• Nenhum resultado encontrado

Efeito dos beta-adrenoceptores na redução da atividade do controle nociceptivo ascendente induzida pela hiperalgesia persistente : The effect of beta-adrenoceptors in the ascending nociceptive control activity's reduction induced by persistent hyperalgesi

N/A
N/A
Protected

Academic year: 2021

Share "Efeito dos beta-adrenoceptores na redução da atividade do controle nociceptivo ascendente induzida pela hiperalgesia persistente : The effect of beta-adrenoceptors in the ascending nociceptive control activity's reduction induced by persistent hyperalgesi"

Copied!
40
0
0

Texto

(1)

UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE BIOLOGIA

MARIA JULIA CEOLIN GIOIA

EFEITO DOS Β-ADRENOCEPTORES NA REDUÇÃO DA ATIVIDADE DO

CONTROLE NOCICEPTIVO ASCENDENTE INDUZIDA PELA

HIPERALGESIA PERSISTENTE

THE EFFECT OF Β-ADRENOCEPTORS IN THE ASCENDING

NOCICEPTIVE CONTROL ACTIVITY’S REDUCTION INDUCED BY

PERSISTENT HYPERALGESIA

CAMPINAS 2018

(2)

MARIA JULIA CEOLIN GIOIA

EFEITO DOS Β-ADRENOCEPTORES NA REDUÇÃO DA ATIVIDADE DO

CONTROLE NOCICEPTIVO ASCENDENTE INDUZIDA PELA

HIPERALGESIA PERSISTENTE

THE EFFECT OF Β-ADRENOCEPTORS IN THE ASCENDING

NOCICEPTIVE CONTROL ACTIVITY’S REDUCTION INDUCED BY

PERSISTENT HYPERALGESIA

Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular, na área de Fisiologia.

Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in Physiology area.

Orientadora: Profa. Dra. Cláudia Herrera Tambeli

CAMPINAS 2018

ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA MARIA JULIA CEOLIN GIOIA E ORIENTADA PELA PROFª DRª CLAUDIA HERRERA TAMBELI.

(3)
(4)

Campinas, 13 de Julho de 2018.

COMISSÃO EXAMINADORA

Profa. Dra. Cláudia Herrera Tambeli

Prof. Dr. César Renato Sartori

Prof. Dr. Alexandre César Santos de Rezende

Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se encontra no processo de vida acadêmica do aluno.

(5)

RESUMO

Na dor crônica, circuitos de modulação de dor, como o Controle Nociceptivo Ascendente (ANC), estão prejudicados. O ANC é um sistema endógeno inibitório de dor que é ativado por um estímulo nociceptivo (como uma injeção de capsaicina) e desencadeia uma antinocicepção heterosegmental que dura por mais de uma hora. A dor persistente está associada a uma redução na atividade do ANC e este efeito parece depender do sistema simpático. A medula da adrenal produz e libera epinefrina que atua principalmente em receptores β-adrenérgicos. Entretanto, se a ativação destes receptores diminui a duração da analgesia do ANC durante a hiperalgesia persistente é desconhecido. Sendo assim, nós formulamos a hipótese de que o bloqueio dos receptores β-adrenérgicos previne a diminuição – induzida pela hiperalgesia persistente - da duração da analgesia do ANC. Para testar essa hipótese, nós induzimos a hiperalgesia persistente com 14 injeções diárias de Prostaglandina E2 (PGE2) na pata direita traseira do rato. Sete dias após

o término das injeções, nós injetamos Propranolol ou seu veículo sistemicamente e depois de 10 minutos nós ativamos o ANC com uma injeção de Capsaicina na pata direita dianteira do rato. Então nós avaliamos a resposta nociceptiva da pata traseira imediatamente após a injeção na pata dianteira e a cada 15 minutos durante 1 hora. Nós verificamos que a hiperalgesia persistente reduziu a duração da analgesia induzida por Capsaicina de 60 para 30 minutos em ratos e para 15 minutos em ratas. O bloqueio dos receptores β-adrenérgicos pela injeção de Propranolol antes da injeção de Capsaicina restaurou a duração do ANC durante a hiperalgesia persistente. Esse efeito foi completo em ratos (analgesia de 60 minutos) e parcial em ratas (analgesia de 45 minutos). Nós concluímos que o bloqueio dos receptores β-adrenérgicos previne a diminuição da duração da analgesia do ANC induzida pela hiperalgesia persistente em ratos e ratas.

Palavras-chave: Hiperalgesia Persistente; Controle Nociceptivo Ascendente; Propranolol; Antinocicepção

(6)

ABSTRACT

In chronic pain syndromes, endogenous pain modulation circuits, such as the

Ascending Nociceptive Control (ANC), are impaired. The ANC is an inhibitory endogenous pain

system that is activated by a nociceptive stimulus (e.g. a capsaicin injection) and triggers a heterosegmental antinociception that lasts for more than one hour. Persistent pain is associated to ANC’s activity reduction and this effect seems sympathoadrenal dependent. The adrenal medulla produces and releases epinephrine which acts mainly on β- adrenergic receptors. However, whether the activation of these receptors decreases the analgesia duration of the ANC during persistent hyperalgesia is unknown. Therefore, we hypothesized that the blockade of β-adrenergic receptors prevents the decreased analgesia duration – induced by persistent hyperalgesia - of the ANC induced by. To test this hypothesis, we induced the persistent hyperalgesia with 14 daily Prostaglandin E2 (PGE2) injections in the rat’s right hind paw. Seven days after the injections

cessation, we injected Propranolol or its vehicle systemically and after 10 minutes, we activated the ANC by a Capsaicin injection in the rat’s right forepaw. Then we evaluated the hind paw nociceptive response immediately after the forepaw injection and every 15 minutes for 1 hour. We found that the persistent hyperalgesia reduced the duration of capsaicin-induced analgesia from 60 to 30 minutes on male rats and to 15 minutes on female rats. The blockade of β-adrenergic receptors by a Propranolol injection before the Capsaicin injection restored the analgesia duration of the ANC during the persistent hyperalgesia. This effect was complete in male rats (60 minutes analgesia) and partial in female rats (45 minutes analgesia). We concluded that the blockade of β-adrenergic receptors prevents the decreased analgesia duration of the ANC induced by persistent hyperalgesia in male and female rats.

Keywords: Persistent Hyperalgesia; Ascending Nociceptive Control; Propranolol; Antinociception.

