• Nenhum resultado encontrado

Isolation and molecular characterization of Thraustochytrium strain isolated from Antarctic Peninsula and its biotechnological potential in the production of fatty acids

N/A
N/A
Protected

Academic year: 2021

Share "Isolation and molecular characterization of Thraustochytrium strain isolated from Antarctic Peninsula and its biotechnological potential in the production of fatty acids"

Copied!
9
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Isolation

and

molecular

characterization

of

Thraustochytrium

strain

isolated

from

Antarctic

Peninsula

and

its

biotechnological

potential

in

the

production

of

fatty

acids

Esteban

Caama ˜no

a

,

Lyliam

Loperena

b

,

Ivonne

Hinzpeter

c

,

Paulina

Pradel

d

,

Felipe

Gordillo

e

,

Gino

Corsini

f,g

,

Mario

Tello

h

,

Paris

Lavín

i

,

Alex

R.

González

a,∗

aLaboratoriodeMicrobiologíaAmbientalyExtremófilos,DepartamentodeCienciasBiológicas,UniversidaddelosLagos,Osorno,Chile bInstitutodeIngenieríaQuímica,DepartamentodeBioingeniería,UniversidaddelaRepública,Montevideo,Uruguay

cDepartamentodeGobiernoyEmpresa,UniversidaddelosLagos,Osorno,Chile

dCentrodeInteracciónPlanta-SueloyBiotecnologíadeRecursosNaturales,LaboratoriodeFisiologíayBiologíaMolecularVegetal,

UniversidaddeLaFrontera,Temuco,Chile

eCentrodeBiotecnologíadelosRecursosNaturales,FacultaddeCienciasAgrariasyForestales,UniversidadCatólicadelMaule,Talca,

Chile

fInstitutodeCienciasBiomédicas,FacultaddeCienciasdelaSalud,UniversidadAutónomadeChile,Santiago,Chile gUniversidadCientíficadelSur,Lima,Perú

hCentrodeBiotecnologíaAcuícola,DepartamentodeBiología,FacultaddeQuímicayBiología,UniversidaddeSantiago,Santiago,Chile iLaboratoriodeComplejidadMicrobianayEcologíaFuncional,InstitutoAntofagasta,UniversidaddeAntofagasta,Antofagasta,Chile

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received18September2016 Accepted31January2017 Availableonline10June2017 AssociateEditor:Dra.VaniaMelo

Keywords: Thraustochytrids Antarctic Docosahexaenoicacid Eicosapentaenoicacid Temperature

a

b

s

t

r

a

c

t

ThraustochytridsareunicellularprotistsbelongingtotheLabyrinthulomycetesclass,which arecharacterizedbythepresenceofahighlipidcontentthatcouldreplaceconventional fattyacids.Theyshowawidegeographicdistribution,howevertheirdiversityinthe Antarc-ticRegionisratherscarce.Theanalysisbasedonthecompletesequenceof18SrRNAgene showedthatstrain34-2belongstothespeciesThraustochytriumkinnei,with99%identity.The totallipidprofileshowsawiderangeofsaturatedfattyacidswithabundanceofpalmitic acid(16:0),showingarangeof16.1–19.7%.Ontheotherhand,long-chainpolyunsaturated fattyacids,mainlydocosahexaenoicacidandeicosapentaenoicacidarepresentinarange of24–48%and6.1–9.3%,respectively.Allfactorsanalyzedincells(biomass,carbon consump-tionandlipidcontent)changedwithvariationsofculturetemperature(10◦Cand25◦C).The growthinglucoseatatemperatureof10◦Cpresentedthemostfavorableconditionsto pro-duceomega-3fattyacid.Thisresearchprovidestheidentificationandcharacterizationofa

Thraustochytridsstrain,withatotallipidcontentthatpresentspotentialapplicationsinthe productionofnutritionalsupplementsandaswellbiofuels.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:Alex.gonzalez@ulagos.cl(A.R.González).

http://dx.doi.org/10.1016/j.bjm.2017.01.011

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Themicroorganisms belongingto the Labyrinthulomycetes

class and family Thraustochytriaceae are unicellular protists

whichare present inmarine ecosystems. Theyhave akey

roleontheinitialstageofthemicrobialchainfood,asorganic

matterdegraders.1,2 Thesemicroorganismshavebeen

stud-ied at the morphological, ecological and biotechnological

levels.3,4 Due to the presenceof a high lipid content that couldreplaceconventionalsourcesoffattyacids;the Thraus-tochytriaceae family is of great interest.5–8 Particularly, the

moststudied metabolitesare docosahexaenoic acid (C22:6,

DHA)andeicosapentaenoicacid(C20:5,EPA).9,10These

essen-tialbiomoleculesoftheomega-3family areinvolvedinthe

physiological development of children and adults,

choles-terolregulation,prostaglandin,thromboxaneandleukotriene

biosynthesis. Furthermore, they have a preventive role on

differentpathologiessuchasarteriosclerosis,asthma, throm-bosis, arthritisand awide range oftumors.11–13 Besides, a

varietyofbiomoleculeswithunknownfunctionsthatcould

haveapotentialbiotechnologicalapplication,suchas

extra-cellular polysaccharides, carotenoids, squalene, enzymes,

osmolytes, unsaturated and saturated fatty acids could be

used as biofuel.14 Taxonomic classification of the

Thraus-tochytriaceaefamilycomprisesthegeneraAplanochytrium, Ulke-nia, Thraustochytrium, Japonochytrium, Aurantiochytrium (also known asSchizochytrium), Botryochytrium, Parietichytriumand

Sicyoidochytrium.15,16 Their geographic distribution includes theNorthSea,India,Indonesia,Japan,Australia,South Amer-icaandtheAntarcticContinent.17,18Thelatterplacepresents

poorstudiesofthemarinemicrobialdiversityandthe

num-berofspeciesvarieswidelybetweentaxons.19–21 Currently, inthediversitystudiesoftheThraustochytrids from Antarc-ticwaterstwospecieshavebeendescribed:Thraustochytrium antarticum(SoutheasternIndianOcean)andThraustochytrium rossii(SouthwesternPacificOcean).23Morerecently,onlyone

microorganism has been characterized by molecular

phy-logeny;Aplanochytriumstocchinoi(TerraNovaBay).23

Microorganismshavebeenusedasalternativefattyacids

sourceinbacteria,fungi,yeastsand microalgae.24–26 Protist species suchas Crythecodiniumcohnii, Schizochytrium sp.and

