdataÞ;

where μ is the signal strength parameter (defined as the signal cross section in units of the SM prediction) and ˆθ0is the set of nuisance parameters that maximizes the like-lihood L for a background-only hypothesis (μ ¼ 0). The score statistic is evaluated for sets of four billion

pseudoexperiments using a background-only hypothesis. The significance is determined based on the probability of producing a score statistic value in the background-only hypothesis as high or higher than that observed in data. The expected significance is evaluated using the median and central 68% interval of the score statistic values obtained in pseudo-experiments generated under a signal-plus-back-ground hypothesis. A profile likelihood method is used to determine the signal cross section and 68% confidence level (C.L) interval.

We observe an excess of events above the expected background with a p value of 5 × 10−10corresponding to a significance of6.1σ, compared to an expected significance from simulation of5.4  1.4σ. The measured cross section is found to be 23.4  5.4 pb, where the uncertainty is mainly systematic, in agreement with the predicted SM value of22.2  0.6ðscaleÞ  1.4ðPDFÞ pb.

The cross section measurement is used to determine the absolute value of the Cabibbo-Kobayashi-Maskawa matrix elementjVtbj, assuming jVtbj ≫ jVtdj and jVtsj

jVtbj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi σtW=σthtW q ¼ 1.03  0.12ðexpÞ  0.04ðth.Þ; where σth

tW is the theoretical prediction of the tW cross

section assuming jVtbj ¼ 1, and the uncertainties are separated into experimental and theoretical values. Using the SM assumption 0 ≤ jVtbj2≤ 1, a lower bound jVtbj > 0.78 at 95% C.L. is found using the approach of

Feldman and Cousins[45].

Using the same selection as in the BDT analysis, two cross-check analyses are performed. Events containing any

Region 1j1t 2j1t 2j2t Events 0 2000 4000 6000 8000 10000 12000 14000 -1 = 8TeV, L=12.2 fb s CMS, Data tW t t +jets * γ Z/ & Other Uncertainty

FIG. 3 (color online). Event yields in data and simulation for events passing additional requirements from the cross-check analyses. Yields are shown in the1j1t signal regions and 2j1t and2j2t control regions for a combination of all three final states, with the simulation scaled to the outcome of the statistical fit from the event-count analysis. The hatched band represents the combined effect of all systematic uncertainties on the event yields. BDT discriminant -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 Events 0 100 200 300 400 500 600 700 Data tW t t +jets * γ Z/ Other Uncertainty , 1j1t -1 = 8 TeV, L=12.2 fb s CMS, BDT discriminant -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 Events 0 200 400 600 800 1000 1200 1400 Data tW t t +jets * γ Z/ Other Uncertainty , 2j1t -1 = 8 TeV, L=12.2 fb s CMS, BDT discriminant -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 Events 0 100 200 300 400 500 600 700 800 900 Data tW t t +jets * γ Z/ Other Uncertainty , 2j2t -1 = 8 TeV, L=12.2 fb s CMS,

FIG. 2 (color online). The BDT discriminant, in the signal region (1j1t) and control regions (2j1t and 2j2t) for all final states combined. Shown are data (points) and simulation (histo-gram). The hatched band represents the combined effect of all sources of systematic uncertainty.

(6)

b-tagged loose jets are rejected. Additionally, a requirement of HT> 160 GeV is added in the eμ final state, where no

Emiss

T requirement is applied. The effects of systematic

uncertainties are taken into account in the same way as for the BDT analysis, and the same method for extraction of the significance and cross section is used. The first cross-check analysis is based on the distribution of psysT rather

than the BDT discriminant, and results in an observed significance of4.0σ above a background-only hypothesis, with an expected significance of3.2þ0.4−0.9σ, and a measured cross section of 24.3  8.6 pb. The second cross-check analysis is based only on event counts after selection, and an excess of events is observed above the background with a significance of3.6σ, with an expected significance based on simulation of2.8  0.9σ, and a measured cross section of 33.9  8.6 pb. Event yields in data and sim-ulation for this analysis are shown in Fig. 3, with the simulation scaled to the result of the statistical fit. The results of both analyses are consistent with those found in the BDT analysis, but with larger, mostly systematic, uncertainties.

In summary, the production of a single top quark in association with a W boson is observed for the first time. The analysis uses data collected by the CMS experiment in pp collisions at pffiffiffis¼ 8 TeV, corresponding to an inte-grated luminosity of12.2 fb−1. An excess of events above background is found with a significance of6.1σ, and a tW production cross section of23.4  5.4 pb is measured, in agreement with the standard model prediction.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN;

CAS, MoST, and NSFC (China); COLCIENCIAS

(Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, Contract No. SF0690030s09, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN

(Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] CDF Collaboration,Phys. Rev. Lett. 74, 2626 (1995). [2] D0 Collaboration,Phys. Rev. Lett. 74, 2632 (1995). [3] D0 Collaboration, Phys. Rev. Lett. 103, 092001

(2009).

[4] CDF Collaboration, Phys. Rev. Lett. 103, 092002 (2009).

[5] D0 Collaboration,Phys. Lett. B 682, 363 (2010). [6] D0 Collaboration,Phys. Lett. B 705, 313 (2011). [7] CDF Collaboration,Phys. Rev. D 82, 112005 (2010). [8] CMS Collaboration, Phys. Rev. Lett. 107, 091802

(2011).

[9] ATLAS Collaboration,Phys. Lett. B 717, 330 (2012). [10] CDF and D0 Collaborations,Phys. Rev. Lett. 112, 231803

(2014).

[11] ATLAS Collaboration,Phys. Lett. B 716, 142 (2012). [12] CMS Collaboration, Phys. Rev. Lett. 110, 022003

(2013).

[13] T. M. P. Tait and C.-P. Yuan, Phys. Rev. D 63, 014018 (2000).

[14] Q.-H. Cao, J. Wudka, and C.-P. Yuan,Phys. Lett. B 658, 50 (2007).

[15] V. Barger, M. McCaskey, and G. Shaughnessy,Phys. Rev. D 81, 034020 (2010).

[16] R. M. Godbole, L. Hartgring, I. Niessen, and C. D. White,

J. High Energy Phys. 01 (2012), 011.

[17] S. Y. Ayazi, H. Hesari, and M. M. Najafabadi,Phys. Lett. B 727, 199 (2013).

[18] N. Kidonakis,arXiv:1210.7813.

[19] S. Frixione, E. Laenen, P. Motylinski, C. White, and B. R. Webber,J. High Energy Phys. 07 (2008) 029.

[20] A. S. Belyaev, E. E. Boos, and L. V. Dudko,Phys. Rev. D 59, 075001 (1999).

[21] C. D. White, S. Frixione, E. Laenen, and F. Maltoni,J. High Energy Phys. 11 (2009) 074.

[22] T. M. P. Tait,Phys. Rev. D 61, 034001 (1999). [23] CMS Collaboration,JINST 3, S08004 (2008).

[24] CMS Collaboration, Tracking and Primary Vertex Results in First 7 TeV Collisions, CMS Physics Analysis Summary Report No. CMS-PAS-TRK-10-005, 2010 (unpublished);

http://cdsweb.cern.ch/record/1279383.

[25] CMS Collaboration, Particle Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009 (unpublished); http://cdsweb.cern.ch/record/ 1194487.

[26] CMS Collaboration, Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-002, 2010 (unpublished);

http://cdsweb.cern.ch/record/1279341.