(7)

LISTA DE ABREVIATURAS E SIGLAS

ANC = Controle Nociceptivo Ascendente (do inglês Ascending Nociceptive Control) h = hora i.p. = intraperitoneal kg = quilograma mg = miligrama mL = mililitro ng = nanograma

NAc = Nucleus Accumbens PGE2 = Prostaglandina E2

RVM= Bulbo rostral ventromedial (do inglês Rostral Ventromedial Medulla) μg = micrograma

(8)

SUMÁRIO

INTRODUÇÃO ... 9

CAPÍTULO 1- β-adrenoceptor blockade prevents the attenuation of activity in an endogenous pain modulation circuit induced by persistent pain in male and female rats ...13

CONCLUSÕES ...32

REFERÊNCIAS BIBLIOGRÁFICAS ...33

(9)

INTRODUÇÃO

A dor é uma experiência sensorial e emocional complexa desagradável cuja percepção é variável, pois é influenciada tanto por fatores cognitivos quanto emocionais (Bushnell et al., 2013). A dor de caráter agudo é caracterizada por ocorrer após dano ao tecido e ser delimitada no tempo; por isso, possui importante papel de proteção (Cox et al., 2010). Entretanto, sob condições persistentes, este sistema nociceptivo pode tornar-se sensibilizado e a dor passa a ser crônica. Isso significa que a dor permanece apesar da ausência de estímulo nociceptivo, sendo, por isso, tida como patológica (Millan, 1999; Merskey & Bogduk, 1994; Zeilhofer, 2005).

A dor crônica é um problema de saúde pública significativo; estimativas sugerem que 20% dos adultos sofrem de dor crônica globalmente (Goldberg & McGee, 2011; Bushnel et al., 2013). No Brasil, estima-se que a dor crônica acometa cerca de 40% da população de adultos e idosos (Souza et al., 2017). A dor crônica é associada a prejuízo nas atividades físicas e aumento no sofrimento emocional, prejudicando a qualidade de vida das pessoas acometidas por essa moléstia (Bushnel et al., 2013; Driscoll & Kerns, 2016). É sabido que a persistência da hiperalgesia é associada com mudanças expressas em todos os componentes nociceptivos e a alterações anatômicas e funcionais nos sistemas endógenos de modulação da dor (Bolay & Moskowitz, 2002; Bushnell et al., 2013; Dias et al., 2015). Esse estado patológico ainda permanece pobremente tratado na clínica – as terapias utilizadas atualmente (como anti-inflamatórios não-esteroidais, opioides e gabapentinoides) provêm um alívio de dor satisfatório em apenas 30% a 40% dos pacientes, o que demonstra a falta de conhecimento sobre esses estados dolorosos (Burgess & Williams, 2010; Tsantoulas & Mcmahon, 2014).

Considerando que, muitas vezes, a dor crônica resulta a partir de um episódio inflamatório (Woolf, 2011), Ferreira e colaboradores (1990) desenvolveram um modelo de hiperalgesia persistente em ratos. Neste modelo, a administração de Prostaglandina E2 (PGE2) na

pata do rato por 14 dias consecutivos (chamado de “Período de indução”) leva a uma hiperalgesia que persiste por até 30 dias após o término das injeções de PGE2 (chamado de “Período de

manutenção”). A PGE2 é o mediador final inflamatório, estando envolvido nos processos que levam

à vermelhidão, inchaço e dor – sinais clássicos da inflamação (Ricciotti & FitzGerald, 2011). É sabido que, na dor crônica mecanismos endógenos de modulação da dor estão alterados. Isso ocorre tanto na clínica (Nasri-Heir et al., 2015; Mills et al., 2018) quanto em

(10)

modelos animais (Vanegas & Schaible, 2004). Foi demonstrado que, dentre os mecanismos endógenos da modulação da dor que estão prejudicados em modelos animais de dor crônica está o Controle Nociceptivo Ascendente (ANC, do inglês Ascending Nociceptive Control) (Ferrari et al., 2010; Miranda et al., 2015). Ele leva este nome porque ascende da Medula Espinal para os Nucleus

Accumbens (NAc), onde ocorre liberação de opioides e dopamina (Schimidt et al., 2002) e ao Bulbo

Rostral Ventromedial (RVM), onde ocorre a ativação de um mecanismo colinérgico (Gear & Levine, 2009).

A ativação do ANC se dá através de um estímulo nociceptivo intenso (como a injeção de Capsaicina ou inserção da pata em água quente) que desencadeia uma antinocicepção heterosegmental, ou seja, o efeito analgésico é percebido em regiões distantes da em que o estímulo foi aplicado (Gear et al., 1999). Isso foi demonstrado pela administração de Capsaicina na pata traseira de ratos, refletindo na atenuação do reflexo de abertura bucal (Gear et al., 1999; Schimidt

et al., 2002; Tambeli et al., 2009) e também pela administração de Capsaicina na pata dianteira de

ratos gerando antinocicepção na pata traseira (Gear et al., 1999; Ferrari et al., 2010; Miranda et al., 2015).

Foi observado que a analgesia desencadeada pela ativação do ANC independe da duração do estímulo nociceptivo inicial, ou seja, a partir do momento em que houve a ativação desse mecanismo a analgesia persiste (Gear et al., 1999). Isso foi demonstrado através do bloqueio neural periférico no local da ativação do ANC com anestésicos: quando há a administração do anestésico antes da estimulação nociceptiva, o efeito antinociceptivo do ANC é bloqueado; entretanto, se o anestésico é administrado após o estímulo, o efeito antinociceptivos do ANC não é alterado (Gear et al., 1999).

Posteriormente, foram avaliados os mecanismos espinais envolvidos na ativação do ANC. Primeiramente observou-se que a administração intratecal (na região lombar da medula espinal) de antagonistas dos receptores excitatórios AMPA ou mGluR1 gerava antinocicepção heterosegmental (Tambeli et al., 2002). Também foi demonstrado que a administração intratecal de antagonistas de receptores inibitórios (como o µ-opioide, GABAA e GABAB) bloqueia a

analgesia desencadeada pela ativação do ANC (Tambeli et al., 2003). Com isso, foi proposto que o mecanismo de ação do ANC é que, em condições fisiológicas basais há uma liberação tônica de glutamato na medula espinal, que excita um neurônio de projeção espino-supraespinal. Este, por

(11)

sua vez, inibe neurônios que medeiam a antinocicepção no NAc. Na presença de um estímulo nociceptivo, a atividade do neurônio de projeção é inibida, induzindo à antinocicepção (Tambeli et

al., 2003). Posteriormente, foram estudos os mecanismos responsáveis pela longa duração da

analgesia desencadeada pela ativação do ANC. Foi demonstrado que a administração intratecal de antagonistas de receptores inibitórios µ-opioide e GABAB reverteu a analgesia desencadeada pela

ativação do ANC, indicando que o ANC é mantido na medula espinal por sinapses inibitórias (Tambeli et al., 2009).

Em animais intactos e na hiperalgesia aguda, a analgesia desencadeada pela ativação do ANC dura por pelo menos 1h (Gear et al., 1999; Ferrari et al., 2010; Miranda et al., 2015), mas em modelos animais de neuropatia e de hiperalgesia persistente induzida por PGE2 a duração da

analgesia por ativação do ANC é diminuída (Ferrari et al., 2010; Miranda et al., 2015). Entretanto, na dor neuropática, com a retirada da medula da adrenal a duração da analgesia induzida pelo ANC foi restaurada (Ferrari et al., 2010).