Ulkeniasp.havebeencharacterizedbytheirrapidgrowth,high photosyntheticactivityandhighproductionofbiomass.27–29 In vitro culture of these microorganisms with high car-bon/nitrogenratiofavorslipidsaccumulationandadecrease incelldevelopment.29However,thisisnotclearlyestablished, sinceinSchizochytriumstrains,thefattyacidsincreaseis asso-ciatedwithbiomassgrowth.30 Besides,invitrostudies with

carbon and nitrogen sourcescould favorthe biomass

pro-ductionaslipidcontents,becausethesemoleculesarelinked tothedevelopmentofabiologicalmodelsuccessfulonfatty acidsproduction.18,29

Thisstudyprovidesabiologicalandbiotecnologicalfocus, usinginvitrostudiesofastrainbelongingtothe Thraustochytri-aceaefamilyisolatedfromtheAntarcticcoastofKingGeorge Island.Theobjectiveofthisresearchisbasedonthe

morphol-ogyandtaxonomicclassification(18SrRNAgene)studiesof

thecultureparameterssuchasthecarbonsourceandthe tem-peratureonbiomassproductionwithhighcontentofessential

fatty acids.Thisresearchoffersnewinformationabout the

biodiversityofLabyrinthulomycetesclassintheAntarctic con-tinentand their potentialapplicationasa biotechnological toolonLC-PUFAsorbiofuelsproduction.

Materials

and

methods

Isolationandcultureconditions

TwosampleswerecollectedonthecoastofKingGeorgeIsland, specificallyoncoordinatesS62◦1234.8 W58◦5534.3 and

the microorganisms were isolated from the watercolumn

(2.4◦CandpH8.1).Thraustochytridswereobtainedusingthe pinepolenmethod.31Then,theywereincubatedatdifferent temperatures (10◦Cand 25◦C)and observedusinganoptic

microscopeduring10daystoimprovemicroorganismfixation.

InoculeswerecultivatedinliquidmediumusingHondaetal. (1998)58modifiedprotocol(0.2%yeastextractand0.2%sodium glutamate)inartificialseawaterwith5%glucoseor5%starch, atthesametemperatureconditionsduring8days.32Finally, thesampleswerelyophilized,centrifugedandstoredat−20◦C

forposterioranalysis.Morphologicalanalysiswasperformed

withanOlympusCX21lightmicroscope(Tokyo,Japan).

DNAextractionandamplificationofthe18SrRNAgene

DNA extraction was performed using Mo and Rinkevich33

modified protocol. Cultureswere centrifuged at14,000rpm

for 3min, supernatant was discarded, and buffer

extrac-tion wasaddedonpellet(0.2MTris–HClpH8.0,1.4MNaCl,

0.1MEDTAand1.5%SDS)andsonicatedfor30s.Then,the

solutionwascentrifugedat12,000rpmandthesupernatant

was transferred to a new tube to obtain the DNA using

the phenol:chloroform solution (5:1, pH 4.8). The mixture

was centrifugedat13,000rpmfor5min.Theaquosephase

wasprecipitatedwithethanolat4◦Covernight.Finally, the

resulting pelletwassuspendedonnucleasefreewaterand

quantifiedinInfinity200ProNanoQuant(TECAN)andstored

at−20◦C.

PCRamplificationof18Sgenewascarriedoutusing

com-ercialkitGoTaq® GreenMasterMix(ReactionBufferpH8.5,

400␮M ofdNTPs Promega and 3mMMgCl2), and Genomic

DNA (with an average ratio 260/280 of 1.6) and 1mM of

specificprimers(FA15-AAAGATTAAGCCATGCATGT-3,RA15

-AGCTTTTTAACTGCAACAAC-3;FA2 5

-GTCTGGTGCCAGCAG-CCGCG-3, RA2 5-CCCGTGTTGAGTCAAATTAAG-3; FA3 5

-CTTAAAGGAATTGACGGAAG-3 and RA3 5

-CAATCGGTAGG-TGCGACGGGCGG-3).34Thermocyclingprofilewasperformed

withaninitialdenaturationstepof3mina95◦C,35cyclesof amplification(1min94◦C,1min53◦Cand1min72◦C),and

finalelongationat72◦Cof10min.ThePCRfragmentswere

visualized on 1.2%agarose gel using10␮g/mLofethidium

bromide.

Sequencingandmolecularphylogeneticanalysis

The18SrRNAfragmentswereamplifiedandthensequenced

using automated DNA sequencer ABI-Prism (Pontifical

(3)

Fig.1–LightmicroscopyofcellsinAntarcticstrain34-2stainedwithmethylviolet.AVegetativecells(vc),sporangia(s)and ectoplasmicnets(arrows).Scalebar100␮m.BMaturesporangiumwithzoospores(z)andproliferativebody(pb).Scalebar 50␮m.

wascarriedonthehomologsequencesavailableonthedata

baseofgenes(GenBankdatabaseoftheNationalCenterfor

BiotechnologyInformation).Homologuesequences

compari-sonwasdoneusingalgorithmmegablastavailableonNCBI

server.35SequencesalignmentswereperformedusingClustal X2.37Phylogeneticanalysis,weredonewithNeighbor-joining

method36and thetreetopologywithMEGA 4.0.2.38 Species

relations were evaluated with statistical analysis through

bootstrapprotocol.39Togroupthephylogeneticanalysisofthe familyThraustochytriaceaetheProrocentrumgenuswasusedas outgroup.

