• Nenhum resultado encontrado

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA

N/A
N/A
Protected

Academic year: 2018

Share "CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA"

Copied!
106
0
0

Texto

(1)

❯◆■❱❊❘❙■❉❆❉❊ ❋❊❉❊❘❆▲ ❉❊ ❙➹❖ ❈❆❘▲❖❙

❈❊◆❚❘❖ ❉❊ ❈■✃◆❈■❆❙ ❊❳❆❚❆❙ ❊ ❉❊ ❚❊❈◆❖▲❖●■❆

P❘❖●❘❆▼❆ ❉❊ PÓ❙ ●❘❆❉❯❆➬➹❖ ❊▼ ▼❆❚❊▼➪❚■❈❆

Pr♦❜❧❡♠❛s ❡❧í♣t✐❝♦s s✉♣❡r❧✐♥❡❛r❡s ❝♦♠

♥ã♦ ❧✐♥❡❛r✐❞❛❞❡s ❛ss✐♠étr✐❝❛s

❲❛❧❧✐s♦♠ ❞❛ ❙✐❧✈❛ ❘♦s❛

❙ã♦ ❈❛r❧♦s ✲ ❙P

▼❛rç♦ ❞❡ ✷✵✶✺

(2)

❯◆■❱❊❘❙■❉❆❉❊ ❋❊❉❊❘❆▲ ❉❊ ❙➹❖ ❈❆❘▲❖❙

❈❊◆❚❘❖ ❉❊ ❈■✃◆❈■❆❙ ❊❳❆❚❆❙ ❊ ❉❊ ❚❊❈◆❖▲❖●■❆

P❘❖●❘❆▼❆ ❉❊ PÓ❙ ●❘❆❉❯❆➬➹❖ ❊▼ ▼❆❚❊▼➪❚■❈❆

❲❛❧❧✐s♦♠ ❞❛ ❙✐❧✈❛ ❘♦s❛

❇♦❧s✐st❛ ❈❆P❊❙ ✭Pr♦❞♦✉t♦r❛❧ ❡ ❘❡✉♥✐✮

❖r✐❡♥t❛❞♦r✿ Pr♦❢ ❉r✳ ❋r❛♥❝✐s❝♦ ❖❞❛✐r ❱✐❡✐r❛ ❞❡ P❛✐✈❛

Pr♦❜❧❡♠❛s ❡❧í♣t✐❝♦s s✉♣❡r❧✐♥❡❛r❡s ❝♦♠

♥ã♦ ❧✐♥❡❛r✐❞❛❞❡s ❛ss✐♠étr✐❝❛s

❚❡s❡ ❛♣r❡s❡♥t❛❞❛ ❛♦ Pr♦❣r❛♠❛ ❞❡ Pós✲ ●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛ ❞❛ ❯♥✐✈❡rs✐✲ ❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❙ã♦ ❈❛r❧♦s ❝♦♠♦ ♣❛rt❡ ❞♦s r❡q✉✐s✐t♦s ♣❛r❛ ❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ❉♦✉t♦r ❡♠ ▼❛t❡♠át✐❝❛✱ ár❡❛ ❞❡ ❝♦♥❝❡♥tr❛✲ çã♦✿ ❊q✉❛çõ❡s ❉✐❢❡r❡♥❝✐❛✐s P❛r❝✐❛✐s

(3)

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico

com os dados fornecidos pelo(a) autor(a)

R788p

Rosa, Wallisom da Silva

Problemas elípticos superlineares com não

linearidades assimétricas / Wallisom da Silva Rosa. -- São Carlos : UFSCar, 2015.

95 p.

Tese (Doutorado) -- Universidade Federal de São Carlos, 2015.

1. Problemas elípticos. 2. Métodos variacionais. 3. Métodos topológicos. 4. Linking. 5. Grau

(4)
(5)
(6)
(7)

❆●❘❆❉❊❈■▼❊◆❚❖❙

➚ ❊✈❛✱ ♠✐♥❤❛ ♠✉s❛ ✐♥s♣✐r❛❞♦r❛✱ ❝♦♠ q✉❡♠ ❞✐✈✐❞♦ s♦♥❤♦s ❡ r❡❛❧✐③❛çõ❡s ❞❡s❞❡ ✷✵✵✹✳ ➚ ♠✐♥❤❛ ❢❛♠í❧✐❛✱ q✉❡ s✉♣♦rt♦✉ ♦s ♠♦♠❡♥t♦s ❞❡ ❛✉sê♥❝✐❛ ❝♦♠ ❛ ❝♦♠♣r❡❡♥sã♦ ♥❡❝❡ssá✲ r✐❛✳

➚ ❯♥✐✈❡rs✐❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❯❜❡r❧â♥❞✐❛✱ ❡♠ ❡s♣❡❝✐❛❧ ❛♦s ♣r♦❢❡ss♦r❡s ❞♦ ❈✉rs♦ ❞❡ ▼❛t❡✲ ♠át✐❝❛ ❞❛ ❋❛❝✉❧❞❛❞❡ ❞❡ ❈✐ê♥❝✐❛s ■♥t❡❣r❛❞❛s ❞♦ P♦♥t❛❧✱ ♣❡❧❛ ♦♣♦rt✉♥✐❞❛❞❡ ❞♦ ❛❢❛st❛♠❡♥t♦ ♣❛r❛ ❝✉♠♣r✐r ❡ss❛ ❡t❛♣❛ ♣r♦✜ss✐♦♥❛❧✳

❆ t♦❞♦s ♦s ❛♠✐❣♦s ❞♦ ❞♦✉t♦r❛❞♦ q✉❡ ❞✐✈✐❞✐r❛♠ ❝❛❞❛ ♠♦♠❡♥t♦ ❞❡ss❛ ❥♦r♥❛❞❛✱ ❡♠ ❡s♣❡❝✐❛❧ ♦s ❛♠✐❣♦s q✉❡ ✐♥❣r❡ss❛r❛♠ ❝♦♠✐❣♦✿ ❆❧❧❛♥✱ ❈❛r♦❧✱ ❊✈❛✱ ❏❛♣❛ ❡ ▼❛r❝♦s✱ ❡ ♦s ❝♦❧❡❣❛s ❞❡ ♦r✐❡♥t❛çã♦✿ ❋❛❜✐❛♥❛ ❋❡rr❡✐r❛ ❡ ▼♦✐sés ◆❛s❝✐♠❡♥t♦✳

❆♦s ♥♦✈♦s ❛♠✐❣♦s sã♦ ❝❛r❧❡♥s❡s q✉❡ ✜③ ♥❡ss❡ ♣❡rí♦❞♦ ❞❡ ♠♦r❛❞❛ ♣r♦✈✐sór✐❛ ❡ ❛♦s ❛♠✐❣♦s ❞❡ ■t✉✐✉t❛❜❛✲▼●✱ ♣r✐♥❝✐♣❛❧♠❡♥t❡ ♦s ❛✜❧❤❛❞♦s ❆♥❞ré ❡ ❏✉ss❛r❛ q✉❡ s❡♠♣r❡ ♥♦s ❛❝♦❧❤❡r❛♠ ❡♠ s✉❛ r❡s✐❞ê♥❝✐❛ q✉❛♥❞♦ ♣r❡❝✐s❛♠♦s✳

❆♦s ♣r♦❢❡ss♦r❡s ❞❛ ❜❛♥❝❛✱ q✉❡ ❞✐s♣♦♥✐❜✐❧✐③❛r❛♠ t❡♠♣♦✱ ❝♦♥❤❡❝✐♠❡♥t♦ ❡ ♣❛❝✐ê♥❝✐❛ ♣❛r❛ ❝♦♥tr✐❜✉✐r ❝♦♠ ♦ tr❛❜❛❧❤♦✳

(8)

❘❊❙❯▼❖

◆❡st❡ tr❛❜❛❧❤♦ ❛♣r❡s❡♥t❛♠♦s r❡s✉❧t❛❞♦s ❞❡ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ✉♠❛ ❝❧❛ss❡ ❞❡ ♣r♦❜❧❡♠❛s ❡❧í♣t✐❝♦s ♥ã♦ ❧✐♥❡❛r❡s ❛ss✐♠étr✐❝♦s✳ ❆ ❛ss✐♠❡tr✐❛ q✉❡ ❝♦♥s✐❞❡r❛♠♦s ❛q✉✐ t❡♠ ❝♦♠♣♦rt❛♠❡♥t♦ ❧✐♥❡❛r ❡♠−∞❡ s✉♣❡r❧✐♥❡❛r ❡♠+✳ P❛r❛ ♦❜t❡r t❛✐s r❡s✉❧t❛❞♦s ❛♣❧✐❝❛♠♦s ♠ét♦❞♦s ✈❛r✐❛❝✐♦♥❛✐s ❝♦♠♦ t❡♦r❡♠❛s ❞❡ ❧✐♥❦✐♥❣ ❡ ♠ét♦❞♦s t♦♣♦❧ó❣✐❝♦s ❝♦♠♦ ❛ t❡♦r✐❛ ❞♦ ❣r❛✉ t♦♣♦❧ó❣✐❝♦✳

(9)

❆❇❙❚❘❆❈❚

❚❤❡ ❛✐♠ ♦❢ t❤✐s ✇♦r❦ ✐s t♦ ♣r❡s❡♥t r❡s✉❧ts ♦❢ ❡①✐st❡♥❝❡ ♦❢ s♦❧✉t✐♦♥s ❢♦r ❛ ❝❧❛ss ♦❢ ♥♦♥❧✐♥❡❛r ❛s②♠♠❡tr②❝ ❡❧❧✐♣t✐❝ ♣r♦❜❧❡♠s✳ ❚❤❡ ❛s②♠♠❡tr② t❤❛t ✇❡ ❝♦♥s✐❞❡r ❤❡r❡ ❤❛s ❧✐♥❡❛r ❜❡❤❛✈✐♦r ♦♥−∞❛♥❞ s✉♣❡r❧✐♥❡❛r ♦♥ +✳ ❚♦ ♦❜t❛✐♥ t❤❡s❡ r❡s✉❧ts ✇❡ ❛♣♣❧② ✈❛r✐❛t✐♦♥❛❧ ♠❡t❤♦❞s ❛s ❧✐♥❦✐♥❣ t❤❡♦r❡♠s ❛♥❞ t♦♣♦❧♦❣✐❝❛❧ ♠❡t❤♦❞s ❧✐❦❡ t♦♣♦❧♦❣✐❝❛❧ ❞❡❣r❡❡ t❤❡♦r②✳

(10)

❙❯▼➪❘■❖

❆❣r❛❞❡❝✐♠❡♥t♦s ✐

❘❡s✉♠♦ ✐✐

❆❜str❛❝t ✐✐✐

■♥tr♦❞✉çã♦ ✶

✶ ❯♠ ♣r♦❜❧❡♠❛ ❞❡ ◆❡✉♠❛♥♥ ❝♦♠ ❡①♣♦❡♥t❡ ❝rít✐❝♦ ✼ ✶✳✶ ❘❡s✉❧t❛❞♦ ♣r✐♥❝✐♣❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ✶✳✷ Pr❡❧✐♠✐♥❛r❡s ❡ ♥♦t❛çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✸ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✹ ❈♦♥❞✐çõ❡s ❣❡♦♠étr✐❝❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✵ ✶✳✺ Pr♦✈❛ ❞♦ r❡s✉❧t❛❞♦ ♣r✐♥❝✐♣❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶ ◆♦t❛s ❞♦ ❝❛♣ít✉❧♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✶