Na medula da adrenal é produzido o neurohormônio epinefrina (também chamado de “adrenalina”), o qual é rapidamente secretado na circulação em resposta ao stress, atuando principalmente sobre os receptores do tipo β-adrenérgicos (Wong et al., 2012). Foram identificados e descritos três subtipos de receptores β-adrenérgicos, nomeados de receptores β1, β2 e β3-adrenérgicos (Bylund et al., 1994).

Diversos estudos têm mostrado o papel antinociceptivo de antagonistas dos receptores β-adrenérgicos (chamados de “betabloqueadores”) em diferentes modelos animais de dor, como na dor inflamatória aguda (Khasar et al., 1999; Pelegrini-da-Silva et al., 2008; Zhang et al., 2014; Zanelatto et al., 2017); dor crônica (Gil et al., 2015) e inclusive na clínica (Light et al., 2009; Bunevicius et al., 2013; Härkänen et al., 2015). Dentre os diferentes antagonistas de receptores β-adrenérgicos está o Propranolol (Bortolotto & Consolim-Colombo, 2009). O Propranolol é classificado como um betabloquador não-seletivo, pois bloqueia tanto os receptores adrenérgicos do tipo β1 quanto os do tipo β2 (Helfand et al., 2009). Além disso, possui alta lipossolubilidade, o que permite que ele penetre na barreira hematoencefálica (Dimsdale et al., 1989).

Apesar de se saber que em modelos animais de dor neuropática e hiperalgesia persistente induzida por PGE2 a duração da analgesia induzida pela ativação do ANC é diminuída

(12)

restaura a duração da analgesia do ANC (Ferrari et al., 2010), não se sabe se o mesmo ocorre na hiperalgesia persistente induzida por PGE2. Considerando que a medula da adrenal secreta

epinefrina, a qual atua sobre receptores β-adrenérgicos (Wong et al., 2012), surge a hipótese de que a diminuição da analgesia induzida pela ativação do ANC em modelos animais de dor neuropática e dor crônica se dá pela ativação dos receptores β-adrenérgicos. Sendo assim, o objetivo desse trabalho foi avaliar se o β-bloqueador Propranolol é capaz de restaurar a duração da analgesia induzida pela ativação do ANC em ratos e ratas durante hiperalgesia persistente induzida por PGE2.

O presente estudo está em formato alternativo, conforme deliberação da Comissão Central

(13)

Capítulo 1

β-adrenoceptor blockade prevents the attenuation of activity in an endogenous pain modulation circuit induced by persistent pain in male and female rats

Maria Julia Ceolin Gioia César Renato Sartori Carlos Amilcar Parada Claudia Herrera Tambeli*

Department of Physiology and Biophysics, Institute of Biology, State University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil

* Corresponding author:

Rua Carl Von Linnaeus, s/n – Cidade Universitária, Campinas – SP – Brasil CEP 13083-864 – Brazil

Tel.: +55-19-3521-6195

(14)

Abstract

In chronic pain syndromes, endogenous pain modulation circuits, such as the

Ascending Nociceptive Control (ANC), are impaired. The ANC is an inhibitory endogenous pain

system that is activated by a nociceptive stimulus (e.g. a capsaicin injection) and triggers a heterosegmental antinociception that lasts for more than one hour. Persistent pain is associated to ANC’s activity reduction and this effect seems sympathoadrenal dependent. The adrenal medulla produces and releases epinephrine which acts mainly on β- adrenergic receptors. However, whether the activation of these receptors decreases the analgesia duration of the ANC during persistent hyperalgesia is unknown. Therefore, we hypothesized that the blockade of β-adrenergic receptors prevents the decreased analgesia duration – induced by persistent hyperalgesia - of the ANC induced by. To test this hypothesis, we induced the persistent hyperalgesia with 14 daily Prostaglandin E2 (PGE2) injections in the rat’s right hind paw. Seven days after the injections

cessation, we injected Propranolol or its vehicle systemically and after 10 minutes, we activated the ANC by a Capsaicin injection in the rat’s right forepaw. Then we evaluated the hind paw nociceptive response immediately after the forepaw injection and every 15 minutes for 1 hour. We found that the persistent hyperalgesia reduced the duration of capsaicin-induced analgesia from 60 to 30 minutes on male rats and to 15 minutes on female rats. The blockade of β-adrenergic receptors by a Propranolol injection before the Capsaicin injection restored the analgesia duration of the ANC during the persistent hyperalgesia. This effect was complete in male rats (60 minutes analgesia) and partial in female rats (45 minutes analgesia). We concluded that the blockade of β-adrenergic receptors prevents the decreased analgesia duration of the ANC induced by persistent hyperalgesia in male and female rats.

Keywords: Persistent Hyperalgesia; Ascending Nociceptive Control; Propranolol; Antinociception.

(15)

Introduction

Chronic pain is a public health problem that affects billions of people worldwide. It is associated to physical activities impairment and emotional suffering increase (Bushnel et al., 2013; Driscoll & Kerns, 2016). This pathological state remains poorly treated: the therapies used nowadays (e.g. Nonsteroidal anti-inflammatory drugs, opioids and gabapentinoids) alleviates the pain on a satisfactory way of only 30% to 40% of the patients (Burgess & Williams, 2010; Tsantoulas & Mcmahon, 2014).

Although neuropathic pain is a kind of chronic pain, this kind of hyperalgesia often raises from an inflammatory episode (Woolf, 2011). To mimic this, Ferreira et al. (1990) developed a persistent hyperalgesia model in rats, in which 14 daily subcutaneous Prostaglandin E2 (PGE2)

injections induce a hyperalgesia that persists for at least 30 days after the injections’ ceased. It has been shown that in chronic pain syndromes the endogenous inhibitory pain systems are impaired in both humans (Nasri-Heir et al., 2015; Mills et al., 2018) and animal studies (see Vanegas & Schaible, 2004, for a review). Among the endogenous inhibitory pain systems is the Ascending Nociceptive Control (ANC) (Gear & Levine, 1995; Tambeli et al., 2003). The ANC is activated by a nociceptive stimulus (e.g. a subcutaneous capsaicin injection far from the nociceptive testing) (Gear et al., 1999; Tambeli et al., 2003; Tambeli et al., 2009) and triggers a heterosegmental antinociception similar to a high dose of morphine (10mg/kg), which lasts for more than an hour (Gear et al., 1999; Schmidt et al., 2002). However, the duration of the analgesia induced by ANC activation is shortened in animal models of neuropathic pain (Ferrari et al., 2010; Kimura et al., 2015) and persistent hyperalgesia induced by PGE2 (Miranda et al., 2015).