Extractionanddeterminationoffattyacids

Fattyacids profilewas donewith 50mglyofilizedbiomass,

usingdirecttransesterification.40Thefatty acids were

con-centrate at 1000g at 4◦C and stored at −20◦C. They

werequantifiedbyGasChromatography(GC)(Agilent,7609,

Santa Clara, USA) using as standard Supelco® 37

Compo-nent FAME Mix (Sigma–Aldrich) (Methyl butyrate, Methyl

hexanoate, Methyl octanoate, Methyl decanoate, Methyl

undecanoate, Methyl laurate, Methyl tridecanoate, Methyl

tetradecanoate, Myristoleic Acid Methyl Ester, Methyl

pen-tadecanoate,cis-10-Pentadecenoicacidmethylester,Methyl

palmitate,MethylPalmitoleate,Methylheptadecanoate,

cis-10-Heptadecenoicacid methyl ester,Methyloctadecanoate,

trans-9-Elaidic acid methyl ester, cis-9-Oleic acid methyl

ester, Linolelaidic acid methyl ester, Methyl Linoleate,

Methyl Arachidate, gamma-Linolenic acid methyl ester,

Methylcis-11-eicosenoate,MethylLinolenate,Methyl

hene-icosanoate,cis-11,14-Eicosadienoicacidmethyl,ester,Methyl

docosanoate, cis-8,11,14-Eicosatrienoic acid methyl ester,

MethylErucate,cis-11,14,17-Eicosatrienoicacidmethylester,

Methyl tricosanoate, Methyl cis-5,8,11,14-Eicosatetraenoic,

cis-13-16-Docosadienoicacidmethylester(22:2),Methyl

lig-nocerate, Methylcis-5,8,11,14,17-Eicosapentaenoate, Methyl

Nervonate, cis-4,7,10,13,16,19-Docosahexaenoate). Biomass

quantitative analysis was determined with optical

den-sity and long-chainpolyunsaturated fatty acids (LC-PUFAs;

DHA and EPA) content was carried out using gravimetric

assay.

Neutralfattyacids(triglycerides)in34-2strainwere

visu-alized using Oil red O protocol modified.41 The samples

were stained with 0.3% Oil Red solution for 20min and

visualized under optical microscope (OlympusCX21) using

ISCapture program (http://www.tucsen.com). Images were

edited withImageJprogram (http://imagej.nih.gov/ij/).Data

and graphics were processed using Open Source Software

IGOR Pro 6.36 (https://www.wavemetrics.com) and Canvas

(http://www.canvasgfx.com).

Results

Morphologicandgeneticidentification

The isolated Antarctic strain had spherical cells with an

averageof46±5␮mindiameter(Fig.1A).Morphological

char-acteristics were observed such as; formation of sporangia

andvegetativecellswithfinefilamentsofectoplasmicnets

(plasmamembraneextensions) (Fig. 1).Thestrain34-2has aproliferativebodyassociatedtoenclosedsporeswithinthe cell wallofthe sporangium(Fig.1B).Inordertodetermine

thephylogeneticrelationshipthesearchofthehomologous

sequenceswasperformed(Megablastalgorithm).The

compar-isonof18SrRNAgeneshowsthattheAntarcticstrainexhibits highidentityof99%(overan95%ofalignedlengthof1616bp)

withsequences belongingtoThraustochytriumkinneispecies

(GenBankaccessionnumbers|KF709393.1|and|L34668.1|),

con-firmingaclosetaxonomicclasificationwithThraustochytrids

microorganisms(Fig.2).Thisstrainshowsacommon ances-tor,withthreeunclassifiedThraustochytridaegroupedinclade A,withabootstrapvalueof100%.Inthetreetopology,the

sequence of A. stocchinoi, species isolated from Ross Sea,

appearassociatedtotheAntarcticacladeB.Thephylogenetic analysisrevealedanearlydiversificationwithstrain34-2and therestofthegenera.The18SrRNAsequencesofstrain

34-2 are available in GenBank(accession numbers: LN558422;

(4)

Fig.2–Molecularanalysisbasedoncompletealignmentofthe18SrRNAgene.Thephylogeneticaltreewasperformedwith thegenusbelongingtotheThraustochytriaceaefamily,andusingtwospeciesofthegenusProrocentrumasoutgroup.The phylogenywasdevelopedbytheNeighbor–joiningmethod,showingthenumberofGenBankaccessionnumbersforeach sequenceandthebootstrapsvalueobtainedfrom1000replicatesinnodes.Thestraindeterminedinthisstudyisshownin boldtype(CladeA).

(5)

Biomassandomega-3fattyacidproduction

Acultureof8daysofstrain34-2wasdoneinorderto deter-minekineticbiomassgeneration(Fig.3).Themicroorganisms wereculturedinfourdifferentconditions,liquidmedia

sup-plemented with 0.5% glucose or starch at 10◦C and 25◦C

(Fig. 3AandB).Both graphicsshow anexponentialgrowth

untilday5.Thehighestgrowthwasregisteredusinga

sup-plementedmediumwithglucoseat25◦C,withcellularvalue of2.2×103mg/L.Ontheotherhand,alowgrowthwas

reg-isteredusingaglucoseculturewithatemperatureof10◦C,

showingamaximumvalueofbiomassat7dayswitharateof

growthof0.7×103mg/L.Instarchmedium,maximumvalues

wereregisteredat25◦Cand10◦Cat6dayswith1.8×103mg/L

and1×103mg/Lrespectively.Theseresultsrevealedthatthis

microorganismhadahighbiomassproducedindifferent

car-bonsourcesathightemperature.

Theeffectsofthecarbonsourceandtemperaturewere

ana-lyzedonbiomass, carbonintakeand polyunsaturatedfatty

acidcontentfor5daysofculture(Fig.4).Theresultsshowed thatthereexistsamajorproductionofbiomassat25◦C,with

2×103mg/L.On the other hand,low biomasswas present

inglucose mediumat 10◦C with avalue of0.5×103mg/L)

(Fig. 4A). The LC-PUFAs content shows the highest values

obtained with glucose as carbon source at 10◦C (Fig. 4B).