✷ ❯♠ s✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦ ❝♦♠ ❝♦♥❞✐çõ❡s ❞❡ ◆❡✉♠❛♥♥ ♥❛ ❢r♦♥t❡✐r❛ ✸✸ ✷✳✶ ❍✐♣ót❡s❡s ❡ r❡s✉❧t❛❞♦ ♣r✐♥❝✐♣❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹ ✷✳✷ ❚❡♦r❡♠❛ ❞❡ ♠✐♥✐♠❛① ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✻

(11)

❙❯▼➪❘■❖ ✈

✷✳✸ ❋♦r♠✉❧❛çã♦ ✈❛r✐❛❝✐♦♥❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✼ ✷✳✹ ❈♦♥❞✐çõ❡s ❣❡♦♠étr✐❝❛s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✷ ✷✳✺ ❖ ❝❛s♦ b= 0 ✭♦✉ c= 0✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼ ✷✳✻ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✽ ✷✳✼ Pr♦✈❛ ❞♦ r❡s✉❧t❛❞♦ ♣r✐♥❝✐♣❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✶ ◆♦t❛s ❞♦ ❝❛♣ít✉❧♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✷

✸ ❆ r❡ss♦♥â♥❝✐❛ ♥♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ✺✸

✸✳✶ ❖ ❝❛s♦ ❡s❝❛❧❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✹ ✸✳✷ ❊st✐♠❛t✐✈❛ ❛ ♣r✐♦r✐ ♣❛r❛ ♦ ❝❛s♦ ❡s❝❛❧❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✺ ✸✳✸ ❊①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ♦ ❝❛s♦ ❡s❝❛❧❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✽ ✸✳✹ ❙✐st❡♠❛ r❡ss♦♥❛♥t❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✹ ✸✳✺ ❊st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ♣❛r❛ ❛s s♦❧✉çõ❡s ❞♦ s✐st❡♠❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✹ ✸✳✻ ❊①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ♦ s✐st❡♠❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✽ ◆♦t❛s ❞♦ ❝❛♣ít✉❧♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼✷

❆ ❙í♠❜♦❧♦s ❡ ♥♦t❛çõ❡s ✼✹

❇ ❉❡s✐❣✉❛❧❞❛❞❡s ❡❧❡♠❡♥t❛r❡s ✼✽

❈ ❘❡s✉❧t❛❞♦s ❡❧❡♠❡♥t❛r❡s ✼✾

❉ ❖ ❣r❛✉ t♦♣♦❧ó❣✐❝♦ ✽✸

(12)

■◆❚❘❖❉❯➬➹❖

❖ ♣r❡s❡♥t❡ tr❛❜❛❧❤♦ t❡♠ ❝♦♠♦ ♦❜❥❡t✐✈♦ ♣r♦✈❛r ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ✉♠❛ ❝❧❛ss❡ ❞❡ ❡q✉❛çõ❡s ❡ s✐st❡♠❛s ❡❧í♣t✐❝♦s ❝♦♠ ♣❛rt❡ ♥ã♦ ❧✐♥❡❛r ❛ss✐♠étr✐❝❛✳ ❊♠ ❝❛❞❛ ❝❛♣ít✉❧♦ ❝♦♥s✐❞❡r❛r❡♠♦s ✉♠ ♣r♦❜❧❡♠❛ q✉❡ é s✉♣❡r❧✐♥❡❛r ❡♠+❡ ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r ❡♠−∞

◆♦ ♣r✐♠❡✐r♦ ❝❛♣ít✉❧♦ ❡st✉❞❛♠♦s ♦ ♣r♦❜❧❡♠❛ ❞❡ ◆❡✉♠❛♥♥

✭✶✮

−∆u=λu+g(x, u) + (u+)2∗1

, xΩ, ∂u

∂ν = 0, x∈∂Ω,

♦♥❞❡ΩRN✱N 3✱ é ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ ❝♦♠ ❢r♦♥t❡✐r❛ s✉❛✈❡λ >02= 2N

N 2 é ♦ ❡①♣♦❡♥t❡ ❝rít✐❝♦ ♣❛r❛ ❛ ✐♠❡rsã♦ ❞❡ ❙♦❜♦❧❡✈✳

❈♦♠ ❛s ❤✐♣ót❡s❡s q✉❡ ✉t✐❧✐③❛♠♦s s♦❜r❡ ❛ ❢✉♥çã♦ g : Ω×R R✱ ♦ ♣r♦❜❧❡♠❛ ✭✶✮ é ❞♦

t✐♣♦ s✉♣❡r❧✐♥❡❛r ❡♠ +∞ ❡ ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r ❡♠ −∞✳ P❛r❛ ♠♦str❛r ♦ r❡s✉❧t❛❞♦ ❞❡

❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çã♦ ♥ã♦ tr✐✈✐❛❧ ♣❛r❛ ❡ss❡ ♣r♦❜❧❡♠❛ ✉t✐❧✐③❛♠♦s ♦ ❚❡♦r❡♠❛ ❞♦ ✏▲✐♥❦✐♥❣✑✱ ❞❡✈✐❞♦ ❛ ❘❛❜✐♥♦✇✐t③ ❬❘❛❜✐♥♦✇✐t③❪✳ ❆ ♣r❡s❡♥ç❛ ❞♦ t❡r♠♦ ❝rít✐❝♦(u+)2∗1

❞✐✜❝✉❧t❛ ❛ ♣r♦✈❛ ❞♦s r❡s✉❧t❛❞♦s ❞❡ ❝♦♠♣❛❝✐❞❛❞❡✱ ❣❡r❛❧♠❡♥t❡ ❝♦♠✉♥s ♥❛s ❤✐♣ót❡s❡s ❞♦s t❡♦r❡♠❛s ❞❡ ♣♦♥t♦s ❝rít✐❝♦s✳ ❊♠ ❣❡r❛❧✱ ❢✉♥❝✐♦♥❛✐s r❡❧❛❝✐♦♥❛❞♦s ❝♦♠ ❡q✉❛çõ❡s q✉❡ ❛♣r❡s❡♥t❛♠ ❡ss❡ t❡r♠♦ s❛✲ t✐s❢❛③❡♠ ❛ ❝♦♥❞✐çã♦ ❞❡ P❛❧❛✐s✲❙♠❛❧❡ ✭❝♦♥❞✐çã♦ P❙✮ ♣♦ss✐✈❡❧♠❡♥t❡ ❛♣❡♥❛s ♣❛r❛ ✈❛❧♦r❡s ❞♦ ♥í✈❡❧c❞❛ s❡q✉ê♥❝✐❛ ♥✉♠ ✐♥t❡r✈❛❧♦ ❧✐♠✐t❛❞♦ ❞❛ r❡t❛✳ ■ss♦ ❢♦rç❛ ✉♠ ♣❛ss♦ ❛ ♠❛✐s✿ ♠♦str❛r

q✉❡ ♦ ♥í✈❡❧ ♠✐♥✲♠❛① ♣❡rt❡♥❝❡ ❛♦ ✐♥t❡r✈❛❧♦ ♦♥❞❡ ♦ ❢✉♥❝✐♦♥❛❧ s❛t✐s❢❛③ ❛ ❝♦♥❞✐çã♦ P❙✳ ❆ ♠♦t✐✈❛çã♦ ♣❛r❛ ♦ ❡st✉❞♦ ❞❛ ❡q✉❛çã♦(1) é ♦ ♣r♦❜❧❡♠❛ s✉❜❝rít✐❝♦ ❞❡ ❆r❝♦②❛✲❱✐❧❧❡❣❛s

(13)

■♥tr♦❞✉çã♦ ✷

❬❆r❝♦②❛✲❱✐❧❧❡❣❛s❪✳ ❖ ❝❛s♦ ♣❛rt✐❝✉❧❛r ❡♠ q✉❡g(x, s) = (s+)p,❝♦♠ p(1,21)❢♦r♥❡❝❡ ❛

❡q✉❛çã♦✿

−∆u=λu+ (u+)p+ (u+)2∗−1.

Pr♦❜❧❡♠❛s ❡❧í♣t✐❝♦s ❡♥✈♦❧✈❡♥❞♦ ♦ ❡①♣♦❡♥t❡ ❝rít✐❝♦ ❞❡ ❙♦❜♦❧❡✈ tê♠ s✐❞♦ ♦❜❥❡t♦ ❞❡ ❡st✉❞♦ ❞❡ ❞✐✈❡rs♦s ♣❡sq✉✐s❛❞♦r❡s✳ ❖ ♣r✐♠❡✐r♦ tr❛❜❛❧❤♦ r❡❧❡✈❛♥t❡ ♥❡ss❡ t❡♠❛✱ ✉t✐❧✐③❛♥❞♦ ❛ t❡♦r✐❛ ❞❡ ♠✐♥✲♠❛①✱ é ♦ ❝❧áss✐❝♦ ❛rt✐❣♦ ❬❇r❡③✐s✲◆✐r❡♥❜❡r❣❪ q✉❡ ♠♦str♦✉ ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣♦s✐t✐✈❛s ♣❛r❛ ♦ ♣r♦❜❧❡♠❛

−∆u=λu+u|u|2∗2

, x∈Ω, u= 0, x∂Ω.

❆ ♣r✐♥❝✐♣❛❧ ❤✐♣ót❡s❡ ✉t✐❧✐③❛❞❛ ♥❡ss❡ tr❛❜❛❧❤♦ ❢♦✐λ < λ1 ✭♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ❞♦ ♦♣❡r❛❞♦r

−∆✱ ♦ ♦♣❡r❛❞♦r ▲❛♣❧❛❝✐❛♥♦✱ ❝♦♠ ❝♦♥❞✐çã♦ ❞❡ ❉✐r✐❝❤❧❡t ♥❛ ❢r♦♥t❡✐r❛✮✳ P♦st❡r✐♦r♠❡♥t❡

♦s ❛rt✐❣♦s ❬❈❛♣♦③③✐✲❡t ❛❧✳❪ ❡ ❬❈❡r❛♠✐✲❡t ❛❧✳❪ ❛♠♣❧✐❛r❛♠ ❛ ❤✐♣ót❡s❡ s♦❜r❡ λ ❞❡ ❢♦r♠❛ ❛

❝♦❜r✐r q✉❛❧q✉❡r ✈❛❧♦r r❡❛❧ ❡ ♦❜t✐✈❡r❛♠ ❛✐♥❞❛ r❡s✉❧t❛❞♦s ❞❡ ♠✉❧t✐♣❧✐❝✐❞❛❞❡ s♦❜r❡ ❛s s♦❧✉çõ❡s ❞♦ ♣r♦❜❧❡♠❛✱ r❡❧❛❝✐♦♥❛♥❞♦ ❛ q✉❛♥t✐❞❛❞❡ ❞❡ s♦❧✉çõ❡s ❝♦♠ ❛ ♣♦s✐çã♦ ❞❡ λ ❡♠ r❡❧❛çã♦ ❛♦