Nevertheless, in neuropathic pain animals, the ablation of the sympathoadrenal axis by adrenal medullectomy was capable of restoring the duration of the analgesia induced by the activation ANC (Ferrari et al., 2010). The adrenal medulla produces and releases epinephrine which act mainly on adrenergic receptors (Wong et al., 2012). However, it is not known whether the activation of β-adrenergic receptors decreases the analgesia duration of the ANC during persistent hyperalgesia. Therefore, we hypothesized that the blockade of β-adrenergic receptors prevents the decreased analgesia duration of the ANC induced by persistent hyperalgesia. To test this hypothesis, we investigated whether the blockade of the β-adrenergic receptors by a systemic administration of

(16)

Propranolol restores the duration of the analgesia of the ANC in a rat model of persistent hyperalgesia.

Materials and Methods Animals

Experiments were performed with male and female Wistar rats (180-200g; about 6 weeks old), obtained from the Multidisciplinary Center for Biological Investigation (CEMIB) at the State University of Campinas (UNICAMP). The rats were kept under a 12/12-h light–dark cycle, controlled humidity (60–80%) and temperature (22–25 °C). Food and water were available

ad libitum. Rats were taken to the testing area at least 30 minutes before behavioral testing and all

the experiments were performed between 08:00 and 17:00h. It was used 5-6 rats/experimental group. Animal care and handling procedures were approved by the institutional Committee for Ethics in Animal Experimentation at UNICAMP (CEUA/IB-UNICAMP), São Paulo, Brazil, protocol number 4390-1, which conformed to the guidelines set by IASP for the study of pain in animals (Zimmermann, 1983).

Drugs and doses

The drugs used in this study were: PGE2, 100ng/50µL/hind paw (Ferreira et al., 1990);

Capsaicin, 125ug/50µL/fore-paw (Gear et al., 1999); Propranolol, 9mg/kg, i.p. (Kline et al., 2015). Capsaicin was obtained from Tocris Bioscience; PGE2 and Propranolol were obtained from

Sigma-Aldrich.

PGE2 first stock solution was made diluting the drug in ethanol to an initial

concentration of 10µg/µL. Then it was diluted in Phosphate Buffer (PB) 0,1M (0,1µg/µL). The usage concentration of 2ng/µL (dose of 100ng/50µL) was obtained adding 0.9% NaCl (Saline) just before the injection. Capsaicin stock solution was made diluting the drug in ethanol and Tween 80 on a 1:1 proportion to a concentration of 25ug/µL. Just before the use it was diluted in saline (2.5ug/µL). Propranolol was dissolved in saline to a concentration of 3mg/ml.

(17)

Experimental Design

First, the persistent hyperalgesia protocol was reproduced in male and female rats by injecting PGE2 or Saline on the right hind paw for 14 consecutive days. Their nociceptive responses

were evaluated every day before the injections during the induction period and on the 3rd and 7th days of the maintenance period. The PWT was quantified using Randall-Sellito nociceptive test. It was also reproduced the ANC activation protocol in male and female rats by injecting Capsaicin or its vehicle on the right fore paw. Their nociceptive responses were evaluated immediately after the forepaw injection and every 15 minutes for 1 hour. On the experimental groups, the persistent hyperalgesia was induced and the PWT was evaluated on days 1, 7 and 14, before and 3h after the injection, in order to make sure the nociceptive response was the expected. On the 21st day of experiment (i.e., the 7th day of the maintenance period) the treatments were evaluated as it follows:

it was done a PWT measure, Propranolol (9mg/kg) or saline was injected (i.p.) with a 30G ½ ‘’ needle; immediately after this it was done another PWT measure, after 10 minutes of the i.p. injection it was injected Capsaicin or its vehicle on the right fore paw and the nociceptive response of the right hind paw was evaluated immediately (0),15, 30, 45 and 60 minutes after the fore paw injection.

Nociceptive testing

The mechanical hyperalgesia was quantified using the Randall-Sellito nociceptive paw-withdrawal test (Randall & Sellito, 1957) (Ugo BasileAlgesymeter, Stoelting). This equipment has a two items compression device: a flat surface in which the paw plant rests and a conical part that exerts pressure on the paw dorsum. At the time of the test the experimenter presses a foot pedal that transmits a force that increases linearly on the conical part of the appliance, pressing the rat’s paw. This pressure is quantified by a mobile cursor that slides over a scale and shows, in grams, the pressure being exerted at the time. When the rat withdrawals the paw, the experimenter releases the foot pedal to stop the force indicator and reads the scale. The Paw Withdrawal Threshold (PWT) was defined as the average of three measures alternately performed.

(18)

Persistent hyperalgesia model

The persistent hyperalgesia was induced as described by Ferreira et al., 1990. In this protocol, daily subcutaneous injections of PGE2 (100ng/50µL) into the rat’s hind paw for 14 days

(which is called “Induction period”) induces a hyperalgesia that persists for at least 30 days (period defined as “Maintenance period”).

Subcutaneous Injections

Concerning subcutaneous injections, drugs or their vehicle were subcutaneously injected in the dorsum of the rat paw with a 29G needle connected to an insulin syringe (BD ultra-fine 30U). PGE2 or its vehicle was injected in the hind paw and Capsaicin or its vehicle in the fore

paw. The total volume administered was 50µL.

Statistical analysis

To analyze if there were differences in the nociceptive response among the groups it was done a two-way repeated measures analysis of variance (ANOVA), followed by the Bonferroni multiple comparison test. Data are presented as mean ± SEM. The level accepted for statistical significance was p<0.05.

(19)

Results

Induction of persistent hyperalgesia on male and female rats

PGE2 (100ng/50µL) injection on the right hind paw of male (A) and female (B) rats for

14 consecutive days induced a paw-withdrawal threshold significantly lower than that induced by the saline injection (50µL) from the 6th to the 21st day of the experimental protocol (Fig.1).

Fig 1. Development and maintenance of the persistent hyperalgesia on male (A) and female rats (B). The symbol " * " indicates a paw-withdrawal threshold significantly lower than that induced by the saline injection. Data are presented as mean ± S.E.M. of 6 rats. Two-way repeated measures ANOVA, Bonferroni test, p<0.05.

(20)

Capsaicin-induced analgesia on male and female rats

The activation of the ANC by a Capsaicin injection (125ug/50µL) into the rat’s fore paw induced a hind paw-withdrawal threshold significantly higher than that induced by its vehicle injection for 60 minutes in males and female rats (Fig. 2). Therefore, the duration of capsaicin-induced analgesia was 60 minutes in both male and female rats.