The analysis revealed values of 29.8±2.1mg/g DHA and

3.3±0.2mg/gEPA.Otherwise,thelowestvalueswereobtained at25◦Cwith5.6±0.1mg/gDHAand0.7±0.1mg/gEPA.In car-bonintaketheuseofglucoseandstarchat10◦Cpresentedthe highestvalueswith2.4×103mg/Land2.4×103mg/L respec-tively(Fig.4C).Ontheother hand,theresultsat25◦Cwere 1.4×103mg/Lforglucoseand 1.2×103mg/Lforstarch.The

numbersofanalysisalreadydescribed,showstandard

devia-tionvaluesonlyforvariationsoverorequalto0.1.

Ingeneral,thesevaluesshowthatthegrowthwithglucose at10◦CwasthemostfavorableforDHAandEPAproduction.

Itwas observed thatwith low biomass(0.5×103mg/L) the

highervaluesofDHA andEPA(29.8±2.1and 3.3±0.2mg/g

Table1–FattyacidprofileofAntarcticstrain34-2.The

valuesareshownasapercentageoftotalfattyacid

contentandaratioofomega-3:omega-6andDHA:EPA,

forthetemperatureandcarbonsourceconditionsused

inthisstudy.

Fattyacidsa(%) Glucose Starch 10◦ 25◦ 10◦ 25◦ Saturateda Capricacid(C10:0) 1.9 5.9 1 1 Undecanoicacid(C11:0) 0.6 2.8 0.6 1 Lauricacid(C12:0) 0.8 1.3 0.8 1.2 Tridecanoicacid(C13:0) 0.3 1 0 0 Myristicacid(C14:0) 2.5 2.7 2.4 2.5 Pentadecanoicacid(15:0) 0.8 3.1 0.6 2.9 Palmiticacid(C16:0) 17.9 16.1 18.6 19.7 Stearicacid(C18:0) 4.7 11.3 4.3 10.1 Arachidicacid(C20:0) 1.4 5.1 1.9 4.5 Unsaturateda Elaidicacid(C18:1n9) 1.3 3.4 1.2 3.2 cisOleicacid(C18:1n9c) 1.6 2.8 2 3.2

Linoleicacid(C18:2) 1 0 1.1 1.5

Eicosapentaenoicacid(C20:5) 9.9 6.1 7.4 7.1 Docosahexaenoicacid(C22:6) 46.6 24 48.3 30.7 Unknownretentiontime 9 13.7 9.4 10.7

Total(%) 100 100 100 100

Ratio

DHA/EPA 5 4 6.5 4.2

n-3/n-6 55.9 – 50.6 25.2

a Identifiedasfattyacidsaccordingstandardretentiontimefrom

standardmix.

respectively)were obtained,witharatioofomega-3:6fatty acidsof55.9%(Table1).

Determinationandanalysisoffattyacids

Thefattyacids qualitativestudies weredoneusingOilRed

Ostaining,afat-solublediazodye.Forthispurpose,cultures

A

3 2.5 2 1.5 1 0.5 0 3 2.5 2 1.5 1 0.5 0 0 0 1 2 3 4 5 1 2 3 4 5

Days of culture Days of culture

Biomass x 10 3 (mg 1 –1 ) Biomass x 10 3 (mg 1 –1 ) 6 6 7 8 9 10 7 8 9 10

B

Fig.3–Thetemperatureandcarbonsourceeffectonbiomassproduction.(A)Strain34-2supplementedwithglucose5%at 25◦C()and10◦C(䊉).(B)supplementedwithstarch5%at25◦C()and10◦C(䊉).Thisdatawaspresentedasthemeanof triplicate±SD.

(6)

2.5 35 4 3 2 1 0 30 EPA DHA 25 20 15 10 5 0

B

A

C

2 1.5 1 0.5 0 10°C

Glucose Glucose Glucose

Biomass x 10 3 (mg 1 –1) Carbon intake x 10 3 (mg 1 –1 ) Lipids/Biomass (mg g –1 )

Starch Starch Starch

10°C 10°C 10°C 10°C 10°C

25°C 25°C 25°C 25°C 25°C 25°C

Fig.4–Thetemperatureandcarbonsourceeffectonbiomass,omega-3fattyacidcontent(EPAyDHA)andcarbonintake. (A)Quantityofbiomasssupplementedduring5daysofculturewithglucose(blackbars)andstarch(whitebars).(B) RelationshipofDHAandEPAinrelationtobiomass.(C)Carbonsourceconsumptionduring5daysofculture.Thisdatawas presentedasthemeanoftriplicate±SD.

wereselectedwithhigh(glucoseat10◦C)andlower(glucose 25◦C) lipid/biomass proportion according to Fig. 4B.These

results showed the presence of intracellular lipid vesicles

withredcolor(SupplementaryMaterial).Theculture

supple-mentedwithglucoseat10◦Cshowedanintensestainingon

intracellularvesiclesin5and8daysofculture.Ontheother

hand,thetotalcompositionoflipidsofstrain34-2showed

64%ofsaturatedfattyacids(9/14)(Table1).Inthisgroupof

100 80 60 40 20 10°C

Glucose

Total fatty acid content (%)

Starch

10°C 25°C Saturated Unsaturated 25°C 0

Fig.5–Summaryofsaturatedandunsaturatedfattyacid contentofAntarcticstrain34-2.Thevalueshowsthe percentageofTable1.

saturatedfattyacidspalmitic(C16:0)andestearic(C18:0)acids standout.Inunsaturatedfattyacids,theeicosapentanoicacid

(C20:59)and docohexanoic acid (C22:6)showed thehighest

values.

The results indicate that the production of these

biomoleculeschangedwithcarbonsourceandtemperature.

Particularly, some lipids are affected according to carbon

sourceat25◦C.Thechange forglucoseand starch

respec-tivelywasasfollows;capricacid5.9%and1%,linoleicacid0%

and1.5%,undecanoicacid2.8%and1%,palmiticacid16.1%

and 19.7%anddocosahexaenoicacid24% and30.7%.Other

fatty acids varied with temperature changes (10 and 25◦C

respectively)asfollows:estearicacid4.7–11.3%,arachidicacid 1.4–5.1%,bothcultureswithglucose.