[27] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

(7)

[28] CMS Collaboration,JINST 6, P11002 (2011).

[29] G. Soyez, G. P. Salam, J.-H. Kim, S. Dutta, and M. Cacciari,

Phys. Rev. Lett. 110, 162001 (2013).

[30] CMS Collaboration,JINST 8, P04013 (2013). [31] P. Nason,J. High Energy Phys. 11 (2004) 040.

[32] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[33] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 06 (2010) 043.

[34] E. Re,Eur. Phys. J. C 71, 1547 (2011).

[35] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[36] CDF and D0 Collaborations, Phys. Rev. D 86, 092003 (2012), an update can be found inarXiv:1305.3929.

[37] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[38] N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Wąs, and Z. Wąs, Comput. Phys. Commun. 183, 821 (2012).

[39] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan,Phys. Rev. D 78, 013004 (2008).

[40] GEANT4,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[41] M. Czakon, P. Fiedler, and A. Mitov,Phys. Rev. Lett. 110, 252004 (2013).

[42] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees (Chapman and Hall, London, 1984).

[43] H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, Proc. Sci., ACAT2007 (2007) 040 [arXiv:physics/0703039].

[44] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.112.231802 for a list and distributions of the variables used in the BDT, BDT distributions in additional control regions, the event yields split by channel, and a list of the systematic uncertainties. [45] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873

(1998).

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,bM. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2

V. Knünz,2 M. Krammer,2,bI. Krätschmer,2 D. Liko,2 I. Mikulec,2D. Rabady,2,c B. Rahbaran,2H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4 A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 N. Heracleous,5 A. Kalogeropoulos,5

J. Keaveney,5 T. J. Kim,5S. Lowette,5 M. Maes,5 A. Olbrechts,5 D. Strom,5 S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Van Parijs,5I. Villella,5C. Caillol,6 B. Clerbaux,6G. De Lentdecker,6L. Favart,6 A. P. R. Gay,6A. Léonard,6P. E. Marage,6A. Mohammadi,6L. Perniè,6T. Reis,6T. Seva,6L. Thomas,6C. Vander Velde,6 P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7L. Benucci,7A. Cimmino,7S. Costantini,7S. Dildick,7G. Garcia,7B. Klein,7 J. Lellouch,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7 M. Tytgat,7 S. Walsh,7 E. Yazgan,7 N. Zaganidis,7 S. Basegmez,8 C. Beluffi,8,dG. Bruno,8 R. Castello,8A. Caudron,8 L. Ceard,8G. G. Da Silveira,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,eJ. Hollar,8P. Jez,8

M. Komm,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 C. Nuttens,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8 A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8M. Vidal Marono,8 J. M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9

G. H. Hammad,9 G. A. Alves,10M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10 W. L. Aldá Júnior,11W. Carvalho,11J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11 C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11

H. Nogima,11 W. L. Prado Da Silva,11 J. Santaolalla,11A. Santoro,11A. Sznajder,11E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12bF. A. Dias,12a,hT. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12a

P. G. Mercadante,12bS. F. Novaes,12a Sandra S. Padula,12aV. Genchev,13,c P. Iaydjiev,13,c A. Marinov,13 S. Piperov,13 M. Rodozov,13G. Sultanov,13 M. Vutova,13A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14V. Kozhuharov,14 L. Litov,14 B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15D. Liang,15S. Liang,15 X. Meng,15R. Plestina,15,iJ. Tao,15X. Wang,15Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16W. Li,16

S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16L. Zhang,16W. Zou,16C. Avila,17C. A. Carrillo Montoya,17 L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20 L. Tikvica,20 A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Finger,22 M. Finger Jr.,22A. A. Abdelalim,23,jY. Assran,23,kS. Elgammal,23,jA. Ellithi Kamel,23,lM. A. Mahmoud,23,mA. Radi,23,n,o

(8)

M. Kadastik,24M. Müntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25 J. Härkönen,26V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26 P. Luukka,26T. Mäenpää,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27

M. Besancon,28F. Couderc,28M. Dejardin,28 D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28 A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28A. Nayak,28 J. Rander,28 A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29

L. Dobrzynski,29A. Florent,29R. Granier de Cassagnac,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29 C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,p

J. Andrea,30 D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30 E. Conte,30,p F. Drouhin,30,pJ.-C. Fontaine,30,p D. Gelé,30U. Goerlach,30C. Goetzmann,30 P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30 S. Gadrat,31S. Beauceron,32 N. Beaupere,32G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32

J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32 J. D. Ruiz Alvarez,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32 Z. Tsamalaidze,33,qC. Autermann,34S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34L. Feld,34O. Hindrichs,34 K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34

V. Zhukov,34,f M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Güth,35 T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36,cA. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36 I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37U. Behrens,37A. J. Bell,37M. Bergholz,37,rA. Bethani,37K. Borras,37 A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37 T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37G. Flucke,37A. Geiser,37A. Grebenyuk,37P. Gunnellini,37 S. Habib,37J. Hauk,37G. Hellwig,37M. Hempel,37D. Horton,37H. Jung,37M. Kasemann,37 P. Katsas,37 J. Kieseler,37 C. Kleinwort,37M. Krämer,37D. Krücker,37W. Lange,37J. Leonard,37K. Lipka,37W. Lohmann,37,rB. Lutz,37R. Mankel,37 I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37 F. Nowak,37H. Perrey,37A. Petrukhin,37D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37

E. Ron,37M. Ö. Sahin,37J. Salfeld-Nebgen,37 P. Saxena,37R. Schmidt,37,r T. Schoerner-Sadenius,37M. Schröder,37 M. Stein,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38V. Blobel,38H. Enderle,38J. Erfle,38

E. Garutti,38K. Goebel,38M. Görner,38M. Gosselink,38J. Haller,38R. S. Höing,38H. Kirschenmann,38R. Klanner,38 R. Kogler,38J. Lange,38I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38 P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38J. Sibille,38,sV. Sola,38H. Stadie,38G. Steinbrück,38D. Troendle,38

E. Usai,38L. Vanelderen,38 C. Barth,39C. Baus,39J. Berger,39 C. Böser,39E. Butz,39T. Chwalek,39W. De Boer,39 A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,cF. Hartmann,39,c T. Hauth,39,c H. Held,39K. H. Hoffmann,39

U. Husemann,39I. Katkov,39,f A. Kornmayer,39,c E. Kuznetsova,39P. Lobelle Pardo,39D. Martschei,39 M. U. Mozer,39 Th. Müller,39M. Niegel,39A. Nürnberg,39 O. Oberst,39G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Röcker,39 F.-P. Schilling,39 G. Schott,39H. J. Simonis,39 F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39

R. Wolf,39M. Zeise,39G. Anagnostou,40 G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40 A. Markou,40C. Markou,40E. Ntomari,40A. Psallidas,40I. Topsis-giotis,40L. Gouskos,41A. Panagiotou,41N. Saoulidou,41 E. Stiliaris,41X. Aslanoglou,42I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42

E. Paradas,42G. Bencze,43C. Hajdu,43 P. Hidas,43D. Horvath,43,tF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,u A. J. Zsigmond,43N. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45 B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Kaur,47M. Z. Mehta,47M. Mittal,47 N. Nishu,47A. Sharma,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48R. K. Shivpuri,48S. Banerjee,49S. Bhattacharya,49 K. Chatterjee,49S. Dutta,49B. Gomber,49Sa. Jain,49Sh. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49 D. Roy,49