Fig. 2. Capsaicin-induced analgesia on rats. The symbol " * " indicates that the subcutaneous injection of capsaicin (125ug) into the rat's fore paw induced a hind paw-withdrawal threshold

(21)

significantly higher than that induced by its vehicle injection for 60 minutes in males (A) and female (B) rats. (repeated measures two-way ANOVA, Bonferroni test, p<0.05). Data are presented as mean +- S.E.M. of 5 rats.

Capsaicin-induced analgesia on male and female rats with persistent hyperalgesia

Capsaicin injection (125ug/50µL) into the rat’s fore paw induced a hind paw-withdrawal threshold significantly higher than that induced by the saline injection for 30 minutes in male (A) and 15 minutes in female (B) rats. Therefore, the persistent hyperalgesia reduced the duration of capsaicin-induced analgesia from 60 minutes (naive rats) to 30 and 15 minutes in males and female rats, respectively. Capsaicin-induced analgesia was significantly greater in male than in female rats (Fig.3, C).

(22)

Fig. 3. Capsaicin-induced analgesia on rats with persistent hyperalgesia induced by PGE2. A) In male rats, the subcutaneous fore paw injection of capsaicin (125ug) significantly increased the hind paw-withdrawal threshold recorded immediately (0), 15, and 30 min after the capsaicin injection (indicated by the symbol “ * ”). B) In female rats, the capsaicin injection also significanlty increased the hind paw-withdrawal threshold at 0 and 15 minutes (*). C) Capsaicin-induced analgesia was significantly greater in male than in female rats nas indicated by the symbol “#” . There was no difference between the vehicle's groups. Data are presented as mean ± S.E.M. of 6 rats. Two-way repeated measures ANOVA; Bonferroni test, p<0.05. Abreviation: SAL: saline (0,9%); CAP: capsaicin; VEI: capsaicin vehicle.

(23)

Effect of Propranolol on Capsaicin-induced analgesia on male and female rats with persistent hyperalgesia

The blockade of β-adrenergic receptors by a Propranolol injection (9mg/kg, i.p.) 10 minutes before the Capsaicin injection in the right fore paw (125ug/50µL) restored the duration of capsaicin-induced analgesia during the persistent hyperalgesia to 60 minutes in male (Fig.4A) and 45 minutes in female rats (Fig. 4B).

Fig 4. Effect of Propranolol on Capsaicin-induced analgesia in rats with persistent hyperalgesia induced by PGE2. The symbol “#” indicates a PWT significantly higher than that of other experimental groups. When PROP was injected before CAP, the analgesia was sustained until 60 min on male rats (A) and 45 min on female rats (B) In both cases PROP by itself didn’t

(24)

significantly change the PWT. Data are presented as mean ± S.E.M. of 6 rats. Two-way repeated measures ANOVA; Bonferroni test, p<0.05. Abreviation: PROP: Propranolol (9mg/kg); SAL: saline (0,9% NaCl); CAP: capsaicin; VEI: capsaicin vehicle; PWT: Paw-withdrawal threshold.

Discussion

In this study we showed that systemic administration of Propranolol can restore the duration of the Capsaicin-induced analgesia, which is shortened on chronic pain syndromes, on male and female rats on the 7th day of maintenance of the persistent hyperalgesia. The analgesia induced by capsaicin on rats with persistent hyperalgesia lasted for 30 minutes on male rats and for 15 minutes on female rats (Fig. 2). The Capsaicin-induced analgesia is impaired in neuropathic rats (Ferrari et al., 2010; Kimura et al., 2015) and in persistent hyperalgesia rats (Miranda et al., 2015). It was shown that in male rats on the 7th day of maintenance of the persistent hyperalgesia the

Capsaicin-induced analgesia lasted for 30 minutes (Miranda et al., 2015), but this was the first time that the analgesia induced by ANC was tested on female rats with persistent hyperalgesia. We showed that the capsaicin-induced analgesia lasted more on male than on female rats. One explanation for the Capsaicin-induced analgesia have lasted longer on male rats may be on their higher concentration of testosterone, given that in a recent study the antinociceptive effect of a forepaw capsaicin injection was greater on male than on female rats, and gonadectomized male rats’ nociceptive response was equal to the female’s (Da Silva et al., 2018). However, it is soon to conclude this, since this study was performed with a much lower dose of capsaicin, which activates the mechanism of “Diffuse noxious inhibitory controls

.

Another hypothesis is that the analgesia lasted longer on male rats due fact that male rodents exhibit a greater analgesia induced by opioids than female (see Kest et al., 2000, for a review), and the analgesia induced by ANC depends on opioids and dopamine (DA) release on

Nucleus Accumbens (NAc) (Gear et al., 1999). Although it is not known for sure why the analgesia

induced by opioids is greater on male than on female rodents, this effect doesn’t seem related to gonadal hormones (Stoffel et al., 2005).

Also, it must be considered that the analgesia induced by ANC depends on a cholinergic mechanism on Rostral Ventromedial Medulla (RVM) (Gear & Levine, 2009), which communicates with the midbrain Periaqueductal Gray (PAG), making the PAG-RVM circuit,

(25)

which is anatomically and functionally different in male and female rats (Loyd & Murphy, 2006). Although the PAG-RVM circuit is involved in the opioid analgesia, the Capsaicin-induced analgesia doesn’t depend on the release of opioids neither on PAG, neither on RVM (Gear & Levine, 1995), which means another system but the opioidergic should be involved on the analgesia induced by ANC on these brain parts.

The great novelty of this study is that the pre-administration of Propranolol increased the capsaicin-induced analgesia for 30 minutes, resulting in 60 minutes of analgesia on male rats and 45 minutes of analgesia on female rats (Fig.3). Many studies have shown the antinociceptive role of β-adrenoceptors antagonists in different pain animal models, such as temporomandibular joint hyperalgesia (Pelegrini-da-Silva et al., 2008; Zanelatto et al., 2017), visceral hypersensitivity (Zhang et al., 2014); in vitro (Kanno et al., 2010), and also in clinical trials (Light et al., 2009; Bunevicius et al., 2013; Härkänen et al., 2015). However, this was the first time that Propranolol was used to enhance the analgesia induced by ANC, which was diminished by persistent hyperalgesia induced by PGE2 on male and female rats.