❡s♣❡❝tr♦ ❞♦ ▲❛♣❧❛❝✐❛♥♦✳

■♥s♣✐r❛❞♦s ♣♦r ❡ss❡s tr❛❜❛❧❤♦s s✉r❣✐r❛♠ ♠✉✐t♦s ♦✉tr♦s r❡s✉❧t❛❞♦s tr♦❝❛♥❞♦ λu ♣♦r

❢✉♥çõ❡s ♠❛✐s ❣❡r❛✐s g(x, u) q✉❡ ✐♠✐t❛♠ t❛❧ ❝♦♠♣♦rt❛♠❡♥t♦ ❧✐♥❡❛r ♣ró①✐♠♦ ❞❛ ♦r✐❣❡♠ ❡ s❡♠♣r❡ r❡❧❛❝✐♦♥❛♥❞♦λ ❝♦♠ ♦s ❛✉t♦✈❛❧♦r❡s ❞♦ ▲❛♣❧❛❝✐❛♥♦✱ ♣♦r ❡①❡♠♣❧♦ ❬❈❤❛❜r♦✇s❦✐✲❘✉❢❪

✭❝❛s♦ ◆❡✉♠❛♥♥✮ ❡ ❬●❛③③♦❧❛✲❘✉❢❪ ✭❝❛s♦ ❉✐r✐❝❤❧❡t✮✳

❘❡❝❡♥t❡♠❡♥t❡✱ ♠✉✐t♦s tr❛❜❛❧❤♦s tê♠ s✐❞♦ ❞❡s❡♥✈♦❧✈✐❞♦s ♣❛r❛ ♦ ♣r♦❜❧❡♠❛ ❛ss✐♠étr✐❝♦✱ ❡♠ q✉❡ ❛ ♥ã♦ ❧✐♥❡❛r✐❞❛❞❡ s❡ ❝♦♠♣♦rt❛ ❞❡ ♠❛♥❡✐r❛ ❞✐❢❡r❡♥t❡ ❡♠+−∞

❖s ❛rt✐❣♦s ❬❆r❝♦②❛✲❱✐❧❧❡❣❛s❪ ❡ ❬P❛♣❛❣❡♦r❣✐♦✉✲❙♠②r❧✐s❪ ❡st✉❞❛r❛♠ ✉♠❛ ❡q✉❛çã♦ ❝♦♠ ♣❛rt❡ ♥ã♦ ❧✐♥❡❛r ❛ss✐♠étr✐❝❛ ❡ ❝♦♥❞✐çõ❡s ❞❡ ◆❡✉♠❛♥♥ ♥❛ ❢r♦♥t❡✐r❛✱ ♣♦ré♠ s✉❜❝rít✐❝♦✳ ◆♦ss♦ r❡❢❡r❡♥❝✐❛❧ ♣❛r❛ ❛s ❤✐♣ót❡s❡s s♦❜r❡ λu+g(x, u) ❢♦r❛♠ ❛s ❤✐♣ót❡s❡s s♦❜r❡ ❛ ❢✉♥çã♦

f ❞♦ ❛rt✐❣♦ ❬❆r❝♦②❛✲❱✐❧❧❡❣❛s❪ ❡ ❛❝r❡s❝❡♥t❛♠♦s ♦ t❡r♠♦ ❝rít✐❝♦ ♠♦t✐✈❛❞♦s ♣❡❧♦ tr❛❜❛❧❤♦

❬❈❛❧❛♥❝❤✐✲❘✉❢❪✳

◆♦ ❛rt✐❣♦ ❬❈❛❧❛♥❝❤✐✲❘✉❢❪ ♦s ❛✉t♦r❡s ❡st✉❞❛r❛♠ ♦ ♣r♦❜❧❡♠❛

−∆u=λu+g(x, u+) + (u+)2∗1

+f(x), x∈Ω,

(14)

■♥tr♦❞✉çã♦ ✸

❝♦♠ λ > λ1 ❡ f(x) = h +tϕ1✱ ♦♥❞❡ ϕ1 é ❛ ♣r✐♠❡✐r❛ ❛✉t♦❢✉♥çã♦ ❞♦ ▲❛♣❧❛❝✐❛♥♦✱ ❝♦♠

❝♦♥❞✐çõ❡s ❞❡ ❉✐r✐❝❤❧❡t✱ ❡ h ∈ Lr(Ω) ♣❛r❛ ❛❧❣✉♠ r > N✳ ❯♠ ♣r♦❜❧❡♠❛ q✉❡ ♣♦ss✉✐ ♦

t❡r♠♦ f(x) ❝♦♠ ❛s ❝❛r❛❝t❡ríst✐❝❛s ❛❝✐♠❛ é ❞✐t♦ ❞♦ t✐♣♦ ❆♠❜r♦s❡tt✐✲Pr♦❞✐✳ ❆s té❝♥✐❝❛s ✈❛r✐❛❝✐♦♥❛✐s ✉t✐❧✐③❛❞❛s ♣♦r ❡ss❡s ❛✉t♦r❡s s❡r✈✐r❛♠ ❞❡ ❢♦♥t❡ ❞❡ ✐♥s♣✐r❛çã♦ ♣❛r❛ ♦ ♣r♦❜❧❡♠❛ ❡st✉❞❛❞♦ ♥❡st❡ ❝❛♣ít✉❧♦✳

◆♦ ❈❛♣ít✉❧♦ ✷ ❡st✉❞❛♠♦s ✉♠ s✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦ ❝✉❥❛s ❡q✉❛çõ❡s s❡❣✉❡♠ q✉❛s❡ ❛s ♠❡s♠❛s ❝❛r❛❝t❡ríst✐❝❛s ❞♦ ♣r♦❜❧❡♠❛ ✭✶✮ q✉❛♥t♦ à ❛ss✐♠❡tr✐❛✱ ♣♦ré♠ ❝♦♠ ♦s ❡①♣♦❡♥t❡s s✉❜❝rít✐❝♦s✳

❯♠ s✐st❡♠❛ ❞♦ t✐♣♦

✭✷✮

−∆u+u=f(x, u, v)

−∆v +v =g(x, u, v)

é ❝❤❛♠❛❞♦ ❍❛♠✐❧t♦♥✐❛♥♦ s❡ ❡①✐st❡ ✉♠❛ ❢✉♥çã♦ H(x, u, v) t❛❧ q✉❡

✭✸✮ f = ∂H

∂v ❡ g = ∂H

∂u.

❊st✉❞❛♠♦s ♥♦ ❈❛♣ít✉❧♦ ✷ ♦ s✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦ ❝♦♠ ❝♦♥❞✐çõ❡s ❞❡ ◆❡✉♠❛♥♥ ♥❛ ❢r♦♥t❡✐r❛✿

✭✹✮

   

   

−∆u+u=au+bv+ (v+)p, x,

−∆v +v =cu+av+ (u+)q, xΩ, ∂u

∂ν = ∂v

∂ν = 0, x∈∂Ω,

♦♥❞❡Ω⊂RN✱N 3✱ é ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ ❝♦♠ ❢r♦♥t❡✐r❛ s✉❛✈❡Ω✱a, b, csã♦ ❝♦♥st❛♥t❡s

r❡❛✐s ❡p ❡ q sã♦ t❛✐s q✉❡

1< p, q < 2∗−1 = N + 2

N −2.

❖❜t✐✈❡♠♦s ✉♠ r❡s✉❧t❛❞♦ ❞❡ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♥ã♦ tr✐✈✐❛✐s ♣❛r❛ ♦ s✐st❡♠❛ ✭✹✮ ✉t✐❧✐③❛♥❞♦ ♦ ❚❡♦r❡♠❛ ❞♦ ▲✐♥❦✐♥❣✱ ❞❡ ❋❡❧♠❡r ❬❋❡❧♠❡r❪✱ ❝♦♠ ❛r❣✉♠❡♥t♦s s✐♠✐❧❛r❡s ❛♦s ❞♦ ❛rt✐❣♦ ❬▼❛ss❛❪✳

(15)

■♥tr♦❞✉çã♦ ✹

❖ ❈❛♣ít✉❧♦ ✸ ❢♦✐ ❞❡❞✐❝❛❞♦ ❛♦ ❡st✉❞♦ ❞♦s ♣r♦❜❧❡♠❛s ❝♦♠ r❡ss♦♥â♥❝✐❛ ♥♦ ♣r✐♠❡✐r♦ ❛✉✲ t♦✈❛❧♦r✳ ❊♥t❡♥❞❡♠♦s ❝♦♠♦ ♣r♦❜❧❡♠❛s ✏r❡ss♦♥❛♥t❡s✑ ♦s ♣r♦❜❧❡♠❛s ❝✉❥❛ ❡q✉❛çã♦ é ❞♦ t✐♣♦

−∆u=λu+f(x, u)❝♦♠λ ✐❣✉❛❧ ❛ ✉♠ ❛✉t♦✈❛❧♦r ✭❝♦♠ ❛ ❞❡✈✐❞❛ ❝♦♥❞✐çã♦ ♥❛ ❢r♦♥t❡✐r❛✮✳ ❆

r❡ss♦♥â♥❝✐❛ ♥♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ✭λ = λ1✮ é ❡s♣❡❝✐❛❧♠❡♥t❡ ♣❡❝✉❧✐❛r ♣♦rq✉❡ ♦ ❢✉♥❝✐♦♥❛❧

❛ss♦❝✐❛❞♦ ♥ã♦ s❛t✐s❢❛③ ❛ ❝♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ❞❡ P❛❧❛✐s✲❙♠❛❧❡✳

❆ ♠♦t✐✈❛çã♦ ♣❛r❛ ♦ ❡st✉❞♦ ❞❡st❡ ❝❛♣ít✉❧♦ ❢♦✐ ♦ ❛rt✐❣♦ ❬❈✉❡st❛✲❡t ❛❧✳❪✱ ♥♦ q✉❛❧ ♦s ❛✉t♦r❡s tr❛❜❛❧❤❛r❛♠ ❝♦♠ ♦s s❡❣✉✐♥t❡s ♣r♦❜❧❡♠❛s ❞❡ ❉✐r✐❝❤❧❡t r❡ss♦♥❛♥t❡s✿

−∆u=λ1u+ (u+)p+f(x), x∈Ω,

u= 0, x∈∂Ω,

   

   

−∆u=λ1u+ (v+)p+f(x), ❡♠ Ω,

−∆v =λ1v+ (u+)q+g(x), ❡♠ Ω,

u=v = 0, ❡♠ ∂Ω.

❙✉♣♦♥❞♦f Lr(Ω)✱ r > N1< p < N + 1

N 1 ❡ ✭✺✮

Z

f(x)ϕ1(x)dx <0,

♦♥❞❡ ϕ1 é ❛ ♣r✐♠❡✐r❛ ❛✉t♦❢✉♥çã♦ ❞♦ ▲❛♣❧❛❝✐❛♥♦ ❝♦♠ ❝♦♥❞✐çõ❡s ❞❡ ❉✐r✐❝❤❧❡t ♥❛ ❢r♦♥t❡✐r❛

❡ ♥♦r♠❛❧✐③❛❞❛ ❡♠ L2(Ω)✱ ♦s ❛✉t♦r❡s ♠♦str❛r❛♠ q✉❡ ❛ ❡q✉❛çã♦ ❡s❝❛❧❛r ♣♦ss✉✐ ❛♦ ♠❡♥♦s

✉♠❛ s♦❧✉çã♦ ❡♠W2,r(Ω)H1

0(Ω)✳ P❛r❛ ♦ s✐st❡♠❛✱ ❛❧é♠ ❞❡ f ❡ g s❛t✐s❢❛③❡r❡♠ ❛ ❤✐♣ót❡s❡

(5)✱ ♦s ❡①♣♦❡♥t❡sp ❡ q ❞❡✈❡r✐❛♠ s❛t✐s❢❛③❡r

1

p+ 1 +

N −1

N + 1 1

q+ 1 >

N −1

N + 1 ❡

1

q+ 1 +

N 1

N + 1 1

p+ 1 >

N 1

N + 1.