S. Sarkar,49M. Sharan,49A. P. Singh,49 A. Abdulsalam,50D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51R. M. Chatterjee,51S. Ganguly,51S. Ghosh,51M. Guchait,51,vA. Gurtu,51,w

(9)

N. Wickramage,51,yS. Banerjee,52S. Dugad,52H. Arfaei,53H. Bakhshiansohi,53 H. Behnamian,53S. M. Etesami,53,z A. Fahim,53,aaA. Jafari,53M. Khakzad,53M. Mohammadi Najafabadi,53M. Naseri,53S. Paktinat Mehdiabadi,53

B. Safarzadeh,53,bb M. Zeinali,53M. Grunewald,54M. Abbrescia,55a,55bL. Barbone,55a,55bC. Calabria,55a,55b S. S. Chhibra,55a,55bA. Colaleo,55aD. Creanza,55a,55cN. De Filippis,55a,55cM. De Palma,55a,55bL. Fiore,55aG. Iaselli,55a,55c

G. Maggi,55a,55c M. Maggi,55a B. Marangelli,55a,55bS. My,55a,55c S. Nuzzo,55a,55bN. Pacifico,55a A. Pompili,55a,55b G. Pugliese,55a,55cR. Radogna,55a,55bG. Selvaggi,55a,55bL. Silvestris,55aG. Singh,55a,55bR. Venditti,55a,55bP. Verwilligen,55a

G. Zito,55a G. Abbiendi,56aA. C. Benvenuti,56aD. Bonacorsi,56a,56b S. Braibant-Giacomelli,56a,56b L. Brigliadori,56a,56b R. Campanini,56a,56bP. Capiluppi,56a,56b A. Castro,56a,56bF. R. Cavallo,56a G. Codispoti,56a,56b M. Cuffiani,56a,56b G. M. Dallavalle,56a F. Fabbri,56a A. Fanfani,56a,56b D. Fasanella,56a,56bP. Giacomelli,56a C. Grandi,56a L. Guiducci,56a,56b S. Marcellini,56aG. Masetti,56aM. Meneghelli,56a,56b A. Montanari,56a F. L. Navarria,56a,56bF. Odorici,56a A. Perrotta,56a F. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56bG. P. Siroli,56a,56bN. Tosi,56a,56bR. Travaglini,56a,56bS. Albergo,57a,57b G. Cappello,57aM. Chiorboli,57a,57bS. Costa,57a,57bF. Giordano,57a,57c,c R. Potenza,57a,57bA. Tricomi,57a,57bC. Tuve,57a,57b

G. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58b E. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58b V. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58aS. Paoletti,58aG. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59S. Bianco,59 F. Fabbri,59D. Piccolo,59P. Fabbricatore,60aR. Ferretti,60a,60bF. Ferro,60aM. Lo Vetere,60a,60bR. Musenich,60aE. Robutti,60a S. Tosi,60a,60bA. Benaglia,61a M. E. Dinardo,61a,61b S. Fiorendi,61a,61b,c S. Gennai,61a A. Ghezzi,61a,61bP. Govoni,61a,61b

M. T. Lucchini,61a,61b,cS. Malvezzi,61a R. A. Manzoni,61a,61b,c A. Martelli,61a,61b,c D. Menasce,61a L. Moroni,61a M. Paganoni,61a,61b D. Pedrini,61a S. Ragazzi,61a,61b N. Redaelli,61a T. Tabarelli de Fatis,61a,61bS. Buontempo,62a N. Cavallo,62a,62cF. Fabozzi,62a,62cA. O. M. Iorio,62a,62bL. Lista,62aS. Meola,62a,62d,cM. Merola,62aP. Paolucci,62a,cP. Azzi,63a

N. Bacchetta,63a D. Bisello,63a,63bA. Branca,63a,63bR. Carlin,63a,63b P. Checchia,63a T. Dorigo,63aM. Galanti,63a,63b,c F. Gasparini,63a,63b U. Gasparini,63a,63bP. Giubilato,63a,63b A. Gozzelino,63a K. Kanishchev,63a,63c S. Lacaprara,63a I. Lazzizzera,63a,63c M. Margoni,63a,63bA. T. Meneguzzo,63a,63b J. Pazzini,63a,63bN. Pozzobon,63a,63bP. Ronchese,63a,63b

F. Simonetto,63a,63bE. Torassa,63a M. Tosi,63a,63bA. Triossi,63aS. Vanini,63a,63b S. Ventura,63a P. Zotto,63a,63b A. Zucchetta,63a,63bG. Zumerle,63a,63bM. Gabusi,64a,64bS. P. Ratti,64a,64bC. Riccardi,64a,64bP. Vitulo,64a,64bM. Biasini,65a,65b

G. M. Bilei,65aL. Fanò,65a,65b P. Lariccia,65a,65bG. Mantovani,65a,65bM. Menichelli,65a F. Romeo,65a,65bA. Saha,65a A. Santocchia,65a,65bA. Spiezia,65a,65bK. Androsov,66a,ccP. Azzurri,66a G. Bagliesi,66a J. Bernardini,66a T. Boccali,66a

G. Broccolo,66a,66c R. Castaldi,66aM. A. Ciocci,66a,cc R. Dell’Orso,66aF. Fiori,66a,66c L. Foà,66a,66c A. Giassi,66a M. T. Grippo,66a,ccA. Kraan,66a F. Ligabue,66a,66cT. Lomtadze,66a L. Martini,66a,66b A. Messineo,66a,66b C. S. Moon,66a,dd

F. Palla,66a A. Rizzi,66a,66bA. Savoy-Navarro,66a,eeA. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66a,cc R. Tenchini,66a G. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67bF. Cavallari,67a D. Del Re,67a,67b

M. Diemoz,67a M. Grassi,67a,67bC. Jorda,67a E. Longo,67a,67b F. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67b S. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67aS. Rahatlou,67a,67bC. Rovelli,67a L. Soffi,67a,67bP. Traczyk,67a,67b N. Amapane,68a,68b R. Arcidiacono,68a,68c S. Argiro,68a,68bM. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a

S. Casasso,68a,68bM. Costa,68a,68bA. Degano,68a,68b N. Demaria,68a C. Mariotti,68a S. Maselli,68a E. Migliore,68a,68b V. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cG. Ortona,68a,68bL. Pacher,68a,68bN. Pastrone,68aM. Pelliccioni,68a,c

A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a S. Belforte,69aV. Candelise,69a,69b M. Casarsa,69a F. Cossutti,69a G. Della Ricca,69a,69b B. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70T. Y. Kim,70 S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71D. C. Son,71J. Y. Kim,72 Zero J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73K. S. Lee,73S. K. Park,73Y. Roh,73 M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75M. S. Kim,75 E. Kwon,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76 J. R. Komaragiri,77H. Castilla-Valdez,78 E. De La Cruz-Burelo,78I. Heredia-de La Cruz,78,ffR. Lopez-Fernandez,78J. Martínez-Ortega,78A. Sanchez-Hernandez,78 L. M. Villasenor-Cendejas,78S. Carrillo Moreno,79F. Vazquez Valencia,79H. A. Salazar Ibarguen,80E. Casimiro Linares,81

A. Morelos Pineda,81 D. Krofcheck,82P. H. Butler,83 R. Doesburg,83S. Reucroft,83 H. Silverwood,83M. Ahmad,84 M. I. Asghar,84J. Butt,84H. R. Hoorani,84 W. A. Khan,84T. Khurshid,84S. Qazi,84 M. A. Shah,84M. Shoaib,84