It was shown that the duration of the analgesia induced by ANC was shortened in models of neuropathic (Ferrari et al., 2010; Kimura et al., 2015) and persistent pain (Miranda et

al., 2015), and that the removal of the adrenal medulla restored the normal duration (Ferrari et al.,

2010), pointing to the possible role of the sympathetic axis on this mechanism. It was shown in a study that previous injections of a DA antagonist or an opioid antagonist into the NAc blocks the antinociceptive effects of ANC activation, which means that the analgesia induced by ANC depends on the release of opioids and DA on NAc (Gear et al., 1999). The dopaminergic system on NAc was known as antinociceptive on acute nociceptive behavior (Chudler & Dong, 1995; Haghparast et al., 2012); this was demonstrated by a dopamine reuptake inhibitor injection in the NAc blocking PGE2 acute hyperalgesia (Dias et al., 2015). However, when the dopamine reuptake

inhibitor was injected in the NAc over 7 days of the PGE2-induced persistent hyperalgesia protocol,

the induction was facilitated (Dias et al., 2015). These results led the authors to suggest that, on PGE2-induced persistent hyperalgesia, the chronification of pain switches the dopaminergic system

on NAc from antinociceptive to pronociceptive. Finally, it was shown that the synergistic activation of NAc β1 and β2-adrenoceptors enhanced the NAc DA efflux, which was suppressed by Propranolol injection (Aono et al., 2013). It was hypothesized that these β-adrenoceptors are

(26)

located on the postsynaptic neurons of the dopaminergic terminals. Considering these studies, it may be that, on rats with persistent hyperalgesia induced by PGE, Propranolol restored the duration

of Capsaicin-induced analgesia (which is shortened on chronic pain syndromes) by inhibiting DA release on NAc, which it was shown to be pronociceptive on persistent hyperalgesia induced by PGE2.

Another possible mechanism for Propranolol enhancing the duration of the Capsaicin-induced analgesia on rats with persistent hyperalgesia may be on Propranolol acting on β2

-adrenoceptors co-expressed with a 6-transmembrane u-opioid receptor (MOR). The 6TM-MOR, when expressed alone, is retained in the intracellular compartments, but translocates to the plasma membrane when co-expressed with β2-adrenoceptors. This co-expression was

demonstrated at nervous ganglia. It was shown that the co-administration of β2-adrenoceptors

blockers and 6TM-MOR agonists leads to an analgesic synergy (Samoskhin et al., 2015). However, further studies are required for clarify the mechanisms underlying the effect of Propranolol on the analgesia induced by ANC on chronic pain models.

In summary, we provide evidence that the blockade of the β-adrenergic receptors can partially restore the duration of the analgesia induced by the ANC in a rat model of persistent hyperalgesia induced by PGE2. Therefore, the β-blockers may be used to treat chronic pain in association with treatments that activate the endogenous inhibitory pain systems.

(27)

References

Aono, Y., Saigusa, T., Taguchi, H., Uchida, T., Takada, K., Koshikawa, N. & Cools, A. (2013). Synergistic, but not separate, stimulation of accumbal β1- and β2-adrenoceptors alters the accumbal dopamine efflux in freely moving rats. Eur J Pharmacol. 715(1-3):363-369.

Bunevicius A, Hinderliter, A., Klatzkin, R., Patel, A., Arizmendi, C. & Girdler, S. (2013) Beta-Adrenergic Receptor Mechanisms and Pain Sensitivity in Women with Menstrually Related Mood Disorders. J Pain, 14(11), pp.1349-1360.

Burgess, G. & Williams, D. (2010) The discovery and development of analgesics: new mechanisms, new modalities. J Clin Invest. 120(11):3753-59.

Bushnell, M.A., Ceko, M. & Low, L.A. (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14:502-511.

Chudler, E.H. & Dong, W.K. (1995) The role of the basal ganglia in nociception and pain. Pain. 6:3-38.

Da Silva, J.T., Zhang, Y., Asgar, J., Ro, J.Y., Seminowicz, D.A. (2018). Diffuse noxious inhibitory controls and brain networks are modulated in a testosterone-dependent manner in Sprague-Dawley rats. Behav Brain Res. 349: 91-97.

Dias, E.V., Sartori, C.R., Marião, P.R., Vieira, A.S., Camargo, L.C., Athie, M.C.P., Pagliusi, M.O., Tambeli, C.H. & Parada, C.A. (2015). Nucleus accumbens dopaminergic

neurotransmission switches its modulatory action in chronification of inflammatory hyperalgesia. Eur J Neurosci, 42(7):2380-2389

(28)

Driscoll, M.A. & Kerns, R.D. (2016) Integrated, team-based chronic pain management: bridges from theory and research to high quality patient care. In: Ma C; Huang Y (Editors). Translational research in pain and itch. Springer.

Ferrari, L.F., Gear, R.W. & Levine, J.D. (2010). Attenuation of Activity in an Endogenous Analgesia Circuit by Ongoing Pain in the Rat. J Neuroscience, 30(41):13699-13706.

Ferreira, S.H., Lorenzetti, B.B. & De Campos, D.I. (1990) Induction, Blockade and Restoration of a Persistent Hypersensitive State. Pain 42:365-371.

Gear, R.W. & Levine, J.D. (1995) Antinociception Produced by an Ascending Spino-Supraspinal Pathway. J Neurosci, 15:3154-3161.

Gear, R.W. & Levine, J.D. (2009) Rostral ventral medulla cholinergic mechanism in pain-induced analgesia. Neurosci Lett. 464(3):170-172.

Gear, R.W., Aley, K.O. & Levine, J.D. (1999) Pain-Induced Analgesia Mediated by Mesolimbic Reward Circuits. J Neurosci 19:7175-7181.

Haghparast, A., Ghalandari-Shamami, M. & Hassanpour-Ezatti, M. (2012) Blockade of D1/D2 dopamine receptors within the nucleus accumbens attenuated the antinociceptive effect of cannabinoid receptor agonist in the basolateral amygdala. Brain Res. 1471:23-32.

Härkänen, L., Halonen, J., Selander, T. & Kokki, H. (2015). Beta-adrenergic antagonists during general anesthesia reduced postoperative pain: a systematic review and a meta-analysis of randomized controlled trials. J Anesthesia, 29(6):934-943.

Kanno, T., Yaguchi, T. & Nishizaki, T. (2010). Noradrenaline stimulates ATP release from DRG neurons by targeting β3 adrenoceptors as a factor of neuropathic pain. J Cell Physiology.

(29)

Kest, B., Sarton, E. & Dahan, A. (2000) Gender differences in opioid-mediated analgesia: animal and human studies. Anesthesiology. 93:539–47.

Kimura, M., Suto, T., Morado-Urbina, C.E., Peters, C.M., Eisenach, J.C. & Hayashid, K. (2015). Impaired Pain-evoked Analgesia after Nerve Injury in Rats Reflects Altered Glutamate

Regulation in the Locus Coeruleus. Anesthesiology, 123(4):899-908.

Kline, R.H., Exposto, F.G., O’Buckley, S.C., Westlund, K.N. & Nackley, A.G. (2015) Catechol-O-methlytransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat. Neuroscience. 2015,290:561-569.

Light, K.C., Bragdon, E.E., Grewen, K.M., Brownley, K.A., Girdler, S.S. & Maixner, W. (2009). Adrenergic dysregulation and pain with and without acute beta-blockade in women with

fibromyalgia and temporomandibular disorder. J Pain 10:542-552.