In general,themostimportantparameter infatty acids

profilewastheeffectoftemperature.For example,the

cul-turesupplementedwithglucoseshowedthehighestchanges

(Fig.5).Theresultsevidencedadifferenceof37%ofsaturated

fatty acids and 40% ofunsaturated fatty acids. Otherwise,

microorganismssupplementedwithstarchpresentedavalue

of9%anddecrease23%,ofunsaturatedandsaturatedfatty

acidsrespectively.

Discussion

TheThraustochytridsareaeukaryotegroupshowingawide

geographicdistribution,withscarceinformationonthe diver-sityintheseaoftheAntarcticContinent.Nowadays,reports

ofthesemicroorganismsontheAntarcticRegionarelimited

onlytotworesearches.Oneofthemwaspublishedby

Bah-nweg and Sparrow,22 and described themorphology ofthe

strainsbelongingtothegenusThraustochytriumisolatedfrom

theSoutheasternIndianOceanandtheSouthwesternPacific

Ocean.Besides,Moroetal.23describedandcharacterizedthe species Aplanochytriumtocchinoi collected inthe TerraNova

(7)

Bay(SouthernOcean,Antarctic),basedontheassayof

Trans-missionElectronMicroscopy(TEM)andmolecularphylogeny.

Themorphologicalstudiesdoneonthestrain34-2revealed

the presenceofstructures described forthe genus

Thraus-tochytrium, withpiriforms sporangiato ovalated,formation

ofzoosporesgroupsbeforeliberationandthepresenceofa

proliferationbody(Fig.1).42,43Besides,themolecularanalysis

basedonthecompletesequenceofthe18SrRNAgeneshowed

thatstrain34-2belongstothespeciesT.kinneiwithidentityof

99%.Thephylogeneticanalysisevidencesacommon

ances-torwith thraustochytrids isolated of the seashore ofChile

(ValparaísoandPuertoMontt)andAustralia(Southwestof Tas-mania),strainslocatedonthecladeA,particularlyT.kinnei |KF709393.1|,Thraustochytriidae sp.|DQ459552.2| and Thraus-tochytriidaesp.|JN675277.1|,respectively(Fig.2).Therefore,this

research provides basicinformation on the first molecular

identificationofthisspeciesontheAntarcticRegion. Accord-inglywiththeirsitesofisolation,wethinkthatdistribution

ofclade A is a consequence ofdynamics of the Southern

Hemispherecurrents,becauseThraustochytridscouldliveor

betransportedonhydrochory,suchassediment, senescent

macroalgaeandfallenmangroveleaves.10,19Ontheotherside,

the topology oftrees show the evidence that A. stocchinoi,

describedabove,andthestrain34-2,whicharelocated geo-graphicallyontheoccidentalregionoftheAntarcticcontinent, presentedanearlydivergence,showingthefirstphylogenetic relationoftwogeneraofthefamilyThraustochytriaceaeisolated fromthecoastsoftheAntarcticRegion(Fig.2,cladeAandB).

Besidesitswidedistribution, thesemicroorganisms

pro-duce metabolites with biotechnological applications such

asenzymes and extracellularpolysaccharides, carotenoids,

polyunsaturatedfattyacids(asessentialfattyacids),squalene

andsaturatedandmonounsaturatedfattyacidswith

poten-tialontheproductionofbiodiesel.14Theresearchisfocused mainlyontheproductionofessentialfattyacids,beingDHA28

themoststudiedmetabolite.ThesynthesisofLC-PUFAson

thesemicroorganismsisperformedusingtwodifferent

mech-anisms;oneofthemistheelongation/desaturationpathway

whichhasbeendescribedonThraustochytriumaureum.10,44

Fur-thermore,Naganoetal.45demonstratedthatthecontentof

unsaturatedfattyacidsprecursor(C18andC20)was

consis-tentwiththeidentificationof5-elongaseand4-desaturase

genesonthestrainsofthegenusThraustochytrium.

Accord-ingly, the results of fatty acids profile of the strain 34-2

evidencesimilarvaluesofstearicacid,linoleicacidandDHA,

whichsuggeststhatthismicroorganismcouldusethe

elon-gase/desaturasepathwayforLC-PUFAsproduction(Table1). Inconsistencewith thisit isobservedthat theincrease in

temperatureproducedanincreaseofstearicacid (C18:0)in

bothcultures,whichdecreasedthetotalcontentof

unsatu-ratedfattyacids(Table1andFig.5).Theseresultssuggestthat at25◦Ctheenzyme9-fattyaciddesaturase,inchargeofthe transformationofstearicacidinoleicacid,decreasedits activ-ity,whichcouldberelatedtotheresponseofadaptationtothe changeoftemperatureinthismicroorganism.Conversely,the

increaseinthesynthesisofDHAatlowtemperaturescould

beanadaptativeresponsewhichcould favorthe storingof

thispolyunsaturatedfatty acid.Inconsistence, Jainet al.46 describedthatDHAcouldplayaroleasenergysourceofready

energy during starvation. On the other hand,it is already

knownthatlowtemperaturehasimportantconsequencesfor

thesynthesisofunsaturatedfattyacids,increasing availabil-ityofoxygen,neededfortheactivityofdesaturasesenzymes anddiminishingthefluidityofthemembrane.47,48

Ingeneralterms,ourresultsshowthatindependentofthe

carbon source, the culturesincubated at high temperature

present a majorproductionof biomass,whilethe cultures

incubatedatlowertemperaturesynthesizehighcontentsof

DHA and minor biomass(Figs. 3 and 4Aand B).However,

thecontentofLC-PUFAshasahighconcentrationonallthe

analyzedconditions,particularlyDHAwitharange24–48.3%

(Table 1). These values are in agreement with researches

thatpointthatsynthesisofDHArepresentsmorethan25%

of the total content offatty acids produced by the strains

ofThraustochytrids.3,10 Thehigh ratios of

omega-3:omega-6 and DHA/EPA are important parameters in omega-3 oil

production.49,50 Accordingtothis,theculturesupplemented withglucoseat10◦Cevidencedthebestresultswithavalue of55.9%and5%,respectively(Table1).Ithasbeendescribed thatprofilesoffattyacidsareusedasamethodologyto estab-lishphylogenetichomologieswithotherstrainsbelongingto the family Thraustochytriaceae.16,19 Consequently, theprofile

of strain 34-2 isconsistent with researches carried out by

Leeetal.50thatcultured36Thraustochytridstrainswith0.2%

ofglucose and separated them into eightgroupsbased on

theirfattyacidsand18SrDNAgene,evidencedamean

per-centageof35.6%DHA,9.2%EPAand17.5%palmiticacidfor

thestrainoftheThraustochytriumgenera.Ontheotherside, thequalitativeanalysisoffattyacidsshowedthatusingthe

methodology ofOil RedO, the presenceof vesiclesof red

color was observed(Supplementary Material). Thestaining

intensityevidencedaconsistencywithquantitativeanalysis betweenculturesofglucose at10◦Cand25◦C(Table1and