❊♠ ❛♠❜♦s ♦s ❝❛s♦s✱ ♦s ❛✉t♦r❡s ✉t✐❧✐③❛r❛♠ ❛ t❡♦r✐❛ ❞♦ ❣r❛✉ t♦♣♦❧ó❣✐❝♦ ❥✉♥t❛♠❡♥t❡ ❝♦♠ ♦ í♥❞✐❝❡ ❞❡ ▼♦rs❡✳

❊st✉❞❛♠♦s ♥❡st❡ ❝❛♣ít✉❧♦ ❛ ❡q✉❛çã♦ ❡s❝❛❧❛r ❞❡ ◆❡✉♠❛♥♥✿

✭✻✮

−∆u= (u+)p+f(x), x,

∂u

(16)

■♥tr♦❞✉çã♦ ✺

❡ ♦ s✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦✿

✭✼✮

   

   

−∆u= (v+)p+f(x), ❡♠ Ω,

−∆v = (u+)q+g(x), ❡♠ ,

∂u ∂ν =

∂v

∂ν = 0, ❡♠ ∂Ω.

❆q✉✐ t❛♠❜é♠ s✉♣♦♠♦s q✉❡f ❡g s❛t✐s❢❛③❡♠ ✉♠❛ ❤✐♣ót❡s❡ t❛❧ q✉❛❧ ✭✺✮✳ ◆♦t❡ q✉❡✱ ♥♦ ❝❛s♦

◆❡✉♠❛♥♥✱ϕ1 é ❝♦♥st❛♥t❡ ✭❧♦❣♦✱ t❡♠ s✐♥❛❧ ❞❡✜♥✐❞♦✮ ❡ ♣♦r ✐ss♦ t✐✈❡♠♦s q✉❡ s✉♣♦r q✉❡ f ❡

g tê♠ ✐♥t❡❣r❛✐s ❡str✐t❛♠❡♥t❡ ♥❡❣❛t✐✈❛s ❡♠ Ω✳

❆ss✐♠ ❝♦♠♦ ♥♦ ❛rt✐❣♦ ❬❈✉❡st❛✲❡t ❛❧✳❪✱ ✉t✐❧✐③❛♠♦s ♠ét♦❞♦s t♦♣♦❧ó❣✐❝♦s ♣❛r❛ ♦❜t❡♥çã♦ ❞♦s r❡s✉❧t❛❞♦s ❞❡ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♦❜t✐❞♦s ♥❡ss❡ ❝❛♣ít✉❧♦✳ ❆ t❡♦r✐❛ ❞♦ ●r❛✉ ❞❡ ▲❡r❛②✲ ❙❝❤❛✉❞❡r ❢♦✐ ✉♠❛ ❢❡rr❛♠❡♥t❛ ❢✉♥❞❛♠❡♥t❛❧ ♥❡st❡ ♣r♦❝❡ss♦✳ ◆♦ ❆♣ê♥❞✐❝❡ ❉ ✐♥❝❧✉í♠♦s ✉♠ r❡s✉♠♦ ❞❛ t❡♦r✐❛ ✉t✐❧✐③❛❞❛ ♣❛r❛ ♣r♦✈❛r ♦s r❡s✉❧t❛❞♦s ♣r✐♥❝✐♣❛✐s✳

P❛r❛ ♦❜t❡r♠♦s ❛s ❡ss❡♥❝✐❛✐s ❡st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ s♦❜r❡ ❛s s♦❧✉çõ❡s ❞❡ ✭✻✮✱ ❞✐❢❡r❡♥t❡✲ ♠❡♥t❡ ❞❛s ❤✐♣ót❡s❡s ❞♦ ❛rt✐❣♦ ❬❈✉❡st❛✲❡t ❛❧✳❪✱ s✉♣♦♠♦s1< p < N

N 2 ❡f ∈L

r(Ω)✱ ♣❛r❛

❛❧❣✉♠r > N/2✳ P❛r❛ ♦ s✐st❡♠❛ ✭✼✮ s✉♣♦♠♦s

1< p, q < N N −2

❡ f, g ∈ Lr(Ω)✱ ♣❛r❛ ❛❧❣✉♠ r > N/2✳ ❊ss❛ ♣❛rt❡ ❞♦ tr❛❜❛❧❤♦ ❢♦✐ ✐♥s♣✐r❛❞❛ ♣❡❧♦ ❛rt✐❣♦

[❑❛♥♥❛♥✲❖rt❡❣❛] ♥♦ q✉❛❧ ♦s ❛✉t♦r❡s ❡st✉❞❛♠ ✉♠❛ ❡q✉❛çã♦ ❞♦ t✐♣♦

−∆u=g(u) +f(x), xΩ, ∂u

∂ν = 0, x∈∂Ω,

♦♥❞❡g :RR s❛t✐s❢❛③✿

✭G1✮ g é ❧♦❝❛❧♠❡♥t❡ ▲✐♣s❝❤✐t③✐❛♥❛❀

✭G2✮ lim

s→−∞g(s) =∞❀

✭G3✮ |g(s)| ≤M ♣❛r❛ s≥0❀

✭G4✮ ❡①✐st❡♠ ❝♦♥st❛♥t❡s α, β ❡ ✉♠ ❡①♣♦❡♥t❡ p t❛✐s q✉❡

(17)

■♥tr♦❞✉çã♦ ✻

♣❛r❛ t♦❞♦sR ♦♥❞❡

1≤p < N

N 2, N ≥3. ❖❜s❡r✈❡ q✉❡ g(s) = (s+)p ♥ã♦ s❛t✐s❢❛③ ❛s ❤✐♣ót❡s❡s (G

2)❡ (G3)✳

(18)

❈❆P❮❚❯▲❖ ✶

❯▼ P❘❖❇▲❊▼❆ ❉❊ ◆❊❯▼❆◆◆

❈❖▼ ❊❳P❖❊◆❚❊ ❈❘❮❚■❈❖

◆❡ss❡ ❝❛♣ít✉❧♦ ❜✉s❝❛♠♦s ✉♠❛ s♦❧✉çã♦ ♥ã♦ tr✐✈✐❛❧ ♣❛r❛ ♦ ♣r♦❜❧❡♠❛

✭✶✳✶✮

−∆u=λu+g(x, u) + (u+)2∗1

, xΩ, ∂u

∂ν = 0, x∈∂Ω,

♦♥❞❡ΩRN✱N 3✱ é ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ ❝♦♠ ❢r♦♥t❡✐r❛ s✉❛✈❡Ω✱λ >0✱2= 2N

N 2 é ♦ ❡①♣♦❡♥t❡ ❝rít✐❝♦ ♣❛r❛ ❛ ✐♠❡rsã♦ ❞❡ ❙♦❜♦❧❡✈

H1(Ω)֒→Lq(Ω), u+= max(u,0) u= max(u,0)✳ ❆ss✐♠✱ u=u+u.

❆ ❢✉♥çã♦ g : Ω×RR é ✉♠❛ ❢✉♥çã♦ ❝♦♥tí♥✉❛ s❛t✐s❢❛③❡♥❞♦✿

✭g1✮ g(x, s) = 0 s❡s0 ❡ g(x, s)>0 s❡s >0❀

✭g2✮ ❡①✐st❡♠σ (1,2∗1) ❡ ✉♠❛ ❝♦♥st❛♥t❡ K >0t❛✐s q✉❡✿ |g(x, s)| ≤K|s|σ, x, s R;

(19)

❙❊➬➹❖ ✶✳✶ ∗ ❘❡s✉❧t❛❞♦ ♣r✐♥❝✐♣❛❧ ✽

✭g3✮ ∂g

∂s(x,0) = 0❀

✭g4✮ ❡①✐st❡ θ

0,1

2

t❛❧ q✉❡

0< G(x, s)θsg(x, s), xΩ, s >0,

♦♥❞❡ G(x, s) =

Z s

0

g(x, t)dt é ✉♠❛ ♣r✐♠✐t✐✈❛ ❞❡ g✳

✶✳✶ ❘❡s✉❧t❛❞♦ ♣r✐♥❝✐♣❛❧

❙✉♣♦♥❤❛u✉♠❛ s♦❧✉çã♦ ❞❡ ✭✶✳✶✮ ❝♦♠ u+(x) = 0 ♣❛r❛ q✉❛s❡ t♦❞♦x✳ ❊♥tã♦✱ ❞❛❞❛s

❛s ❤✐♣ót❡s❡s s♦❜r❡ ❛ ❢✉♥çã♦g✱ ♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮ s❡ r❡s✉♠❡ ❛ ✉♠ ♣r♦❜❧❡♠❛ ❞❡ ❛✉t♦✈❛❧♦r ❞♦

t✐♣♦✿

   

   

−∆u=λu, ❡♠ Ω, u <0, ❡♠ Ω, ∂u

∂ν = 0, ❡♠ ∂Ω,

♦ q✉❛❧ só t❡rá s♦❧✉çã♦ s❡ λ = λ1 = 0✱ ♣♦✐s ❛ ú♥✐❝❛ ❛✉t♦❢✉♥çã♦ ❝♦♠ s✐♥❛❧ ❞❡✜♥✐❞♦ é ❛

♣r✐♠❡✐r❛ ✭♥❡ss❡ ❝❛s♦✱ q✉❛❧q✉❡r ❢✉♥çã♦ ❝♦♥st❛♥t❡ ♥❡❣❛t✐✈❛ s❡r✐❛ s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛✮✳ P♦r ♦✉tr♦ ❧❛❞♦✱ s❡ λ= 0 ❡♥tã♦ ✉t✐❧✐③❛♥❞♦ ❛ ♣r✐♠❡✐r❛ ❛✉t♦❢✉♥çã♦ ϕ1 = 1 ❝♦♠♦ ❢✉♥çã♦✲

t❡st❡ ❡ ✐♥t❡❣r❛♥❞♦ ✭✶✳✶✮✱ ♦❜t❡♠♦s✿

Z

g(x, u)dx=

Z

(u+)2∗−1dx0.