Loyd, D. & Murphy, A. (2006). Sex differences in the anatomical and functional organization of the periaqueductal

gray-rostral ventromedial medullary pathway in the rat: A potential circuit mediating the sexually dimorphic actions of morphine. J Comparative Neurol: 496(5):723-738.

Mills, E., Di Pietro, F., Alshelh, Z., Peck, C., Murray, G., Vickers, E. & Henderson, L. (2018). Brainstem Pain-Control Circuitry Connectivity in Chronic Neuropathic Pain. J Neurosci. 38(2):465-473.

Miranda, J., Lamana, S., Dias,E., Athie, M., Parada, C.A. & Tambeli, C.H. (2015). Effect Of Pain Chronification And Chronic Pain On An Endogenous Pain Modulation Circuit In Rats.

(30)

Nasri-Heir, C., Khan, J., Benoliel, R., Feng, C., Yarnitsky, D., Kuo, F., Hirschberg, C., Hartwell, G., Huang, C., Heir, G., Korczeniewska, O., Diehl, S. & eliav, E. (2015). Altered pain

modulation in patients with persistent postendodontic pain. Pain, 156(10):2032:41.

Pelegrini-da-Silva, A., Oliveira, M., Parada, C.A. & Tambeli, C.H. (2008). Nerve growth factor acts with the β2-adrenoceptor to induce spontaneous nociceptive behavior during

temporomandibular joint inflammatory hyperalgesia. Life Sciences, 83(23-24):780-785.

Randall, L.O. & Sellito, J.J. (1957) A method for measurement of analgesic activity on inflamed tissue. Arch nt Pharmacod n thérapie 111:409–419.

Samoshkin, A., Convertino, M., Viet, C., Wieskopf, J., Kambur, O., Marcovitz, J., Patel, P., Stone, L., Kalso, E., Mogil, J., Schmidt, B., Maixner, W., Dokholyan, N. & Diatchenko, L. (2015). Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling. Scientific Reports, 5(1).

Schmidt, B.L., Tambeli, C.H., Levine, J. D. & Gear, R.W. (2002) mu/delta Cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat. Eur J Neurosci. Mar,15(5):.861-8.

Stoffel, E., Ulibarri, C., Folk, J., Rice, K. & Craft, R. (2005). Gonadal hormone modulation of mu, kappa, and delta opioid antinociception in male and female rats. J Pain. 6(4):261-274.

Tambeli, C.H., Quang, P., Levine, J.D. & Gear, R.W. (2003) Contribution of spinal inhibitory receptors in heterosegmental antinociception induced by noxious stimulation. Eur J Neurosci. Dec,18(11):2999-06.

Tambeli, C.H., Levine, J.D. & Gear, R.W. (2009) Centralization of noxious stimulus-induced analgesia (NSIA) is related to activity at inhibitory synapses in the spinal cord. PAIN.

(31)

Tsantoulas, C. & McMahon, S.B. (2014) Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosc. 37,146-158.

Vanegas, H. & Schaible, H. (2004). Descending control of persistent pain: inhibitory or facilitatory? Brain Res Ver. 46(3):295-309.

Wong, D., Tai, T., Wong-Faull, D., Claycomb, R., Meloni, E., Myers, K., Carlezon, W. & Kvetnansky, R. (2012). Epinephrine: A Short- and Long-Term Regulator of Stress and Development of Illness. Cell Mol Neurobiol, 32(5):737-748.

Woolf, C.J. (2011) Central sensitization: implications for the diagnosis treatment of pain. Pain, 152, s2-s15.

Zanelatto, F.B., Dias, E., Teixeira, J., Sartori, C., Parada, C.A. & Tambeli, C.H. (2017). Anti-inflammatory effects of propranolol in the temporomandibular joint of female rats and its contribution to antinociceptive action. Eur J Pain, 22(3):572-582.

Zhang, C., Rui, Y., Zhou, Y., Ju, Z., Zhang, H., Hu, C., Xiao, Y. & Xu, G. (2014). Adrenergic β2-Receptors Mediates Visceral Hypersensitivity Induced by Heterotypic Intermittent Stress in Rats. PLoS ONE, 9(4).

Zimmermann, M. (1983). Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 16(2):109-10.

(32)

CONCLUSÕES

A hiperalgesia persistente reduz a duração da analgesia induzida pelo ANC em ratos e ratas, sendo que a redução foi maior nas ratas, e o bloqueio sistêmico dos β-adrenoceptores restaurou a duração da analgesia induzida pela ativação do ANC. O bloqueio sistêmico dos β-adrenoceptores não foi capaz, por si só, de gerar analgesia. Nesse contexto, os resultados desse trabalho sugerem que os β-bloqueadores poderiam aumentar a duração da analgesia dos tratamentos usados no controle da dor crônica que ativam os mecanismos endógenos de modulação da dor.

(33)

REFERÊNCIAS BIBLIOGRÁFICAS

Bolay, H. and Moskowitz, M. (2002). Mechanisms of pain modulation in chronic syndromes. Neurology, 59(Issue 5, Supplement 2), pp.S2-S7.

Bortolotto, L.A. & Consolim-Colombo, F.M. (2009) Betabloqueadores adrenérgicos. Ver Bras Hipertens. 16(4):215-220.

Bylund, D.B., Eikenberg, D.C., Hieble, J.P., Langer, S.Z., Lefkowitz, R.J., Minneman, K.P., Molinoff, P.B., Ruffolo, R.R. & Trendelenburg, U. (1994) IV International Union of

Pharmacology Nomenclature of Adrenoceptors. Pharmacol Ver. 46:121-136.

Bunevicius A, Hinderliter, A., Klatzkin, R., Patel, A., Arizmendi, C. & Girdler, S. (2013) Beta-Adrenergic Receptor Mechanisms and Pain Sensitivity in Women with Menstrually Related Mood Disorders. J Pain, 14(11), pp.1349-1360.

Burgess, G. & Williams, D. (2010) The discovery and development of analgesics: new mechanisms, new modalities. J Clin Invest. 120(11):3753-59.

Bushnell, M.A., Ceko, M. & Low, L.A. (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14:502-511.

Cox, J.J., Sheynin, J., Shorer, Z., Reimann, F., Nicholas, A.K., Zubovic, L., Baralle, M., Wraige, E., Manor, E., Levy, J., Woods, C.G., Parvari, R. (2010) Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat. 31:1670-1686.

(34)

Dias, E.V., Sartori, C.R., Marião, P.R., Vieira, A.S., Camargo, L.C., Athie, M.C.P., Pagliusi, M.O., Tambeli, C.H. & Parada, C.A. (2015). Nucleus accumbens dopaminergic eurotransmission switches its modulatory action in chronification of inflammatory hyperalgesia. Eur J Neurosci, 42(7), pp.2380-2389.

Dimsdale, J.E., Newton, R.P. & Joist, T. (1989) Neurophychological side effects of betablockers. Arch Intern Med. 149:514-525.