Fig.4B).Becausethismethodologyisbasedontriglycerides

present on thesemicroorganisms, which constituteamong

70–98%ofthetotallipids,which45% presentDHAontheir

structure.51,52 TheOilRedisusedmainlyonthecytological andhistologicalanalysis;howeverthereisnoevidencethat pointtheiruseinThraustochytrids.41,50

Consequently,theresultsshowthatgrowthonglucoseat

10◦Cwasthemostfavorableconditionfortheproductionof omega-3fattyacidobservedatthe5thday.Inparallel,itwas observedthatthemajorchangeswerepresentwiththe varia-tionofthetemperature,affectingbiomass,contentofDHAand carbonintake(Figs.3–5andTable1).Particularlyitshouldbe highlightedthatat10◦Cthereexistsmoreconsumptionofthe

carbonsource,productionofDHA,EPAandminorbiomass.On

thecontrary,theculturesat25◦Cpresentresultsoppositeto thosedescribedbefore.Thisshowsthatathightemperatures thecarbonsourceisnotcompletelyusedup,whichtranslate intoaminorproductionofomega-3fattyacids,however,the increaseofthebiomasssuggeststhatthesourceofnitrogen isbeingused(Figs.3and4C).Studiespointoutthatahigh proportionofcarbon/nitrogenincultureincreasesthe

synthe-sisofDHAonmicroorganismsthatsynthetizebigamountsof

fattyacids.10,53Inconsequence,ourresultssuggestthatthe ratiocarbon:nitrogenistemperaturedependent;incubatedat 25◦Cfavorsthebiomassformation,whileat10◦Cthe high

(8)

consumptionofthecarbonsourceisconsistentwiththe con-tentofDHAandEPA,diminishingtheculturebiomass(Fig.4). Finally,isimportanttoconsiderthequalityofthelipids

produced by strain 34-2, with the essential fatty acids as

theDHA,EPAandthelinoleicacid(Table1).Thisconfers a greatinterestintheclinicalarea,particularlyontreatments whereinflammationisakeyphysiologicalresponseonseveral pathologies.54,55Ontheotherhand,theprofileoffattyacids presentsapotentialfortheproductionofbiofuels, particu-larlyonculturessupplementedwithglucoseatatemperature

of25◦C(Table1andFig.5).Thisisduetothefactthat

pro-duction of biofuels requires high quantities offatty acids,

mainlyC16and C18thatallowamajoroxidativeand

ther-malstability.4,28,56,57 However,differentareaswithpotential inbiotechnologyarestillpoorlyunderstoodsuchas;presence ofviruses, extracellularpolysaccharides,osmolytesystems,

their role in organic matter decomposition, the biological

associationwithmarineinvertebrates,potentialin bioreme-diation,compatiblesoluteandheavymetalsresistance.

Inconclusion,thisresearchprovidesanidentificationof thediversityinAntarcticThraustochytrids.Thephylogenetic analysisallowstheclassificationofthestrain34-2witha99% ofidentitywiththespeciesT.kinnei.Thetotallipidcontentof thisstrain suggeststhat itofferspotentialbiotechnological

applicationssuchas productionofbiofuelsand nutritional

supplements.Theseresultsallowustofocus onmolecular

studiestodeterminethe effectsofthetemperature onthe

expressionofthegenesthatcodifyforenzymespresenton

theLC-PUFAsbiosyntheticpathwayandotherbioactive

com-poundswhichcouldactatlowerorroomtemperatures.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorswishtothankMauricioQuirozforhisvaluable

assistancein microscopy work and Barbara Burmeister for

proof-readingthe manuscript.Thiswork wassupportedby

DIULA09/14(AG), PROJECT79112042 from PROGRAMA

PAI-CONICYT(FG),GrantBasalesUsa1555USACH-MECESUPtoMT,

FundResearchSupport30/2014DPIUniversidadAutónomade

Chileto(GC)andCONICYTDoctoralFellowshipN◦21130177

andChileanAntarcticInstituteGrantsDG07-16(PP).

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,atdoi:10.1016/j.bjm.2017.01.011.

r

e

f

e

r

e

n

c

e

s

1. RaghukumarS.Bacterivory:anoveldualrolefor

Thrausochytridsinthesea.MarBiol.1998;113:165–169.

2.RaghukumarS.Ecologyofthemarineprotists,the

Labyrinthulomycetes(ThraustochytridsandLabyrinthulids).

EurJProtistol.2002;38:127–145.

3.GuptaA,BarrowCJ,PuriM.Omega-3biotechnology:

Thraustochytridsasanovelsourceofomega-3oils.Biotechnol

Adv.2012;30:1733–1745.

4.LeeChangKJ,NicholsCM,BlackburnSI,DunstanG,

KoutoulisA,NicholsPD.ComparisonofThraustochytrids

Aurantiochytriumsp.,Schizochytriumsp.,Thraustochytriumsp.

andUlkeniasp.forproductionofbiodiesel,long-chain

Omega-3oils,andExopolysaccharide.MarBiotechnol(New

York,N.Y.).2014;16:396–411.

5.JohnsonMB,WenZ.Productionofbiodieselfuelfromthe

microalgaSchizochytriumlimacinumbydirect

transesterificationofalgalbiomass.EnergyFuel.

2009;23:5179–5183.