❈♦♠♦g é ❝♦♥tí♥✉❛ ❡ s❛t✐s❢❛③ (g1)✱ ❞❡✈❡♠♦s t❡r✿

Z

g(x, u)dx= 0

♦ q✉❡ ♦❜r✐❣❛ u+ = 0 q✳t✳♣✳ ❡♠ Ω✱ ❡ ❞❛í✱ ♣❡❧♦ ✈✐st♦ ❛❝✐♠❛✱ ❛s s♦❧✉çõ❡s ❞♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮

sã♦ ❝♦♥st❛♥t❡s ♥❡❣❛t✐✈❛s✳ P♦rt❛♥t♦✱ s❡λ= 0 ❛s ú♥✐❝❛s s♦❧✉çõ❡s ❞♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮ sã♦ ❛s ❛✉t♦❢✉♥çõ❡s ♥❡❣❛t✐✈❛s ❞♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ✭❝♦♥st❛♥t❡s<0✮✳

◗✉❛♥❞♦ λ <0✱ s❛❜❡✲s❡ q✉❡

kuk⋆ =

Z

[|∇u|2λu2]dx

(20)

❙❊➬➹❖ ✶✳✷ ∗ Pr❡❧✐♠✐♥❛r❡s ❡ ♥♦t❛çõ❡s ✾

❞❡✜♥❡ ✉♠❛ ♥♦r♠❛ ❡q✉✐✈❛❧❡♥t❡ à ♥♦r♠❛ ♣❛❞rã♦ ❡♠H1(Ω)✳ ❈♦♠ ❡ss❡ ❢❛t♦✱ ❥✉♥t❛♠❡♥t❡ ❝♦♠

❛ ❤✐♣ót❡s❡ (g2)✱ é ♣♦ssí✈❡❧ ♠♦str❛r q✉❡ ♦ ❢✉♥❝✐♦♥❛❧ ❛ss♦❝✐❛❞♦ ❛♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮ ♣♦❞❡ s❡r

s❡♣❛r❛❞♦ ❡♠ ✉♠❛ ♣❛rt❡ ❛ss♦❝✐❛❞❛ ❛ ❡ss❛ ♥♦r♠❛ ❝✐t❛❞❛ ❡ ♦✉tr❛ ♣❛rt❡ q✉❡ é s✉♣❡rq✉❛❞rát✐❝❛✱ s❛t✐s❢❛③❡♥❞♦ ❛s ❤✐♣ót❡s❡s ❞♦ ❚❡♦r❡♠❛ ❞♦ P❛ss♦ ❞❛ ▼♦♥t❛♥❤❛✳

❊st❡ ❝❛♣ít✉❧♦ s❡ ♣r♦♣õ❡ ❛ ♠♦str❛r ❛ ❡①✐stê♥❝✐❛ ❞❡ ✉♠❛ s♦❧✉çã♦ ♥ã♦ tr✐✈✐❛❧ ❞❡ ✭✶✳✶✮ ♣❛r❛

λ >0 q✉❛❧q✉❡r✳ ▼♦str❛r❡♠♦s ♦ s❡❣✉✐♥t❡ r❡s✉❧t❛❞♦✿

❚❡♦r❡♠❛ ✶✳✶✳ ❙✉♣♦♥❤❛λ >0❡ ❛s ❤✐♣ót❡s❡s (g1)(g4)✳ ❊♥tã♦ ♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮ ❛❞♠✐t❡ ♣❡❧♦ ♠❡♥♦s ✉♠❛ s♦❧✉çã♦ ♥ã♦ tr✐✈✐❛❧✳

✶✳✷ Pr❡❧✐♠✐♥❛r❡s ❡ ♥♦t❛çõ❡s

❊st❛♠♦s ✐♥t❡r❡ss❛❞♦s ❡♠ s♦❧✉çõ❡suH1(Ω)✱ q✉❡ é ✉♠ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt ♠✉♥✐❞♦ ❝♦♠

❛ ♥♦r♠❛✶

kuk= |u|22+|∇u|2212

,

♦♥❞❡| · |p ❞❡♥♦t❛rá s❡♠♣r❡ ❛ ♥♦r♠❛ ♥♦ ❡s♣❛ç♦ Lp(Ω)✱ p≥1✳

❙❡❥❛λ1♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ❞♦ ♦♣❡r❛❞♦r−∆❝♦♠ ❝♦♥❞✐çõ❡s ❞❡ ◆❡✉♠❛♥♥ ♥❛ ❢r♦♥t❡✐r❛✿

−∆φ=λφ, xΩ, ∂φ

∂ν = 0, x∈∂Ω.

❙❛❜❡♠♦s q✉❡λ1 = 0 ❡ ❛s ❛✉t♦❢✉♥çõ❡s ❝♦rr❡s♣♦♥❞❡♥t❡s sã♦ ❛s ❢✉♥çõ❡s ❝♦♥st❛♥t❡s✳

❉❡♥♦t❡ ♣♦r λ1 = 0 < λ2 ≤ λ3 ≤... ♦s ❛✉t♦✈❛❧♦r❡s ❞❡ −∆ ❝♦♠ ❝♦♥❞✐çã♦ ❞❡ ◆❡✉♠❛♥♥

♥❛ ❢r♦♥t❡✐r❛ ❡ ϕ1, ϕ2, ϕ3, ... ❛s ❛✉t♦❢✉♥çõ❡s ❛ss♦❝✐❛❞❛s ❝♦♠ ♥♦r♠❛1 ❡♠ H1(Ω)✳

❖ ❢✉♥❝✐♦♥❛❧ J :H1(Ω) R✱ ❞❡ ❝❧❛ss❡ C1✱ ❛ss♦❝✐❛❞♦ ❛♦ ♣r♦❜❧❡♠❛ (1.1)é ❞❛❞♦ ♣♦r✿

J(u) = 1 2

Z

Ω|∇

u|2dx λ

2

Z

u2dx

Z

G(x, u)dx 1

2∗ Z

(u+)2∗dx.

❆ ❞❡r✐✈❛❞❛ ❞❡ J é ❞❛❞❛ ♣♦r

hJ′(u), ϕi=

Z

∇u∇ϕdx−λ

Z

uϕdx−

Z

g(x, u)ϕdx−

Z

(u+)2∗−1ϕdx,

❊♠ ✈ár✐♦s ♠♦♠❡♥t♦s ♥♦ t❡①t♦✱ ♣❛r❛ s✐♠♣❧✐✜❝❛r ❛s ♥♦t❛çõ❡s✱ ✉t✐❧✐③❛r❡♠♦s s✐♠♣❧❡s♠❡♥t❡ H1 ♣❛r❛ ♥♦s

(21)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✵

♣❛r❛ t♦❞❛ϕ ∈H1(Ω). ❖s ♣♦♥t♦s ❝rít✐❝♦s ❞❡ J sã♦ s♦❧✉çõ❡s ❢r❛❝❛s ❞❡ (1.1)✳

▲❡♠❜r❡ q✉❡

S = inf

u∈D1,2(RN)\{0} R

RN |∇u|2dx R

RN|u|2

dx22∗

,

♦♥❞❡

D1,2(RN) ={u : uL2(RN), uL2∗(RN)}.

❆ ❝♦♥st❛♥t❡S é ❛t✐♥❣✐❞❛ ♣❡❧❛ ❢✉♥çã♦

✭✶✳✷✮ U(x) = cN

(N(N 2) +|x|2)N−22

,

♦♥❞❡ cN > 0 é ✉♠❛ ❝♦♥st❛♥t❡ q✉❡ ❞❡♣❡♥❞❡ ❛♣❡♥❛s ❞❡ N✳ ❆ ❢✉♥çã♦ ❡♠ ✭✶✳✷✮ s❛t✐s❢❛③ ❛

❡q✉❛çã♦

−∆U =U2∗−1 ❡♠ RN.

❆❞❡♠❛✐s✱

Z

RN|∇

U|2dx=

Z

RN

U2∗dx=SN2. ❯s❛r❡♠♦s ❛❞✐❛♥t❡ ❛ s❡❣✉✐♥t❡ ♥♦t❛çã♦✿

✭✶✳✸✮ u⋆ǫ(x) = ǫ−N−22U

x

ǫ

, ǫ >0.

✶✳✸ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡

▲❡♠❛ ✶✳✷✳ ✭❇ré③✐s✲▲✐❡❜✮ ❙❡❥❛♠ Ω ✉♠ ❛❜❡rt♦ ❞❡ RN ❡ {un}nN ⊂ Lp(Ω), 1≤ p < ∞✳

❙❡

✭❛✮{un} é ❧✐♠✐t❛❞❛ ❡♠ Lp(Ω)

✭❜✮ ❡ un→u q✳t✳♣✳ ❡♠Ω✱ q✉❛♥❞♦ n → ∞

❡♥tã♦✿

lim

n→∞(|un|

p

p − |un−u|pp) =|u|pp.

❉❡♠♦♥str❛çã♦✳ ❱❡r ❬❲✐❧❧❡♠❪✱ ♣✳ ✷✶✳

Pr♦♣♦s✐çã♦ ✶✳✸✳ ❉❛❞♦ s0 >0 ❡ θ ❝♦♠♦ ♥❛ ❤✐♣ót❡s❡ (g4)✱ ❡①✐st❡ K =K(s0)>0 t❛❧ q✉❡

✭✶✳✹✮ g(x, s)Ks1θ−1, ∀s≥s

(22)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✶

❉❡♠♦♥str❛çã♦✳ ❈♦♠ ❡❢❡✐t♦✱ ❞❛ ❤✐♣ót❡s❡(g4)s❡❣✉❡ q✉❡✿ 1

θs ≤

g(x, s)

G(x, s), ∀s≥s0. ■♥t❡❣r❛♥❞♦ ❞❡ s0 ❛té s✱ ♦❜t❡♠♦s✿

1

θ(lns−lns0) ≤

Z s

s0

g(x, t)

G(x, t)dt

= ln(G(x, s))−ln(G(x, s0)),

❧♦❣♦✱ ♣❛r❛ t♦❞♦ss0✱

G(x, s)≥G(x, s0)s

−1

θ

0 s

1

θ ⇒ sθg(x, s)≥G(x, s

0)s

−1

θ

0 s

1

θ

⇒ g(x, s) 1

θG(x, s0)s

−1θ

0 s

1

θ−1 =Ks

1

θ−1,

❞♦♥❞❡ s❡❣✉❡ ✭✶✳✹✮✳ ❈♦r♦❧ár✐♦ ✶✳✹✳ ❚❡♠✲s❡✿

✭✶✳✺✮ lim

s→+∞

g(x, s)

s = +∞.

❉❡♠♦♥str❛çã♦✳ ❇❛st❛ ♥♦t❛r q✉❡ ❞❛❞♦ s0 >0 ❛r❜✐trár✐♦✱ ♣❡❧❛ Pr♦♣♦s✐çã♦ ✶✳✸ ✈❛❧❡ ❛ ❞❡s✐✲

❣✉❛❧❞❛❞❡ ✭✶✳✹✮ ❝♦♠ θ <1/2✳ ▲♦❣♦✱ ♣❛r❛ t♦❞♦ s s0 t❡♠♦s✿

g(x, s)

s ≥Ks

1

θ−2 →+∞, s❡ s→+∞,

✈✐st♦ q✉❡ (1/θ)2>0.

▲❡♠❛ ✶✳✺✳ ❙✉♣♦♥❤❛ λ >0✱ (g1)−(g4) ❡ s❡❥❛ {un} ⊂ H1(Ω) ✉♠❛ s❡q✉ê♥❝✐❛ (P S) ♣❛r❛

J✱ ✐st♦ é✱ ✉♠❛ s❡q✉ê♥❝✐❛ t❛❧ q✉❡✱ ♣❛r❛ t♦❞♦ n✿

|J(un)|=

1 2 Z Ω|∇

un|2dx−

λ

2

Z

u2ndx

Z

G(x, un)dx−

1 2∗

Z

(u+n)2∗dx

≤ c, ✭✶✳✻✮

| hJ′(un), ϕi |=

Z Ω∇

un∇ϕdx−λ

Z

unϕdx−

Z

g(x, un)ϕdx−

Z

(u+n)2∗−1ϕdx

ǫnkϕk,

✭✶✳✼✮

♣❛r❛ t♦❞❛ϕ H1(Ω)✱ ♦♥❞❡ c >0 é ❝♦♥st❛♥t❡ ❡ lim

(23)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✷

❉❡♠♦♥str❛çã♦✳ ❙✉♣♦♥❤❛✱ ♣♦r ❛❜s✉r❞♦✱ q✉❡{un}t❡♠ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ ✐❧✐♠✐t❛❞❛ ✭❛ q✉❛❧

❝♦♥t✐♥✉❛r❡♠♦s ❛ ❝❤❛♠❛r ❞❡ {un}✮✱ ♦✉ s❡❥❛✱

lim

n→∞kunk= +∞.