H. Bialkowska,85M. Bluj,85,ggB. Boimska,85T. Frueboes,85M. Górski,85M. Kazana,85K. Nawrocki,85 K. Romanowska-Rybinska,85M. Szleper,85G. Wrochna,85P. Zalewski,85G. Brona,86K. Bunkowski,86M. Cwiok,86 W. Dominik,86K. Doroba,86A. Kalinowski,86M. Konecki,86J. Krolikowski,86M. Misiura,86W. Wolszczak,86P. Bargassa,87

(10)

C. Beirão Da Cruz E Silva,87P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87F. Nguyen,87J. Rodrigues Antunes,87 J. Seixas,87,cJ. Varela,87P. Vischia,87S. Afanasiev,88P. Bunin,88I. Golutvin,88I. Gorbunov,88A. Kamenev,88V. Karjavin,88 V. Konoplyanikov,88G. Kozlov,88A. Lanev,88A. Malakhov,88V. Matveev,88,hhP. Moisenz,88V. Palichik,88V. Perelygin,88

S. Shmatov,88N. Skatchkov,88V. Smirnov,88A. Zarubin,88V. Golovtsov,89 Y. Ivanov,89V. Kim,89P. Levchenko,89 V. Murzin,89V. Oreshkin,89I. Smirnov,89 V. Sulimov,89L. Uvarov,89S. Vavilov,89A. Vorobyev,89An. Vorobyev,89 Yu. Andreev,90A. Dermenev,90S. Gninenko,90N. Golubev,90M. Kirsanov,90N. Krasnikov,90A. Pashenkov,90D. Tlisov,90 A. Toropin,90V. Epshteyn,91V. Gavrilov,91N. Lychkovskaya,91V. Popov,91G. Safronov,91S. Semenov,91A. Spiridonov,91

V. Stolin,91E. Vlasov,91A. Zhokin,91V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92 G. Mesyats,92S. V. Rusakov,92A. Vinogradov,92A. Belyaev,93E. Boos,93V. Bunichev,93M. Dubinin,93,hL. Dudko,93

A. Gribushin,93V. Klyukhin,93I. Lokhtin,93S. Obraztsov,93M. Perfilov,93V. Savrin,93A. Snigirev,93N. Tsirova,93 I. Azhgirey,94I. Bayshev,94S. Bitioukov,94V. Kachanov,94A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94

R. Ryutin,94A. Sobol,94L. Tourtchanovitch,94S. Troshin,94N. Tyurin,94A. Uzunian,94 A. Volkov,94P. Adzic,95,ii M. Djordjevic,95M. Ekmedzic,95J. Milosevic,95M. Aguilar-Benitez,96J. Alcaraz Maestre,96C. Battilana,96E. Calvo,96

M. Cerrada,96M. Chamizo Llatas,96,c N. Colino,96B. De La Cruz,96A. Delgado Peris,96D. Domínguez Vázquez,96 C. Fernandez Bedoya,96J. P. Fernández Ramos,96A. Ferrando,96J. Flix,96M. C. Fouz,96P. Garcia-Abia,96 O. Gonzalez Lopez,96S. Goy Lopez,96J. M. Hernandez,96M. I. Josa,96 G. Merino,96E. Navarro De Martino,96 J. Puerta Pelayo,96A. Quintario Olmeda,96I. Redondo,96L. Romero,96M. S. Soares,96C. Willmott,96C. Albajar,97

J. F. de Trocóniz,97 M. Missiroli,97H. Brun,98J. Cuevas,98J. Fernandez Menendez,98S. Folgueras,98

I. Gonzalez Caballero,98L. Lloret Iglesias,98J. A. Brochero Cifuentes,99I. J. Cabrillo,99A. Calderon,99S. H. Chuang,99 J. Duarte Campderros,99M. Fernandez,99G. Gomez,99J. Gonzalez Sanchez,99A. Graziano,99A. Lopez Virto,99J. Marco,99

R. Marco,99C. Martinez Rivero,99F. Matorras,99F. J. Munoz Sanchez,99J. Piedra Gomez,99T. Rodrigo,99 A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99I. Vila,99R. Vilar Cortabitarte,99D. Abbaneo,100 E. Auffray,100 G. Auzinger,100M. Bachtis,100 P. Baillon,100A. H. Ball,100D. Barney,100J. Bendavid,100 L. Benhabib,100 J. F. Benitez,100C. Bernet,100,iG. Bianchi,100P. Bloch,100A. Bocci,100A. Bonato,100O. Bondu,100C. Botta,100H. Breuker,100 T. Camporesi,100 G. Cerminara,100T. Christiansen,100J. A. Coarasa Perez,100S. Colafranceschi,100,jj M. D’Alfonso,100

D. d’Enterria,100A. Dabrowski,100A. David,100F. De Guio,100 A. De Roeck,100S. De Visscher,100 S. Di Guida,100 M. Dobson,100 N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100G. Franzoni,100 W. Funk,100M. Giffels,100 D. Gigi,100K. Gill,100M. Girone,100M. Giunta,100F. Glege,100 R. Gomez-Reino Garrido,100S. Gowdy,100 R. Guida,100 J. Hammer,100M. Hansen,100 P. Harris,100V. Innocente,100 P. Janot,100 E. Karavakis,100 K. Kousouris,100K. Krajczar,100

P. Lecoq,100 C. Lourenço,100 N. Magini,100L. Malgeri,100M. Mannelli,100L. Masetti,100F. Meijers,100 S. Mersi,100 E. Meschi,100F. Moortgat,100M. Mulders,100P. Musella,100L. Orsini,100E. Palencia Cortezon,100E. Perez,100L. Perrozzi,100

A. Petrilli,100 G. Petrucciani,100 A. Pfeiffer,100 M. Pierini,100 M. Pimiä,100 D. Piparo,100 M. Plagge,100 A. Racz,100 W. Reece,100G. Rolandi,100,kkM. Rovere,100H. Sakulin,100F. Santanastasio,100C. Schäfer,100C. Schwick,100S. Sekmen,100

A. Sharma,100 P. Siegrist,100 P. Silva,100M. Simon,100 P. Sphicas,100,ll J. Steggemann,100 B. Stieger,100M. Stoye,100 A. Tsirou,100G. I. Veres,100,uJ. R. Vlimant,100H. K. Wöhri,100W. D. Zeuner,100W. Bertl,101K. Deiters,101W. Erdmann,101 R. Horisberger,101Q. Ingram,101H. C. Kaestli,101S. König,101D. Kotlinski,101U. Langenegger,101D. Renker,101T. Rohe,101 F. Bachmair,102L. Bäni,102L. Bianchini,102P. Bortignon,102M. A. Buchmann,102B. Casal,102N. Chanon,102A. Deisher,102

G. Dissertori,102 M. Dittmar,102M. Donegà,102M. Dünser,102 P. Eller,102C. Grab,102D. Hits,102W. Lustermann,102 B. Mangano,102A. C. Marini,102P. Martinez Ruiz del Arbol,102 D. Meister,102 N. Mohr,102 C. Nägeli,102,mm P. Nef,102 F. Nessi-Tedaldi,102 F. Pandolfi,102 L. Pape,102F. Pauss,102 M. Peruzzi,102M. Quittnat,102 F. J. Ronga,102 M. Rossini,102