6.KhannaM,CragoCL,BlackM.Canbiofuelsbeasolutionto

climatechange?Theimplicationsoflandusechange-related

emissionsforpolicy.InterfaceFocus.2011;1:233–247.

7.NaylorRL,HardyRW,BureauDP,etal.Feedingaquaculture

inaneraoffiniteresources.ProcNatlAcadSciUSA.

2009;106:15103–15110.

8.PaulyD,ChristensenV,GuenetteS,etal.Towards

sustainabilityinworldfisheries.Nature.2002;418:689–695.

9.LeanderCA,PorterD,LeanderBS.Comparativemorphology

andmolecularphylogenyofAplanochytrids

(Labyrinthulomycota).EuroJProtistol.2004;40:317–328.

10.RaghukumarS.Thraustochytridmarineprotists:production

ofPUFAsandotheremergingtechnologies.MarBiotechnol.

2008;10:631–640.

11.DamudeHG,KinneyAJ.Engineeringoilseedplantsfora

sustainable,land-basedsourceoflongchain

polyunsaturatedfattyacid.Lipids.2007;42:179–185.

12.FunkCD.Prostagladinsandleukotrienes:advancesin

eicosanoidbiology.Science.2001;294:1871–1875.

13.QiuX.Biosynthesisofdocosahexaenoicacid(DHA,22:6-4,7,

10,13,16,19):twodistinctpathways.ProstaglandinsLeukot

EssentFattyAcids.2003;68:181–186.

14.SinghP,LiuY,LiL,WangG.Ecologicaldynamicsand

biotechnologicalimplicationsofThraustochytridsfrom

marinehabitats.ApplMicrobiolBiotechnol.2014;13:

5789–57805.

15.HondaD,YokochiT,NakaharaT,etal.Molecularphylogeny

ofLabyrinthulidsandThraustochytridsbasedonthe

sequencingof18SribosomalRNAgene.JEukaryotMicrobiol.

1999;46:637–647.

16.YangHL,LuCK,ChenSF,ChenYM,ChenYM.Isolationand

characterizationofTaiwaneseheterotrophicmicroalgae:

screeningofstrainsfordocosahexaenoicacid(DHA)

production.MarBiotechnol.2010;12:173–185.

17.LewisTE,NicholsPD,McMeekinTA.Thebiotechnological

potentialofThraustochytrids.MarBiotechnol.1999;1:580–587.

18.SheneC,LeytonA,RubilarM,PineloM,AcevedoF,MoralesE.

Productionoflipidsanddocosahexasaenoicacid(DHA)bya

nativeThraustochytriumstrain.EurJLipidSciTech.

2013;115:890–900.

19.BarnesDKA,HodgsonD,ConveyP,AllenCS,ClarkeA.

IncursionandexcursionofAntarcticbiota:pastpresentand

future.GlobalEcolBiogeogr.2006;15:121–142.

20.DeWeverA,LeliaertF,VerleyenE,etal.Hiddenlevelsof

phylodiversityinAntarcticgreenalgae:furtherevidencefor

theexistenceofglacialrefugia.ProcBiolSciRSoc.

2009;276:3591–3599.

21.GriffithsHJ.Antarcticmarinebiodiversity–whatdowe

knowaboutthedistributionoflifeinthesouthernocean?

PLoSONE.2010;5:e11683.

22.BahnwegG,SparrowFK.Fournewspeciesof

(9)

distributionofzoosporicfungiintheAntarcticmarine

ecosystems.AmJBot.1974;61:754–766.

23.MoroI,NegrisoloE,CallegaroA,AndreoliC.Aplanochytrium

stocchinoi:anewLabyrinthulomycota.Protist.

2003;154:331–340.

24.MengX,YangJ,XuX,ZhangL,NieQ,XianM.Biodiesel

productionfromoleaginousmicroorganisms.RenewEnerg.

2009;34:1–5.

25.MetzJG,RoesslerP,FacciottiD,etal.Productionof

polyunsaturatedfattyacidsbypolyketidesynthasesinboth

prokaryotesandeukaryotes.Science.2001;293:290–293.

26.MillerMR,NicholsPD,CarterCG.Replacementoffishoil

withThraustochytridSchizochytriumsp.LoilinAtlantic

salmonparr(SalmosalarL.)diets.CompBiochemPhysiolA:Mol

IntegrPhysiol.2007;148:382–392.

27.GavrilescuM,ChistiY.Biotechnology-asustainable

alternativeforchemicalindustry.BiotechAdv.

2005;23:471–499.

28.RatledgeC.Microbialoils:anintroductoryoverviewof

currentstatus.OCL.2013;20:D602.

29.RatledgeC,WynnJ.Thebiochemistryandmolecularbiology

oflipidaccumulationinoleaginousmicroorganisms.Adv

ApplMicrobiol.2002;51:1–51.

30.GanuzaE,IzquierdoMS.LipidaccumulationinSchizochytrium

G13/2Sproducedincontinuousculture.ApplMicrobiol

Biotechnol.2007;76:985–990.

31.BremenGB.Lowermarinefungi(Labyrinthulomycetes)and

thedecayofmangroveleaflitter.Hydrobiologia.

1995;295:89–96.

32.HinzpeterI,SteadR,TrujilloL,VidalJ,SheneC.Isolationof

ThraustochytridsstrainsinthecoastalzoneofPuertoMontt,

ChileandevaluationofDocosahexaenoicacid(22:6n-3,DHA)

production.Afinidad.2009;66:482–487.

33.MoC,RinkevichB.Asimple,reliable,andfastprotocolfor

ThraustochytridDNAextraction.MarBiotechnol.

2001;3:100–102.

34.MoC,DouekJ,RinkevichB.DevelopmentofaPCRstrategy

forThraustochytrididentificationbasedon18SrDNA

sequence.MarBiol.2002;140:883–889.

35.AltschulSF,GishW,MillerW,MyersEW,LipmanDJ.Basic

localalignmentsearchtool.JMolBiol.1990;215:403–410.

36.SaitouN,NeiM.Theneighbor-joiningmethod:anew

methodforreconstructingphylogenetictrees.MolBiolEvol.