❙❡♠ ♣❡r❞❛ ❞❡ ❣❡♥❡r❛❧✐❞❛❞❡✱ ♣♦❞❡♠♦s s✉♣♦r q✉❡kunk ≥1, ∀n. ❉❡✜♥❛

zn =

un

kunk

.

❖❜✈✐❛♠❡♥t❡✱ kznk = 1, ∀n✳ ❊♥tã♦✱ ✉t✐❧✐③❛♥❞♦ ♦s t❡♦r❡♠❛s ❈✳✻ ❡ ❈✳✼ ✭✈❡r ❆♣ê♥❞✐❝❡ ❈✮✱

❡①✐st❡ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ ✭q✉❡ ❝♦♥t✐♥✉❛r❡♠♦s ❛ ❝❤❛♠❛r {zn}✮ t❛❧ q✉❡✿

zn ⇀ z0, ❡♠ H1 :=H1(Ω),

✭✶✳✽✮

zn →z0, ❡♠ L2(Ω),

✭✶✳✾✮

zn(x)→z0(x), q✳t✳♣✳ ❡♠ Ω,

✭✶✳✶✵✮

|zn(x)| ≤q(x)q✳t✳♣✳ ❡♠ Ω,

✭✶✳✶✶✮

♦♥❞❡z0 ∈H1 ❡q ∈L2(Ω).

❉❡✜♥❛✿

f(x, s) =

λs+g(x, s) +s2∗1

, s❡ s >0

λs, s❡ s0 ❉✐✈✐❞✐♥❞♦ (1.7) ♣♦rkunk✱ ♦❜t❡♠♦s✿

Z Ω∇

zn∇ϕdx−λ

Z

znϕdx−

Z

g(x, un)

kunk

ϕdx

Z

(u+

n)2

1

kunk

ϕdx

ǫn k

ϕk kunk

,

♣❛r❛ t♦❞❛ϕ ∈H1. ❖✉ s✐♠♣❧❡s♠❡♥t❡✿

Z Ω∇

zn∇ϕdx−

Z

f(x, un)

kunk

ϕdx

ǫn k

ϕk

kunk

, ϕH1.

P❛ss❛♥❞♦ ♦ ❧✐♠✐t❡ q✉❛♥❞♦n→ ∞✱ ❞❡❞✉③✐♠♦s ❞❡ (1.8)q✉❡✿

✭✶✳✶✷✮ ∃ lim

n→∞ Z

f(x, un)

kunk

ϕdx=

Z

Ω∇

z0∇ϕdx,

♣❛r❛ t♦❞❛ϕ H1.

▼♦str❛r❡♠♦s q✉❡ z0 = 0 ❡ ❞❡♣♦✐s ❝❤❡❣❛r❡♠♦s ❛ ✉♠❛ ❝♦♥tr❛❞✐çã♦✳ ❋❛r❡♠♦s ✐ss♦ ❡♠

(24)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✸

P❛ss♦ ✶✳ z0(x)≤0✱ ♣❛r❛ q✉❛s❡ t♦❞♦ x∈Ω

P❛ss♦ ✷✳

Z

z0(x)dx = 0.

❖s ♣❛ss♦s ✶ ❡ ✷ ✐♠♣❧✐❝❛♠ q✉❡ z0 ≡0.

P❛ss♦ ✶✳ z0(x)≤0✱ ♣❛r❛ q✉❛s❡ t♦❞♦ x∈Ω

❊s❝♦❧❤❛ ϕ=z0+ ❡♠ (1.12)✳ ❉❛í✿

✭✶✳✶✸✮ lim

n→∞ Z

Ω+

f(x, un)

kunk

z0(x)dx=

Z

Ω+|∇

z0|2dx <∞,

❝♦♠ Ω+ ={x : z

0(x)>0}✳

▼❛s✱ ♣♦r ♦✉tr♦ ❧❛❞♦✱ ✉s❛♥❞♦ ♦ ❢❛t♦ q✉❡

lim

n→∞un(x) = +∞, q✳t✳♣✳ ❡♠Ω

+,

❡ ♦ ❈♦r♦❧ár✐♦ ✶✳✹✱ ♦❜t❡♠♦s✿

lim

n→∞

f(x, un)

kunk

z0(x)dx= lim

n→∞

λun+g(x, un) + (u+n)2

1

kunk

z0(x)

un

un

= lim

n→∞

λun+g(x, un) + (u+n)2

1

un

zn(x)z0(x)

= lim

n→∞

λ+g(x, un)

un

+ (u+n)2∗−2

zn(x)z0(x) = +∞,

♣❛r❛ q✉❛s❡ t♦❞♦xΩ+✳ P♦rt❛♥t♦✱ s❡|+|>0✱ ♦❜t❡♠♦s✱ ♣❡❧♦ ▲❡♠❛ ❞❡ ❋❛t♦✉✱ q✉❡✿

+∞=

Z

Ω+ lim

n→∞

f(x, un)

kunk

z0dx=

Z

Ω+

lim inf

n→∞

f(x, un)

kunk

z0dx

≤lim inf

n→∞ Z

Ω+

f(x, un)

kunk

z0dx

= lim

n→∞ Z

Ω+

f(x, un)

kunk

z0dx,

❧♦❣♦✱

lim

n→∞ Z

Ω+

f(x, un)

kunk

z0(x)dx= +∞,

♦ q✉❡ ❝♦♥tr❛❞✐③(1.13)✳ P♦rt❛♥t♦✱ |Ω+|= 0 z

0(x)≤0✱ ♣❛r❛ q✉❛s❡ t♦❞♦ x∈Ω✳

P❛ss♦ ✷✳ Z

(25)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✹

▲❡♠❜r❡ q✉❡ ❛❣♦r❛ ♥♦ss♦ ♣r♦❜❧❡♠❛ ❡stá ♣♦st♦ ❛ss✐♠✿

−∆u=f(x, u) = λu+g(x, u+) + (u+)2∗1

, xΩ, ∂u

∂ν = 0, x∈∂Ω,

❚♦♠❡ ϕ=un ❡♠ (1.7)✱ ♠✉❧t✐♣❧✐q✉❡ ♣♦r 12 ❡ s✉❜tr❛✐❛ ❞❡ (1.6) ♣❛r❛ ♦❜t❡r✿

Z Ω

f(x, un)un

2 −F(x, un)

dx ≤

C+ ǫnkunk

2 , ∀n∈N,

♦♥❞❡F(x, u) =Ru

0 f(x, s)ds.

❉✐✈✐❞✐♥❞♦ ♣♦r kunk✱ t❡♠♦s✿

Z Ω

f(x,un)un

2 −F(x, un)

kunk

dx ≤ C

kunk

+ǫn

2, ∀n ∈N, ❧♦❣♦✱

✭✶✳✶✹✮ lim

n→∞ Z

f(x,un)un

2 −F(x, un)

kunk

dx= 0.

P♦r ♦✉tr♦ ❧❛❞♦✱ ✜①❛♥❞♦s∗ >0 ❡ ✉s❛♥❞♦ ❛ ❝♦♥t✐♥✉✐t❛❞❡ ❞❡f✱ ❡①✐st❡ K

s∗✱ t❛❧ q✉❡✿

f(x, u)u

2 −F(x, u)

Ks∗,∀u∈(−∞, s∗].

✭◆♦t❡ q✉❡ ♣❛r❛u0 ♦ ❧❛❞♦ ❡sq✉❡r❞♦ ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ é ♥✉❧♦✦✮ ❉❛í✱ Z

un(x)≤s∗

f(x,un)un

2 −F(x, un)

kunk

dx

Ks∗|Ω|

kunk

♣❛r❛ t♦❞♦nN✳ ❚♦♠❛♥❞♦ ♦ ❧✐♠✐t❡ q✉❛♥❞♦ n→ ∞✱ t❡♠♦s✿

0≤lim sup

n→∞ Z

un(x)≤s∗

f(x,un)un

2 −F(x, un)

kunk

dx ≤ 0. ▲♦❣♦✱ ✭✶✳✶✺✮ lim n→∞ Z

un(x)≤s∗

f(x,un)un

2 −F(x, un)

kunk

dx

= 0.

❆✐♥❞❛ ❝♦♠ s∗ >0 ✜①❛❞♦ ❡ ❝❤❛♠❛♥❞♦

I =

Z

un(x)>s∗

f(x,un)un

2 −F(x, un)

kunk

(26)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✺

t❡♠♦s ♣♦r(g4)❛s s❡❣✉✐♥t❡s ❞❡s✐❣✉❛❧❞❛❞❡s✿

I

1 2−θ

Z

un(x)>s∗

f(x, un)un

kunk

dx

1 2−θ

s∗

Z

un(x)>s∗

f(x, un)

kunk

dx

=

1 2 −θ

s∗

Z

un(x)>s∗

[f(x, un)−λun+λun]

kunk

dx

=

1 2 −θ

s∗

Z

f(x, un)

kunk

dx−

1 2 −θ

s∗

Z

un(x)≤s∗

[f(x, un)−λun+λun]

kunk

dx

=

1 2 −θ

s∗

Z

f(x, un)

kunk

dx−

1 2 −θ

s∗

Z

un(x)≤s∗

[f(x, un)−λun]

kunk

dx

1 2−θ

s∗λ

Z

un(x)≤s∗

zn(x)dx

1 2−θ

s∗

Z

f(x, un)

kunk

dx

1 2 −θ

s∗ K2

kunk

1 2−θ

s∗λ

Z

un(x)≤s∗

zn(x)dx,

♦♥❞❡ K2 > 0 é ✉♠❛ ❝♦♥st❛♥t❡ ♣♦s✐t✐✈❛ ✭q✉❡ ❞❡♣❡♥❞❡ ❞❛ ❧✐♠✐t❛çã♦ ❞❡ |f(x, u)−λu| ❡♠

(−∞, s∗])✳ ❙❡ ❝♦♥s✐❞❡r❛r♠♦s ✭✶✳✶✷✮✱ ❝♦♠ ϕ 1✱ ✭✶✳✶✹✮ ❡ (1.15) ❡ t♦♠❛r♠♦s ♦ ❧✐♠✐t❡

q✉❛♥❞♦n t❡♥❞❡ ❛ ✐♥✜♥✐t♦ ♥❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❛❝✐♠❛✱ ♦❜t❡♠♦s✿

0≥ −

1 2 −θ

s∗λ

Z

z0dx≥0

❝♦♠ s∗ >0✜①❛❞♦✳ ❈♦♥s❡q✉❡♥t❡♠❡♥t❡✱ Z

z0(x)dx= 0,

❡ ✐ss♦ ❝♦♥❝❧✉✐ ♦ ♣❛ss♦ ✷✳

❉♦s ♣❛ss♦s ✶ ❡ ✷✱ ❝♦♥❝❧✉í♠♦s q✉❡z0 ≡0✳ ▼♦str❡♠♦s q✉❡ ✐ss♦ ♥♦s ❧❡✈❛ ❛ ✉♠❛ ❝♦♥tr❛✲

❞✐çã♦✳

❆✜r♠❛çã♦ ✶✳✻✳ ❚❡♠✲s❡✿

lim

n→∞ Z

f(x, un)

kunk

zndx= 0.