A. Starodumov,102,nn M. Takahashi,102 L. Tauscher,102,a K. Theofilatos,102 D. Treille,102R. Wallny,102H. A. Weber,102 C. Amsler,103,ooV. Chiochia,103 A. De Cosa,103 C. Favaro,103 A. Hinzmann,103 T. Hreus,103M. Ivova Rikova,103 B. Kilminster,103B. Millan Mejias,103J. Ngadiuba,103P. Robmann,103H. Snoek,103S. Taroni,103M. Verzetti,103Y. Yang,103

M. Cardaci,104K. H. Chen,104C. Ferro,104C. M. Kuo,104 S. W. Li,104 W. Lin,104 Y. J. Lu,104 R. Volpe,104S. S. Yu,104 P. Bartalini,105 P. Chang,105Y. H. Chang,105Y. W. Chang,105Y. Chao,105K. F. Chen,105 P. H. Chen,105C. Dietz,105

U. Grundler,105W.-S. Hou,105Y. Hsiung,105K. Y. Kao,105Y. J. Lei,105 Y. F. Liu,105R.-S. Lu,105 D. Majumder,105 E. Petrakou,105X. Shi,105J. G. Shiu,105Y. M. Tzeng,105M. Wang,105R. Wilken,105B. Asavapibhop,106N. Suwonjandee,106 A. Adiguzel,107M. N. Bakirci,107,ppS. Cerci,107,qqC. Dozen,107I. Dumanoglu,107E. Eskut,107S. Girgis,107G. Gokbulut,107

(11)

A. Polatoz,107 K. Sogut,107,ssD. Sunar Cerci,107,qq B. Tali,107,qq H. Topakli,107,ppM. Vergili,107I. V. Akin,108T. Aliev,108 B. Bilin,108S. Bilmis,108M. Deniz,108H. Gamsizkan,108A. M. Guler,108G. Karapinar,108,tt K. Ocalan,108A. Ozpineci,108

M. Serin,108R. Sever,108 U. E. Surat,108 M. Yalvac,108 M. Zeyrek,108E. Gülmez,109B. Isildak,109,uu M. Kaya,109,vv O. Kaya,109,vvS. Ozkorucuklu,109,wwH. Bahtiyar,110,xxE. Barlas,110K. Cankocak,110Y. O. Günaydin,110,yyF. I. Vardarlı,110

M. Yücel,110 L. Levchuk,111 P. Sorokin,111J. J. Brooke,112E. Clement,112D. Cussans,112 H. Flacher,112R. Frazier,112 J. Goldstein,112 M. Grimes,112G. P. Heath,112H. F. Heath,112J. Jacob,112 L. Kreczko,112 C. Lucas,112Z. Meng,112

D. M. Newbold,112,zzS. Paramesvaran,112A. Poll,112 S. Senkin,112 V. J. Smith,112T. Williams,112 K. W. Bell,113 A. Belyaev,113,aaaC. Brew,113R. M. Brown,113D. J. A. Cockerill,113J. A. Coughlan,113K. Harder,113S. Harper,113J. Ilic,113

E. Olaiya,113D. Petyt,113C. H. Shepherd-Themistocleous,113A. Thea,113I. R. Tomalin,113 W. J. Womersley,113 S. D. Worm,113M. Baber,114R. Bainbridge,114O. Buchmuller,114D. Burton,114D. Colling,114N. Cripps,114M. Cutajar,114

P. Dauncey,114 G. Davies,114 M. Della Negra,114 W. Ferguson,114 J. Fulcher,114 D. Futyan,114A. Gilbert,114 A. Guneratne Bryer,114G. Hall,114Z. Hatherell,114J. Hays,114G. Iles,114 M. Jarvis,114G. Karapostoli,114M. Kenzie,114

R. Lane,114 R. Lucas,114,zzL. Lyons,114 A.-M. Magnan,114J. Marrouche,114B. Mathias,114 R. Nandi,114J. Nash,114 A. Nikitenko,114,nnJ. Pela,114M. Pesaresi,114K. Petridis,114M. Pioppi,114,bbbD. M. Raymond,114S. Rogerson,114A. Rose,114 C. Seez,114P. Sharp,114,aA. Sparrow,114A. Tapper,114M. Vazquez Acosta,114T. Virdee,114S. Wakefield,114N. Wardle,114

J. E. Cole,115P. R. Hobson,115 A. Khan,115 P. Kyberd,115D. Leggat,115D. Leslie,115W. Martin,115 I. D. Reid,115 P. Symonds,115 L. Teodorescu,115M. Turner,115 J. Dittmann,116 K. Hatakeyama,116A. Kasmi,116H. Liu,116 T. Scarborough,116O. Charaf,117S. I. Cooper,117C. Henderson,117P. Rumerio,117A. Avetisyan,118T. Bose,118C. Fantasia,118

A. Heister,118 P. Lawson,118 D. Lazic,118J. Rohlf,118 D. Sperka,118J. St. John,118L. Sulak,118 J. Alimena,119 S. Bhattacharya,119G. Christopher,119D. Cutts,119Z. Demiragli,119 A. Ferapontov,119 A. Garabedian,119U. Heintz,119 S. Jabeen,119G. Kukartsev,119 E. Laird,119 G. Landsberg,119M. Luk,119M. Narain,119M. Segala,119T. Sinthuprasith,119 T. Speer,119J. Swanson,119R. Breedon,120G. Breto,120M. Calderon De La Barca Sanchez,120S. Chauhan,120M. Chertok,120

J. Conway,120R. Conway,120 P. T. Cox,120 R. Erbacher,120 M. Gardner,120 W. Ko,120 A. Kopecky,120 R. Lander,120 T. Miceli,120 D. Pellett,120 J. Pilot,120 F. Ricci-Tam,120B. Rutherford,120 M. Searle,120S. Shalhout,120J. Smith,120

M. Squires,120 M. Tripathi,120 S. Wilbur,120R. Yohay,120 V. Andreev,121D. Cline,121R. Cousins,121 S. Erhan,121 P. Everaerts,121C. Farrell,121 M. Felcini,121J. Hauser,121 M. Ignatenko,121 C. Jarvis,121G. Rakness,121 P. Schlein,121,a E. Takasugi,121V. Valuev,121M. Weber,121J. Babb,122R. Clare,122J. Ellison,122J. W. Gary,122G. Hanson,122J. Heilman,122 P. Jandir,122F. Lacroix,122H. Liu,122O. R. Long,122A. Luthra,122M. Malberti,122H. Nguyen,122A. Shrinivas,122J. Sturdy,122 S. Sumowidagdo,122S. Wimpenny,122W. Andrews,123J. G. Branson,123G. B. Cerati,123S. Cittolin,123R. T. D’Agnolo,123 D. Evans,123 A. Holzner,123R. Kelley,123 D. Kovalskyi,123 M. Lebourgeois,123J. Letts,123I. Macneill,123S. Padhi,123

C. Palmer,123M. Pieri,123 M. Sani,123V. Sharma,123 S. Simon,123E. Sudano,123 M. Tadel,123 Y. Tu,123A. Vartak,123 S. Wasserbaech,123,cccF. Würthwein,123A. Yagil,123J. Yoo,123 D. Barge,124 C. Campagnari,124T. Danielson,124 K. Flowers,124 P. Geffert,124 C. George,124F. Golf,124J. Incandela,124C. Justus,124 R. Magaña Villalba,124N. Mccoll,124 V. Pavlunin,124J. Richman,124R. Rossin,124D. Stuart,124W. To,124C. West,124A. Apresyan,125A. Bornheim,125J. Bunn,125