1987;4:406–425.

37.ThompsonJD,HigginsDG,GibsonTJ,ClustalW.improving

thesensitivityofprogressivemultiplesequencealignment

throughsequenceweighting,position–specificgap

penaltiesandweightmatrixchoice.NucleicAcidsRes.

1994;22:4673–4680.

38.TamuraK,DudleyJ,NeiM,KumarS.MEGA4:molecular

evolutionarygeneticsanalysis(MEGA)softwareversion4.0.

MolBiolEvol.2007;24:1596–1599.

39.FelsensteinJ.Confidencelimitsonphylogenies:anapproach

usingthebootstrap.Evolution.1985;39:783–791.

40.LewisTE,NicholsPD,MacMeekinTA.Evaluationof

extractionmethodsforrecoveryoffattyacidsfromlipid

producingmicroheterotrophs.JMicrobiolMeth.

2000;43:107–116.

41.Ramírez-ZacaríasJ,Castro-Mu ˜nozledoF,Kuri-HarcuchW.

Quantitationofadiposeconversionandtriglyceridesby

stainingintracytoplasmiclipidswithOilredO.HistochemCell

Biol.1992;97:493–497.

42.BongiorniL,PuscedduA,DanovaroR.Enzymaticactivitiesof

epiphyticandbenthicThraustochytridsinvolvedinorganic

matterdegradation.AquatMicrobEcol.2005;41:299–305.

43.RaghukumarS.Morphology,taxonomyandecologyof

thraustochytridsandlabyrinthulids,themarine

counterpartsofzoosporicfungi.In:DayalRMD,ed.Advances

inZoosporicFungi.NewDelhi:PublicationsPvt.Ltd.;

1996:35–60.

44.MatsudaT,SakaguchiK,HamaguchiR,etal.Analysisof

D12-fattyaciddesaturasefunctionrevealedthattwodistinct

pathwaysareactiveforthesynthesisofPUFAsinT.aureum

ATCC34304.JLipidRes.2012;53:1210–1223.

45.NaganoN,SakaguchiK,TaokaY,etal.Detectionofgenes

involvedinfattyacidelongationanddesaturationin

Thraustochytridmarineeukaryotes.JOleoSci.

2011;60:475–481.

46.JainR,RaghukumarS,SambaiahK,KumonY,NakaharaT.

DocosahexaenoicacidaccumulationinThraustochytrids:

searchfortherationale.MarBiol.2007;151:1657–1664.

47.JainR,RaghukumarS,ChandramohanD.Enhanced

productionofpolyunsaturatedfattyaciddocosahexaenoic

acidbyThraustochytridprotists.MarBiotechnol.2004;6,

59–S65.

48.SinghA,WardOP.Microbialproductionofdocosahexaenoic

acid(DHA,C22:6).AdvApplMicrobiol.1997;45:271–312.

49.NicholsPD,BlackburnSI,GreenAG.Omega-3oilsdown

under–anupdate.Inform.2004;15:383–385.

50.LeeChangKJ,DunstanG,AbellG,etal.Biodiscoveryofnew

AustralianThraustochytridsforproductionofbiodieseland

long-chainomega-3oils.ApplMicrobiolBiotechnol.

2012;93:2215–2231.

51.AshfordA,BarclayWR,WeaverC,GiddingsTH,ZellerS.

Electronmicroscopymayrevealstructureof

docosahexaenoicacid-richoilwithinSchizochytriumsp.

Lipids.2000;35:1377–1386.

52.NakaharaT,YokochiT,HigashiharaT,TanakaS,YaguchiT,

HondaD.Productionofdocosahexaenoicand

docosapentaenoicacidbySchizochytriumsp.isolatedfrom

Yapislands.JAmOilChemSoc.1996;73:1421–1426.

53.BowlesRD,HuntAE,BremerGB,DucharsMG,EatonRA.

Long-chainn-3polyunsaturatedfattyacidproductionby

membersofthemarineprotistangroupthe

Thraustochytrids:screeningofisolatesandoptimizationof

docosahexaenoicacidproduction.JBiotechnol.

1999;70:193–220.

54.SerhanCN,ChiangN.Endogenouspro-resolvingand

anti-inflammatorylipidmediators:anewpharmacologic

genus.BrJPharmacol.2008;153:200–215.

55.WallR,RossRP,FitzgeraldGF,StantonC.Fattyacidsfrom

fish:theanti-inflammatorypotentialoflong-chainomega-3

fattyacids.NutrRev.2010;68:280–289.

56.FalkO,Meyer-PitroffR.Theeffectoffattyacidcomposition

onbiodieseloxidativestability.EurJLipidSciTechnol.

2004;106:837–843.

57.FisherL,NichollsD,SandersonK.Productionofbiodiesel.

WorldIntellectPropOrgan.2008:067605.

58.HondaD,YokochiY,NakaharaT,ErataM,HigashiharaT.

Schizochytriumlimacinumsp.Nov.,anewthraustochytrid

fromamangroveareainthewestPacificOcean.Mycol.Res.

Referências

Documentos relacionados

In these lines, n-3 fatty acids may be used for the preven- tion of SUDEP 3,10 , as omega-3 fatty acids per se have been shown to reduce cardiac arrhythmias and sudden cardiac

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Três padrões foram excluídos do processo de censoriamento de ambos os sistemas, objetivando-se avaliar o aprendizado continuado, e desta forma, o algoritmo

Sarbin e Kitsuse (1994) usam o termo “construção social”, que no caso do meu trabalho aborda a construção social de raça, o construcionismo focaliza que

Considering the potential of quinoa and flaxseed with regard to the consumption of omega-3 and omega-6 fatty acids, which have been widely used as

From the conventional knowledge of b -oxidation of even-carbon-atom length fatty acids, it is not clear at this point the exact reason for the incorporation of an odd-

Polyun- saturated fatty acids (PUFAs) of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion

Quinoa is considered a pseudocereal with proteins of high biological value, carbohydrates of low glycemic index, phytosteroids, and omega-3 and 6 fatty acids that bring benefits to