❈♦♠ ❡❢❡✐t♦✱ ❢❛③❡♥❞♦ ϕ = un ❡♠ ✭✶✳✼✮✱ ♠✉❧t✐♣❧✐❝❛♥❞♦ ♣♦r 1/2 ❡ s✉❜tr❛✐♥❞♦ ❞❡ ✭✶✳✻✮✱

♦❜t❡♠♦s✿ Z Ω

F(x, un)dx−

1 2

Z

f(x, un)undx

(27)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✻

P♦r (g4)✱ ♦❜t❡♠♦s✿

1 2−θ

Z

f(x, un)undx=

1 2

Z

f(x, un)undx−θ

Z

f(x, un)undx

≤ 1

2

Z

unf(x, un)dx−

Z

F(x, un)dx

≤c+ǫnkunk.

❉❛í✱

0lim sup

n→+∞ Z

f(x, un)

kunk

zndx≤lim sup n→+∞

C

1

kunk2

+ ǫn

kunk

= 0,

❞♦♥❞❡ s❡❣✉❡ ❛ ❛✜r♠❛çã♦✳

P♦r ♦✉tr♦ ❧❛❞♦✱ ❝♦♥s✐❞❡r❛♥❞♦ ✭✶✳✼✮✱ ❝♦♠ ϕ = zn ❡ ❞✐✈✐❞✐♥❞♦ ♣♦r kunk✱ ♦❜t❡♠♦s ❞❡

kznk= 1,♣❛r❛ t♦❞♦ n∈N✱ q✉❡✿

Z Ω|∇

zn|2dx−

Z

f(x, un)

kunk

zndx

= 1 Z Ω

zn2dx

Z

f(x, un)

kunk

zndx

ǫn

kunk

.

❚♦♠❛♥❞♦ ♦ ❧✐♠✐t❡ q✉❛♥❞♦n → ∞✱ t❡♠♦s✿

lim

n→∞|zn|

2 2 = 1,

♦ q✉❡ ❝♦♥tr❛❞✐③ ❛ ❝♦♥✈❡r❣ê♥❝✐❛ ❡♠(1.9)❝♦♠ z0 ≡0✳

P♦rt❛♥t♦✱ ❛ s❡q✉ê♥❝✐❛{un} é ❧✐♠✐t❛❞❛ ❡♠ H1(Ω)✳

▲❡♠❛ ✶✳✼✳ ❙✉♣♦♥❤❛λ >0 ❡ (g1)−(g4)✳ ❙❡❥❛ {un} ⊂H1(Ω) t❛❧ q✉❡✿

J(un) =

1 2

Z

Ω|∇

un|2dx−

λ

2

Z

u2ndx−

Z

G(x, un)dx−

1 2∗

Z

(u+n)2

dx→c,

✭✶✳✶✻✮

| hJ′(un), ϕi |=

Z Ω∇

un∇ϕdx−λ

Z

unϕdx−

Z

g(x, un)ϕdx−

Z

(u+n)2∗−1ϕdx

ǫnkϕk,

✭✶✳✶✼✮

♣❛r❛ t♦❞❛ϕ H1(Ω)✱ ♦♥❞❡ ǫ

n →0 q✉❛♥❞♦ n→+∞. ❙❡

✭✶✳✶✽✮ c < S

N

2

N

(28)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✼

❉❡♠♦♥str❛çã♦✳ ❙❛❜❡♠♦s✱ ♣❡❧♦ ▲❡♠❛ ✶✳✺✱ q✉❡ {un} é ❧✐♠✐t❛❞❛ ❡♠ H1(Ω)✳ ❉❛í✱ ♣❛ss❛♥❞♦

♣❛r❛ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛✱ s❡ ♥❡❝❡ssár✐♦✱ t❡♠♦s✿

un⇀ u, ❡♠ H1(Ω),

✭✶✳✶✾✮

un→u, ❡♠ L2(Ω),

✭✶✳✷✵✮

un(x)→u(x), q✳t✳♣✳ ❡♠ Ω.

✭✶✳✷✶✮

❈♦♠♦{u+

n}é ❧✐♠✐t❛❞❛ ❡♠H1(Ω)✱ s❡❣✉❡ q✉❡{u+n}é ❧✐♠✐t❛❞❛ ❡♠L2

(Ω)✳ ❖❜s❡r✈❡ q✉❡✱ ❢❛③❡♥❞♦q = 2N

N + 2✱ ♦❜t❡♠♦s✿

|(u+n)2∗−1|qq =

Z

[(u+n)NN+2−2] 2N N+2dx=

Z

(u+n)N2N−2dx =|u+

n|2

2∗,

❧♦❣♦✱ {(u+

n)2

1

} é ❧✐♠✐t❛❞❛ ❡♠ LN2N+2(Ω)✳ P❛ss❛♥❞♦ ♥♦✈❛♠❡♥t❡ ❛ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛✱ s❡ ♥❡❝❡ssár✐♦✱ ♣♦❞❡♠♦s s✉♣♦r q✉❡✿

(u+n)2∗−1 ⇀(u+)2∗−1, ❡♠ LN2N+2(Ω). ❯s❛♥❞♦ ❛ ❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❈❛✉❝❤②✲❙❝❤✇❛r③ ❡ ✭✶✳✷✵✮✱ t❡♠♦s✿

Z Ω

(unϕ−uϕ)dx

= Z Ω

(un−u)ϕdx

≤ |

un−u|2|ϕ|2 →0, ∀ϕ ∈H1,

q✉❛♥❞♦n +✳ ▲♦❣♦✱ lim

n→+∞ Z

unϕdx=

Z

uϕdx, ∀ϕ ∈H1.

❙❡❣✉❡✱ ♣♦r ✭✶✳✶✾✮ ❡ ♦ ❚❡♦r❡♠❛ ❞❛s ■♠❡rsõ❡s ❞❡ ❙♦❜♦❧❡✈✱ q✉❡ ❡①✐st❡ q˜ ∈ Lσ(Ω)✱ 1 <

σ <2∗1✱ t❛❧ q✉❡ |u

n(x)| ≤q˜(x)q✳t✳♣✳ ❡♠Ω✳ P❡❧❛ ❤✐♣ót❡s❡(g2)✱ t❡♠♦s ♣❛r❛ q✳t✳ x∈Ω✿

|g(x, un)| ≤K|un|σ ≤Kq˜(x)σ ∈L1(Ω).

▲♦❣♦✱ ❝♦♠♦ un(x) → u(x) q✳t✳♣✳ ❡♠ Ω✱ ♣♦❞❡♠♦s ✉s❛r ♦s ❢❛t♦s ❛❝✐♠❛ ❥✉♥t❛♠❡♥t❡ ❝♦♠ ♦

❚❡♦r❡♠❛ ❞❛ ❈♦♥✈❡r❣ê♥❝✐❛ ❉♦♠✐♥❛❞❛ ♣❛r❛ ❝♦♥❝❧✉✐r q✉❡

hJ′(un), ϕi=

Z

Ω∇

un∇ϕdx−λ

Z

unϕdx−

Z

g(x, un)ϕdx

Z

(u+n)2∗−1ϕdx

Z

Ω∇

u∇ϕdx−λ

Z

uϕdx−

Z

g(x, u)ϕdx−

Z

(u+)2∗−1ϕdx

(29)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✽

♣❛r❛ t♦❞❛ϕ ∈H1(Ω)✳ P♦rt❛♥t♦✱ u r❡s♦❧✈❡ ❢r❛❝❛♠❡♥t❡ ❛ ❡q✉❛çã♦

−∆u=λu+g(x, u) + (u+)2∗−1.

❆❞❡♠❛✐s✱ ❡s❝♦❧❤❡♥❞♦ ϕ=u ❡ s✉❜st✐t✉✐♥❞♦ ♥❛ ❢ór♠✉❧❛ ❞❛ ❞❡r✐✈❛❞❛ ❞❡J ♦❜t❡♠♦s✿

0 =hJ′(u), ui=

Z

Ω|∇

u|2dxλ

Z

u2dx

Z

g(x, u)udx

Z

(u+)2∗dx,

❡ ♣♦rt❛♥t♦✱

Z

Ω|∇

u|2dx=λ

Z

u2dx+

Z

g(x, u)udx+

Z

(u+)2∗dx.

❙✉❜st✐t✉✐♥❞♦ ♥❛ ❡①♣r❡ssã♦ ❞❡ J(u)✱ ♦❜t❡♠♦s✱ ✉s❛♥❞♦(g4)✿

J(u) = 1 2

Z

Ω|∇

u|2dx λ

2

Z

u2dx−

Z

G(x, u)dx− 1

2∗ Z

(u+)2∗dx

= 1 2

Z

g(x, u)udx+1 2

Z

(u+)2∗dx

Z

G(x, u)dx 1

2∗ Z

(u+)2∗dx

= 1 2 − 1 2∗

|u+|2∗

2∗+

1 2

Z

g(x, u)udx

Z

G(x, u)dx

= 1

N|u

+|2∗

2∗ +

Z

1

2g(x, u)udx−G(x, u)

dx

N1|u+|22∗∗+

Z

[θg(x, u)uG(x, u)]dx0,

✐st♦ é✱

✭✶✳✷✷✮ J(u)≥0.

❊s❝r❡✈❛ vn=un−u✳ P❡❧♦ ▲❡♠❛ ✶✳✷✱ t❡♠♦s✿

1 2∗

Z

(u+n)2∗dx= 1 2∗

Z

(u+)2∗dx+ 1 2∗

Z

(vn+)2∗dx+o(1).

❯s❛♥❞♦ ♦ ❢❛t♦ q✉❡un(x)→u(x)q✳t✳♣✳ ❡♠Ω❥✉♥t❛♠❡♥t❡ ❝♦♠ ♦ ❚❡♦r❡♠❛ ❞❛ ❈♦♥✈❡r❣ê♥❝✐❛

❉♦♠✐♥❛❞❛ ❡ ♦ r❡s✉❧t❛❞♦ ❛❝✐♠❛ ✭✈✐❛ ▲❡♠❛ ✶✳✷✮✱ ♦❜t❡♠♦s✿ lim

n→∞[J(u) +J(vn)] = limn→∞

1 2

Z

Ω|∇

u|2dxλ

2

Z

u2dx

Z

G(x, u)dx 1

2∗ Z

(u+)2∗dx

+ + 1 2 Z Ω|∇

(un−u)|2dx−

λ

2

Z

(un−u)2dx−

Z

G(x, un−u)dx−

1 2∗

Z

[(un−u)+]2

dx

(30)

❙❊➬➹❖ ✶✳✸ ∗ ❈♦♥❞✐çã♦ ❞❡ ❝♦♠♣❛❝✐❞❛❞❡ ✶✾ = lim n→∞ 1 2 Z Ω|∇

u|2dx+1

2

Z

Ω|∇

un|2dx−

Z

Ω∇

un∇udx+

+1 2

Z

Ω|∇

u|2dx 1

2∗ Z

(u+)2∗ 1 2∗

Z

(v+n)2∗dx

−λ

2

Z

u2ndx

Z

G(x, un)dx

= lim n→∞ 1 2 Z Ω|∇

un|2dx−

λ

2

Z

u2ndx

Z

G(x, un)dx−

1 2∗

Z

(u+n)2∗dx

= lim

n→∞J(un) =c.