Y. Chen,125E. Di Marco,125J. Duarte,125 D. Kcira,125A. Mott,125H. B. Newman,125 C. Pena,125C. Rogan,125 M. Spiropulu,125 V. Timciuc,125 R. Wilkinson,125 S. Xie,125 R. Y. Zhu,125V. Azzolini,126 A. Calamba,126R. Carroll,126

T. Ferguson,126 Y. Iiyama,126D. W. Jang,126 M. Paulini,126J. Russ,126 H. Vogel,126I. Vorobiev,126 J. P. Cumalat,127 B. R. Drell,127W. T. Ford,127A. Gaz,127E. Luiggi Lopez,127U. Nauenberg,127J. G. Smith,127K. Stenson,127K. A. Ulmer,127 S. R. Wagner,127J. Alexander,128A. Chatterjee,128N. Eggert,128L. K. Gibbons,128W. Hopkins,128A. Khukhunaishvili,128 B. Kreis,128N. Mirman,128 G. Nicolas Kaufman,128J. R. Patterson,128A. Ryd,128E. Salvati,128W. Sun,128W. D. Teo,128

J. Thom,128J. Thompson,128J. Tucker,128 Y. Weng,128L. Winstrom,128P. Wittich,128D. Winn,129 S. Abdullin,130 M. Albrow,130 J. Anderson,130 G. Apollinari,130 L. A. T. Bauerdick,130A. Beretvas,130 J. Berryhill,130P. C. Bhat,130 K. Burkett,130J. N. Butler,130V. Chetluru,130H. W. K. Cheung,130F. Chlebana,130S. Cihangir,130V. D. Elvira,130I. Fisk,130

J. Freeman,130 Y. Gao,130E. Gottschalk,130 L. Gray,130D. Green,130S. Grünendahl,130 O. Gutsche,130 D. Hare,130 R. M. Harris,130J. Hirschauer,130B. Hooberman,130S. Jindariani,130M. Johnson,130U. Joshi,130K. Kaadze,130B. Klima,130

S. Kwan,130J. Linacre,130D. Lincoln,130 R. Lipton,130 J. Lykken,130 K. Maeshima,130 J. M. Marraffino,130 V. I. Martinez Outschoorn,130S. Maruyama,130D. Mason,130P. McBride,130K. Mishra,130S. Mrenna,130Y. Musienko,130,hh S. Nahn,130C. Newman-Holmes,130V. O’Dell,130O. Prokofyev,130N. Ratnikova,130E. Sexton-Kennedy,130S. Sharma,130 W. J. Spalding,130L. Spiegel,130L. Taylor,130S. Tkaczyk,130N. V. Tran,130L. Uplegger,130E. W. Vaandering,130R. Vidal,130

(12)

A. Whitbeck,130J. Whitmore,130W. Wu,130F. Yang,130J. C. Yun,130D. Acosta,131P. Avery,131D. Bourilkov,131T. Cheng,131 S. Das,131 M. De Gruttola,131 G. P. Di Giovanni,131D. Dobur,131 R. D. Field,131 M. Fisher,131 Y. Fu,131I. K. Furic,131 J. Hugon,131B. Kim,131J. Konigsberg,131A. Korytov,131A. Kropivnitskaya,131T. Kypreos,131J. F. Low,131K. Matchev,131 P. Milenovic,131,dddG. Mitselmakher,131L. Muniz,131A. Rinkevicius,131L. Shchutska,131N. Skhirtladze,131M. Snowball,131

J. Yelton,131M. Zakaria,131V. Gaultney,132S. Hewamanage,132S. Linn,132P. Markowitz,132G. Martinez,132 J. L. Rodriguez,132 T. Adams,133A. Askew,133J. Bochenek,133 J. Chen,133 B. Diamond,133J. Haas,133S. Hagopian,133 V. Hagopian,133K. F. Johnson,133H. Prosper,133V. Veeraraghavan,133M. Weinberg,133M. M. Baarmand,134B. Dorney,134 M. Hohlmann,134H. Kalakhety,134F. Yumiceva,134M. R. Adams,135L. Apanasevich,135V. E. Bazterra,135R. R. Betts,135 I. Bucinskaite,135R. Cavanaugh,135 O. Evdokimov,135L. Gauthier,135 C. E. Gerber,135D. J. Hofman,135S. Khalatyan,135 P. Kurt,135D. H. Moon,135C. O’Brien,135C. Silkworth,135P. Turner,135N. Varelas,135U. Akgun,136E. A. Albayrak,136,xx

B. Bilki,136,eeeW. Clarida,136K. Dilsiz,136F. Duru,136 M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136,fff A. Mestvirishvili,136A. Moeller,136J. Nachtman,136H. Ogul,136Y. Onel,136F. Ozok,136,xxS. Sen,136P. Tan,136E. Tiras,136 J. Wetzel,136T. Yetkin,136,gggK. Yi,136B. A. Barnett,137B. Blumenfeld,137S. Bolognesi,137D. Fehling,137A. V. Gritsan,137 P. Maksimovic,137C. Martin,137M. Swartz,137P. Baringer,138A. Bean,138G. Benelli,138R. P. Kenny III,138M. Murray,138 D. Noonan,138S. Sanders,138J. Sekaric,138R. Stringer,138Q. Wang,138J. S. Wood,138A. F. Barfuss,139I. Chakaberia,139 A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139L. K. Saini,139S. Shrestha,139I. Svintradze,139J. Gronberg,140 D. Lange,140F. Rebassoo,140 D. Wright,140 A. Baden,141 B. Calvert,141 S. C. Eno,141J. A. Gomez,141 N. J. Hadley,141 R. G. Kellogg,141T. Kolberg,141Y. Lu,141M. Marionneau,141A. C. Mignerey,141K. Pedro,141A. Skuja,141J. Temple,141

M. B. Tonjes,141 S. C. Tonwar,141A. Apyan,142R. Barbieri,142G. Bauer,142 W. Busza,142I. A. Cali,142 M. Chan,142 L. Di Matteo,142V. Dutta,142G. Gomez Ceballos,142M. Goncharov,142D. Gulhan,142M. Klute,142Y. S. Lai,142Y.-J. Lee,142

A. Levin,142P. D. Luckey,142T. Ma,142C. Paus,142 D. Ralph,142C. Roland,142 G. Roland,142G. S. F. Stephans,142 F. Stöckli,142 K. Sumorok,142D. Velicanu,142 J. Veverka,142B. Wyslouch,142 M. Yang,142A. S. Yoon,142 M. Zanetti,142 V. Zhukova,142B. Dahmes,143A. De Benedetti,143A. Gude,143 S. C. Kao,143 K. Klapoetke,143Y. Kubota,143J. Mans,143

N. Pastika,143 R. Rusack,143A. Singovsky,143N. Tambe,143J. Turkewitz,143J. G. Acosta,144L. M. Cremaldi,144 R. Kroeger,144S. Oliveros,144L. Perera,144R. Rahmat,144D. A. Sanders,144D. Summers,144E. Avdeeva,145K. Bloom,145

S. Bose,145 D. R. Claes,145 A. Dominguez,145R. Gonzalez Suarez,145J. Keller,145D. Knowlton,145I. Kravchenko,145 J. Lazo-Flores,145 S. Malik,145F. Meier,145G. R. Snow,145 J. Dolen,146 A. Godshalk,146 I. Iashvili,146S. Jain,146