Driscoll, M.A. & Kerns, R.D. (2016) Integrated, team-based chronic pain management: bridges from theory and research to high quality patient care. In: Ma C; Huang Y (Editors). Translational research in pain and itch. Springer.

Ferrari, L.F., Gear, R.W. & Levine, J.D. (2010). Attenuation of Activity in an Endogenous Analgesia Circuit by Ongoing Pain in the Rat. J Neuroscience, 30(41):13699-13706.

Ferreira, S.H., Lorenzetti, B.B. & De Campos, D.I. (1990) Induction, Blockade and Restoration of a Persistent Hypersensitive State. Pain 42:365-371.

Gear, R.W. & Levine, J.D. (2009) Rostral ventral medulla cholinergic mechanism in pain-induced analgesia. Neurosci Lett. 464(3):170-172.

Gear, R.W., Aley, K.O. & Levine, J.D. (1999) Pain-Induced Analgesia Mediated by Mesolimbic Reward Circuits. J Neurosci 19:7175-7181.aa

Gil, D., Wang, J., Gu, C., Donello, J., Cabrera, S. & Al-Chaer, E. (2015). Role of sympathetic nervous system in rat model of chronic visceral pain. Neurogastroenterology & Motility. 28(3):423-431.

Goldberg, D.S., McGee, S.J. (2011). Pain as a global public health priority. BMC Public Health, 11:770.

(35)

Härkänen, L., Halonen, J., Selander, T. & Kokki, H. (2015). Beta-adrenergic antagonists during general anesthesia reduced postoperative pain: a systematic review and a meta-analysis of randomized controlled trials. J Anesthesia, 29(6):934-943.

Helfand, M., Peterson, K., Christensen, V., Dana, T. & Thakurta S. (2009). Drug class review: beta adrenergic blockers. Portland: Oregon Health & Science University.

Khasar, S.G., McCarter, G. & Levine, J.D. (1999) Epinephrine produces a β--adrenergic receptor-mediated mechanical hyperalgesia and in vitro sensitization of rat nociceptors. J Neurophysiol, 81:1104–111.

Light, K.C., Bragdon, E.E., Grewen, K.M., Brownley, K.A., Girdler, S.S. & Maixner, W. (2009). Adrenergic dysregulation and pain with and without acute beta-blockade in women with

fibromyalgia and temporomandibular disorder. J Pain 10:542-552.

Merskey, H. & Bogduk, N (1994). Classification of chronic pain: Descriptions of chronic pain syndromes and definitions of pain terms. IASP Press, Seatle, p. 210.

Millan, M.J. (1999) The induction of pain: An integrative review. Prog Neurobiol. 57:1-164

Mills, E., Di Pietro, F., Alshelh, Z., Peck, C., Murray, G., Vickers, E. & Henderson, L. (2018). Brainstem Pain-Control Circuitry Connectivity in Chronic Neuropathic Pain. J Neurosci. 38(2):465-473.

Miranda, J., Lamana, S., Dias,E., Athie, M., Parada, C.A. & Tambeli, C.H. (2015). Effect of Pain Chronification And Chronic Pain On An Endogenous Pain Modulation Circuit In Rats.

(36)

Nasri-Heir, C., Khan, J., Benoliel, R., Feng, C., Yarnitsky, D., Kuo, F., Hirschberg, C., Hartwell, G., Huang, C., Heir, G., Korczeniewska, O., Diehl, S. & eliav, E. (2015). Altered pain

modulation in patients with persistent postendodontic pain. Pain, 156(10):2032:41.

Pelegrini-da-Silva, A., Oliveira, M., Parada, C.A. & Tambeli, C.H. (2008). Nerve growth factor acts with the β2-adrenoceptor to induce spontaneous nociceptive behavior during

temporomandibular joint inflammatory hyperalgesia. Life Sciences, 83(23-24):780-785.

Ricciotti E, FitzGerald EA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 31(5): 986–1000

Souza, J.B.D., Grossmann, E., Perissinotti, D.M.N., Oliveira Junior, J.O.D., Fonseca, P.R.B.D. & Posso, I.D.P. (2017). Prevalence of chronic pain, treatments, perception, and interference on life activities: Brazilian population-based survey. Pain Res Manag,2017:1-9.

Tambeli, C.H., Levine, J.D. & Gear, R.W. (2009) Centralization of noxious stimulus-induced analgesia (NSIA) is related to activity at inhibitory synapses in the spinal cord. PAIN.

143(3):228-32.

Tambeli, C.H., Parada, C.A., Levine, J.D., Gear, R.W. (2002) Inhibition of tonic spinal glutamatergic activity induces antinociception in the rat. Eur J Nerosci. 16(8):1547-1553.

Tambeli, C.H., Quang, P., Levine, J.D. & Gear, R.W. (2003) Contribution of spinal inhibitory receptors in heterosegmental antinociception induced by noxious stimulation. Eur J Neurosci. Dec,18(11):2999-06.

Tsantoulas, C. & McMahon, S.B. (2014) Opening paths to novel analgesics: the role of potassium channels in chronic pain. Trends Neurosc. 37,146-158.

(37)

Vanegas, H. & Schaible, H. (2004). Descending control of persistent pain: inhibitory or facilitatory? Brain Res Ver. 46(3):295-309.

Wong, D., Tai, T., Wong-Faull, D., Claycomb, R., Meloni, E., Myers, K., Carlezon, W. & Kvetnansky, R. (2012). Epinephrine: A Short- and Long-Term Regulator of Stress and Development of Illness. Cell Mol Neurobiol, 32(5):737-748.

Woolf, C.J. (2011) Central sensitization: implications for the diagnosis treatment of pain. Pain, 152, s2-s15.

Zanelatto, F.B., Dias, E., Teixeira, J., Sartori, C., Parada, C.A. & Tambeli, C.H. (2017). Anti-inflammatory effects of propranolol in the temporomandibular joint of female rats and its contribution to antinociceptive action. Eur J Pain, 22(3):572-582.

Zeilhofer, H.U. (2005). Synaptic modulation in pain pathways. Rev Physiol Biochem Pharmacol 154:73-100.

Zhang, C., Rui, Y., Zhou, Y., Ju, Z., Zhang, H., Hu, C., Xiao, Y. & Xu, G. (2014). Adrenergic β2-Receptors Mediates Visceral Hypersensitivity Induced by Heterotypic Intermittent Stress in Rats. PLoS ONE, 9(4).

(38)

ANEXOS A. Parecer do Comitê de Ética

(39)
(40)

Referências

Documentos relacionados

De uma forma geral, as motivações para a internacionalização podem ser agrupadas em quatro grupos de fatores: a penetração em mercados externos, que está relacionado

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

In an earlier work 关16兴, restricted to the zero surface tension limit, and which completely ignored the effects of viscous and magnetic stresses, we have found theoretical