A. Kharchilava,146A. Kumar,146S. Rappoccio,146Z. Wan,146G. Alverson,147E. Barberis,147D. Baumgartel,147 M. Chasco,147 J. Haley,147 A. Massironi,147D. Nash,147T. Orimoto,147D. Trocino,147D. Wood,147 J. Zhang,147 A. Anastassov,148K. A. Hahn,148A. Kubik,148L. Lusito,148N. Mucia,148N. Odell,148B. Pollack,148 A. Pozdnyakov,148

M. Schmitt,148S. Stoynev,148 K. Sung,148M. Velasco,148S. Won,148D. Berry,149 A. Brinkerhoff,149 K. M. Chan,149 A. Drozdetskiy,149M. Hildreth,149C. Jessop,149D. J. Karmgard,149 N. Kellams,149J. Kolb,149K. Lannon,149W. Luo,149

S. Lynch,149 N. Marinelli,149 D. M. Morse,149 T. Pearson,149M. Planer,149R. Ruchti,149J. Slaunwhite,149N. Valls,149 M. Wayne,149 M. Wolf,149A. Woodard,149L. Antonelli,150B. Bylsma,150L. S. Durkin,150S. Flowers,150C. Hill,150 R. Hughes,150 K. Kotov,150T. Y. Ling,150 D. Puigh,150M. Rodenburg,150G. Smith,150 C. Vuosalo,150 B. L. Winer,150 H. Wolfe,150H. W. Wulsin,150E. Berry,151P. Elmer,151V. Halyo,151P. Hebda,151J. Hegeman,151A. Hunt,151P. Jindal,151 S. A. Koay,151P. Lujan,151D. Marlow,151T. Medvedeva,151M. Mooney,151J. Olsen,151P. Piroué,151X. Quan,151A. Raval,151 H. Saka,151D. Stickland,151C. Tully,151J. S. Werner,151S. C. Zenz,151 A. Zuranski,151E. Brownson,152 A. Lopez,152 H. Mendez,152J. E. Ramirez Vargas,152 E. Alagoz,153 D. Benedetti,153 G. Bolla,153 D. Bortoletto,153 M. De Mattia,153 A. Everett,153 Z. Hu,153M. Jones,153 K. Jung,153M. Kress,153 N. Leonardo,153D. Lopes Pegna,153V. Maroussov,153 P. Merkel,153D. H. Miller,153N. Neumeister,153B. C. Radburn-Smith,153I. Shipsey,153D. Silvers,153A. Svyatkovskiy,153

F. Wang,153 W. Xie,153L. Xu,153 H. D. Yoo,153J. Zablocki,153Y. Zheng,153 N. Parashar,154A. Adair,155B. Akgun,155 K. M. Ecklund,155F. J. M. Geurts,155 W. Li,155 B. Michlin,155B. P. Padley,155R. Redjimi,155 J. Roberts,155 J. Zabel,155 B. Betchart,156A. Bodek,156R. Covarelli,156P. de Barbaro,156R. Demina,156Y. Eshaq,156T. Ferbel,156A. Garcia-Bellido,156 P. Goldenzweig,156J. Han,156A. Harel,156D. C. Miner,156G. Petrillo,156D. Vishnevskiy,156M. Zielinski,156A. Bhatti,157 R. Ciesielski,157L. Demortier,157K. Goulianos,157G. Lungu,157S. Malik,157C. Mesropian,157S. Arora,158A. Barker,158

J. P. Chou,158 C. Contreras-Campana,158E. Contreras-Campana,158D. Duggan,158 D. Ferencek,158 Y. Gershtein,158 R. Gray,158E. Halkiadakis,158D. Hidas,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158V. Rekovic,158J. Robles,158

(13)

K. Rose,159 S. Spanier,159Z. C. Yang,159 A. York,159O. Bouhali,160,hhh R. Eusebi,160W. Flanagan,160 J. Gilmore,160 T. Kamon,160,iiiV. Khotilovich,160V. Krutelyov,160R. Montalvo,160I. Osipenkov,160Y. Pakhotin,160A. Perloff,160J. Roe,160

A. Safonov,160 T. Sakuma,160 I. Suarez,160A. Tatarinov,160D. Toback,160N. Akchurin,161C. Cowden,161J. Damgov,161 C. Dragoiu,161P. R. Dudero,161K. Kovitanggoon,161S. Kunori,161S. W. Lee,161T. Libeiro,161I. Volobouev,161E. Appelt,162

A. G. Delannoy,162 S. Greene,162A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162A. Melo,162M. Sharma,162 P. Sheldon,162B. Snook,162 S. Tuo,162J. Velkovska,162 M. W. Arenton,163 S. Boutle,163 B. Cox,163B. Francis,163

J. Goodell,163R. Hirosky,163A. Ledovskoy,163C. Lin,163C. Neu,163J. Wood,163S. Gollapinni,164 R. Harr,164 P. E. Karchin,164C. Kottachchi Kankanamge Don,164P. Lamichhane,164D. A. Belknap,165L. Borrello,165D. Carlsmith,165

M. Cepeda,165S. Dasu,165 S. Duric,165 E. Friis,165M. Grothe,165 R. Hall-Wilton,165M. Herndon,165 A. Hervé,165 P. Klabbers,165 J. Klukas,165 A. Lanaro,165A. Levine,165R. Loveless,165A. Mohapatra,165I. Ojalvo,165T. Perry,165

G. A. Pierro,165G. Polese,165I. Ross,165A. Sakharov,165T. Sarangi,165A. Savin165 and W. H. Smith165 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Belarus 4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9Université de Mons, Mons, Belgium 10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil

12a

Universidade Estadual Paulista

12b

Universidade Federal do ABC

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14

University of Sofia, Sofia, Bulgaria

15

Institute of High Energy Physics, Beijing, China

16

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

17

Universidad de Los Andes, Bogota, Colombia

18

Technical University of Split, Split, Croatia

19

University of Split, Split, Croatia

20

Institute Rudjer Boskovic, Zagreb, Croatia

21

University of Cyprus, Nicosia, Cyprus

22

Charles University, Prague, Czech Republic

23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25

Department of Physics, University of Helsinki, Helsinki, Finland

26

Helsinki Institute of Physics, Helsinki, Finland

27

Lappeenranta University of Technology, Lappeenranta, Finland

28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38

University of Hamburg, Hamburg, Germany

(14)

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41

University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43

Wigner Research Centre for Physics, Budapest, Hungary

44Institute of Nuclear Research ATOMKI, Debrecen, Hungary 45

University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research - EHEP, Mumbai, India

52Tata Institute of Fundamental Research - HECR, Mumbai, India 53

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

55aINFN Sezione di Bari 55b

Università di Bari

55cPolitecnico di Bari 56

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

56aINFN Sezione di Bologna 56b

Università di Bologna

57INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy 57a

INFN Sezione di Catania

57bUniversità di Catania 57c

CSFNSM

58INFN Sezione di Firenze, Università di Firenze, Firenze, Italy 58a

INFN Sezione di Firenze

58bUniversità di Firenze 59

INFN Laboratori Nazionali di Frascati, Frascati, Italy

60INFN Sezione di Genova, Università di Genova, Genova, Italy 60a

INFN Sezione di Genova

60bUniversità di Genova 61

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

61aINFN Sezione di Milano-Bicocca 61b

Università di Milano-Bicocca

62INFN Sezione di Napoli, Università di Napoli’Federico II’, Università della Basilicata (Potenza),

Università G. Marconi (Roma), Napoli, Italy

62aINFN Sezione di Napoli 62b

Università di Napoli’Federico II’

62cUniversità della Basilicata (Potenza) 62d

Università G. Marconi (Roma)

63INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy 63a

INFN Sezione di Padova

63bUniversità di Padova 63c

Università di Trento (Trento)

64INFN Sezione di Pavia, Università di Pavia, Pavia, Italy 64a

INFN Sezione di Pavia

64bUniversità di Pavia 65a

INFN Sezione di Perugia

65bUniversità di Perugia 66

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Pisa 66b

Università di Pisa

66cScuola Normale Superiore di Pisa 67

INFN Sezione di Roma, Università di Roma, Roma, Italy

67aINFN Sezione di Roma 67b

Università di Roma

68INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy 68a

(15)

68bUniversità di Torino 68c

Università del Piemonte Orientale (Novara)

69INFN Sezione di Trieste, Università di Trieste, Trieste, Italy 69a

INFN Sezione di Trieste

69bUniversità di Trieste 70

Kangwon National University, Chunchon, Korea

71Kyungpook National University, Daegu, Korea 72

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

73Korea University, Seoul, Korea 74

University of Seoul, Seoul, Korea

75Sungkyunkwan University, Suwon, Korea 76

Vilnius University, Vilnius, Lithuania

77University of Malaya Jabatan Fizik, Kuala Lumpur, Malaysia 78

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

79Universidad Iberoamericana, Mexico City, Mexico 80

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

81Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico 82

University of Auckland, Auckland, New Zealand

83University of Canterbury, Christchurch, New Zealand 84

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

85National Centre for Nuclear Research, Swierk, Poland 86

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

87Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal 88

Joint Institute for Nuclear Research, Dubna, Russia

89Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 90

Institute for Nuclear Research, Moscow, Russia

91Institute for Theoretical and Experimental Physics, Moscow, Russia 92

P.N. Lebedev Physical Institute, Moscow, Russia

93Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 94

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

95University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 96

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

97Universidad Autónoma de Madrid, Madrid, Spain 98

Universidad de Oviedo, Oviedo, Spain

99Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 100

CERN, European Organization for Nuclear Research, Geneva, Switzerland

101Paul Scherrer Institut, Villigen, Switzerland 102

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

103Universität Zürich, Zurich, Switzerland 104

National Central University, Chung-Li, Taiwan

105National Taiwan University (NTU), Taipei, Taiwan 106

Chulalongkorn University, Bangkok, Thailand

107Cukurova University, Adana, Turkey 108

Middle East Technical University, Physics Department, Ankara, Turkey

109Bogazici University, Istanbul, Turkey 110

Istanbul Technical University, Istanbul, Turkey

111National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 112

University of Bristol, Bristol, United Kingdom

113Rutherford Appleton Laboratory, Didcot, United Kingdom 114

Imperial College, London, United Kingdom

115Brunel University, Uxbridge, United Kingdom 116

Baylor University, Waco, USA

117The University of Alabama, Tuscaloosa, USA 118

Boston University, Boston, USA

119Brown University, Providence, USA 120

University of California, Davis, Davis, USA

121University of California, Los Angeles, USA 122

University of California, Riverside, Riverside, USA

123University of California, San Diego, La Jolla, USA 124

(16)

125California Institute of Technology, Pasadena, USA 126

Carnegie Mellon University, Pittsburgh, USA

127University of Colorado at Boulder, Boulder, USA 128

Cornell University, Ithaca, USA

129Fairfield University, Fairfield, USA 130

Fermi National Accelerator Laboratory, Batavia, USA

131University of Florida, Gainesville, USA 132

Florida International University, Miami, USA

133Florida State University, Tallahassee, USA 134

Florida Institute of Technology, Melbourne, USA

135University of Illinois at Chicago (UIC), Chicago, USA 136

The University of Iowa, Iowa City, USA

137Johns Hopkins University, Baltimore, USA 138

The University of Kansas, Lawrence, USA

139Kansas State University, Manhattan, USA 140

Lawrence Livermore National Laboratory, Livermore, USA

141University of Maryland, College Park, USA 142

Massachusetts Institute of Technology, Cambridge, USA

143University of Minnesota, Minneapolis, USA 144

University of Mississippi, Oxford, USA

145University of Nebraska-Lincoln, Lincoln, USA 146

State University of New York at Buffalo, Buffalo, USA

147Northeastern University, Boston, USA 148

Northwestern University, Evanston, USA

149University of Notre Dame, Notre Dame, USA 150

The Ohio State University, Columbus, USA

151Princeton University, Princeton, USA 152

University of Puerto Rico, Mayaguez, USA

153Purdue University, West Lafayette, USA 154

Purdue University Calumet, Hammond, USA

155Rice University, Houston, USA 156

University of Rochester, Rochester, USA

157The Rockefeller University, New York, USA 158

Rutgers, The State University of New Jersey, Piscataway, USA

159University of Tennessee, Knoxville, USA 160

Texas A&M University, College Station, USA

161Texas Tech University, Lubbock, USA 162

Vanderbilt University, Nashville, USA

163University of Virginia, Charlottesville, USA 164

Wayne State University, Detroit, USA

165University of Wisconsin, Madison, USA

a

Deceased.

bAlso at Vienna University of Technology, Vienna, Austria. c

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

dAlso at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3,

Strasbourg, France.

eAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. f

Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.

gAlso at Universidade Estadual de Campinas, Campinas, Brazil. h

Also at California Institute of Technology, Pasadena, USA.

iAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. j

Also at Zewail City of Science and Technology, Zewail, Egypt.

kAlso at Suez Canal University, Suez, Egypt. l

Also at Cairo University, Cairo, Egypt.

mAlso at Fayoum University, El-Fayoum, Egypt. n

Also at British University in Egypt, Cairo, Egypt.

oPresent address: Ain Shams University, Cairo, Egypt. p

Also at Université de Haute Alsace, Mulhouse, France.

Referências

Documentos relacionados

Os principais objetivos neste trabalho foram avaliar aspectos fisiológicos da germinação e armazenamento das sementes, assim como analisar o crescimento, a anatomia foliar e o

A tripanossomose americana ou doença de chagas é uma zoonose endêmica em 21 países da América Latina, incluindo o Brasil, que consiste em uma infecção sistêmica de

EMENTA: CONTRATO DE TRABALHO FIRMADO NO BRASIL- APLICAÇÃO DA LEGISLAÇÃO BRASILEIRA. A teor do disposto no artigo 3ª, II, da Lei 7.064/82, que dispõe sobre a situação

A Educação Física como práxis educativa deve levar em consideração o desenvolvimento pessoal e a questão social, possuindo como objetivo a formação da personalidade do

Art. 26 - É isento de pena o agente que, por doença mental ou desenvolvimento mental incompleto ou retardado, era, ao tempo da ação ou da omissão, inteiramente incapaz

O presente trabalho apresenta diferentes padrões de ocorrência do fungo Bd na Mata Atlântica e Amazônia brasileiras, e abre portas para o desenvolvimento de diversos

7KLV SDSHU LV VWUXFWXUHG LQWR ILYH VHFWLRQV LQWURGXFWLRQ OLWHUDWXUH UHYLHZ PHWKRGRORJ\ UHVXOWV DQG GLVFXVVLRQ DQG ILQDO UHPDUNV 7KH SUHVHQW VHFWLRQ