P♦r ♦✉tr♦ ❧❛❞♦✱ ✉s❛♥❞♦ ♥♦✈❛♠❡♥t❡ ♦ ▲❡♠❛ ✶✳✷ ❡ ♦ ❚❡♦r❡♠❛ ❞❛ ❈♦♥✈❡r❣ê♥❝✐❛ ❉♦♠✐♥❛❞❛✱ ❡ ❞❡♥♦t❛♥❞♦

L= lim

n→∞ Z

Ω|∇

vn|2dx−

Z

(vn+)2

dx

,

t❡♠♦s✿

L= lim

n→∞ Z

Ω|∇

un|2dx+

Z

Ω|∇

u|2dx2

Z

Ω∇

un∇udx−

Z

(u+n)2∗dx+

Z

(u+)2∗dx

= lim

n→∞ Z

Ω|∇

un|2dx−λ

Z

u2ndx

Z

g(x, un)undx−

Z

(u+n)2∗dx−

Z

Ω|∇

u|2dx+λ

Z

u2dx+ +

Z

g(x, u)udx+

Z

(u+)2∗dx+ +2

Z

Ω|∇

u|2dx2

Z

Ω∇

un∇udx

= lim

n→∞[hJ ′(u

n), uni − hJ′(u), ui+

+2

Z

Ω|∇

u|2dx2

Z

Ω∇

un∇udx

= 0.

P♦❞❡♠♦s s✉♣♦r ❡♥tã♦ q✉❡ ❡①✐st❡ d >0t❛❧ q✉❡✿

|∇vn|22 →d ❡ |vn+|2

(31)

❙❊➬➹❖ ✶✳✹ ∗ ❈♦♥❞✐çõ❡s ❣❡♦♠étr✐❝❛s ✷✵

P❡❧❛ ❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❙♦❜♦❧❡✈✱

Z

Ω|∇

vn|2dx=

Z

Ω|∇

(vn++v−n)|2dx=

Z

Ω|∇

v+n|2dx+

Z

Ω|∇

vn|2dx

Z

Ω|∇

vn+|2dxS|v+n|22∗,

♦✉ s❡❥❛✱

|∇vn|22 ≥S|vn+|22∗.

❊♥tã♦✿

Z

Ω|∇

vn|2dx≥S|vn+|22∗ =S(|v+n|2 ∗

2∗)

2

2∗ ⇒d ≥Sd22∗.

❙❡d= 0 ❡♥tã♦✱ ❝♦♠♦ ❥á s❛❜❡♠♦s q✉❡ vn →0❡♠ L2(Ω)✱ s❡❣✉❡ q✉❡✿

kvnk2 =

Z

Ω|∇

vn|2dx+

Z

vn2dx0, q✉❛♥❞♦ n+,

❧♦❣♦✱un →u ❡♠ H1(Ω) ❡ ❛ ♣r♦✈❛ ❡stá ❝♦♠♣❧❡t❛✳

❙✉♣♦♥❤❛ d >0. ❊♥tã♦

dSN2.

P♦rt❛♥t♦✱ ❝♦♠♦ vn →0 ❡♠ L2(Ω) ❡ q✳t✳♣✳ ❡♠ Ω✱ t❡♠♦s✿

SN2

N = 1 2 − 1 2∗

SN2 ≤

1 2 − 1 2∗

d= 1 2d−

1 2∗d

= 1 2n→lim+∞

Z

Ω|∇

vn|2dx−

λ

2nlim→∞ Z

v2

ndx− lim n→∞

Z

G(x, vn)dx−

1

2∗ nlim+|v

+

n|2

2∗

≤J(u) + lim

n→+∞

1 2

Z

Ω|∇

vn|2dx−

λ

2

Z

v2ndx−

Z

G(x, vn)dx−

1 2∗|v

+

n|2

2∗

= lim

n→+∞[J(u) +J(vn)] =c <

SN2

N ,

♦ q✉❡ é ✉♠❛ ❝♦♥tr❛❞✐çã♦✦

▲♦❣♦✱ d= 0 ❡ {un} ♣♦ss✉✐ ✉♠❛ s✉❜s❡q✉ê♥❝✐❛ ❝♦♥✈❡r❣❡♥t❡ ❡♠H1(Ω)✳

✶✳✹ ❈♦♥❞✐çõ❡s ❣❡♦♠étr✐❝❛s

❙❡❥❛♠ λ1 = 0< λ2 ≤λ3 ≤...♦s ❛✉t♦✈❛❧♦r❡s ❞❡ −∆ ❡ϕ1, ϕ2, ϕ3, ... ❛s ❝♦rr❡s♣♦♥❞❡♥t❡s

(32)

❙❊➬➹❖ ✶✳✹ ∗ ❈♦♥❞✐çõ❡s ❣❡♦♠étr✐❝❛s ✷✶

❣❡♥❡r❛❧✐❞❛❞❡✱ q✉❡ 0 ∈ Ω✳ P❛r❛ ❝❛❞❛ m ∈ N✱ s❡❥❛ ζm : Ω R ✉♠❛ ❢✉♥çã♦ s✉❛✈❡ t❛❧ q✉❡

0ζm ≤1✱|∇ζm|∞≤4m ❡

ζm(x) =

0, s❡ x∈B2/m,

1, s❡ x\B3/m.

❉❡✜♥✐♠♦s ❛s ✏❛✉t♦❢✉♥çõ❡s ❛♣r♦①✐♠❛❞❛s✑ ♣♦rϕm

i =ζmϕi.❊♥tã♦✱ ❛ s❡❣✉✐♥t❡ ❡st✐♠❛t✐✈❛

♦❝♦rr❡ ✭✈❡r ❬❈❤❛❜r♦✇s❦✐✲❘✉❢❪✮✿

▲❡♠❛ ✶✳✽✳ ◗✉❛♥❞♦ m → ∞✱ t❡♠♦s ϕm

i →ϕi ❡♠ H1(Ω)✳ ❆❧é♠ ❞✐ss♦✱ ♥♦ ❡s♣❛ç♦ Hj,m− =

ϕm

1 , ..., ϕmj

✱ t❡♠♦s✿

max{|∇u|22 : uHj,m− ,|u|22 = 1} ≤λj +cjm2−N

Z

Ω∇

ϕmi ϕmj dx=δij+O(m2−N),

♦♥❞❡ cj ✐♥❞❡♣❡♥❞❡ ❞❡ m✳

❙❡❥❛ξ C1

0(B1/m)✉♠❛ ❢✉♥çã♦ ❝♦rt❡ t❛❧ q✉❡ ξ(x) = 1 s❡x∈B1/2m✱ 0≤ξ(x)≤1❡♠

B1/m ❡ |∇ξ|∞≤4m. ❈♦♥s✐❞❡r❡ ❛❣♦r❛ ❛ ❢❛♠í❧✐❛ ❞❡ ❢✉♥çõ❡s ❞❛❞❛s ♣♦r

uǫ(x) =ξ(x)u⋆ǫ(x)∈H, ǫ > 0.

▲❡♠❜r❡ q✉❡ ❛ ❢✉♥çã♦ u⋆

ǫ(x) ❢♦✐ ❞❡✜♥✐❞❛ ❡♠ ✭✶✳✸✮✳ ❖ ♣ró①✐♠♦ ❧❡♠❛ t❛♠❜é♠ ♣♦❞❡ s❡r

❡♥❝♦♥tr❛❞♦ ♥♦ ❛rt✐❣♦ ❬❈❤❛❜r♦✇s❦✐✲❘✉❢❪✳

▲❡♠❛ ✶✳✾✳ P❛r❛ ǫ→0 ❡ ♣❛r❛ m ✜①❛❞♦✱ t❡♠✲s❡✿

✭❛✮ |∇uǫ|22 =S

N

2 +O(ǫN−2) ✭❜✮ |uǫ|2

2∗ =S

N

2 +O(ǫN)

✭❝✮ |uǫ|22 ≥K1ǫ2 +O(ǫN−2), ♦♥❞❡ K1 >0 é ❝♦♥st❛♥t❡✳

(33)

❙❊➬➹❖ ✶✳✹ ∗ ❈♦♥❞✐çõ❡s ❣❡♦♠étr✐❝❛s ✷✷

✭❞✮ |∇uǫ|22 =S

N

2 +O((ǫm)N−2) ✭❡✮ |uǫ|2

2∗ =S

N

2 +O((ǫm)N)✳

❡♥q✉❛♥t♦ (c) ♦❝♦rr❡ ✐♥❞❡♣❡♥❞❡♥t❡♠❡♥t❡ ❞❡ m✳

❖❜s❡r✈❛çã♦ ✶✳✶✵✳ ▲❡♠❜r❡ q✉❡✿

f(x) =o[g(x)] q✉❛♥❞♦ x→x0 s❡ lim

x→x0

f(x)

g(x) = 0 ❡ f(x) = O[g(x)] q✉❛♥❞♦ x→x0 s❡ lim sup

x→x0

|f(x)|

|g(x)| <+∞.

◆♦ss♦ ♦❜❥❡t✐✈♦ ❛q✉✐ é ❛♣❧✐❝❛r ♦ ❚❡♦r❡♠❛ ❞♦ ▲✐♥❦✐♥❣✱ ❞❡ ❘❛❜✐♥♦✇✐t③ ❬❘❛❜✐♥♦✇✐t③❪✱ ❛♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮✳

❉❡s❞❡ q✉❡ λ > 0✱ ❡①✐st❡ k N t❛❧ q✉❡ λ [λk, λk+1)✳ ❈♦♥s✐❞❡r❡ H+ =hϕ1, ..., ϕki⊥✳

❙❡❥❛♠ Sr =∂Br∩H+✱ Hm− =hϕm1 , ..., ϕmki ❡Qǫm = (BR∩Hm−)⊕[0, R]{uǫ}✱ ♣❛r❛ m ∈N

✜①❛❞♦✷✳ ❉❡✜♥❛ ❛ ❢❛♠í❧✐❛ ❞❡ ❛♣❧✐❝❛çõ❡s

H={h:Qǫm H ❝♦♥tí♥✉❛ : h|∂Qǫ

m =Id},

❡ s❡❥❛

✭✶✳✷✸✮ c= inf

h∈Husuph(Qǫ m)

J(u) = inf

h∈HvsupQǫ m

J(h(v)).

❖ ❚❡♦r❡♠❛ ❞♦ ▲✐♥❦✐♥❣✱ ❞❡ ❘❛❜✐♥♦✇✐t③ ❬❘❛❜✐♥♦✇✐t③❪✱ ❡st❛❜❡❧❡❝❡ q✉❡ s❡✿ ✭✶✮ J :H R s❛t✐s❢❛③ ❛ ❝♦♥❞✐çã♦ ✭P❙✮c

✭✷✮ ❡①✐st❡♠ ♥ú♠❡r♦s r❡❛✐s 0< r < R ❡ β1 > β0 t❛✐s q✉❡

J(v)≥β1, ♣❛r❛ t♦❞♦v ∈Sr,

✭✶✳✷✹✮

J(v)≤β0, ♣❛r❛ t♦❞♦v ∈∂Qǫm,

✭✶✳✷✺✮

❡♥tã♦✸ ♦ ✈❛❧♦r c✱ ❞❡✜♥✐❞♦ ♣♦r ✭✶✳✷✸✮ s❛t✐s❢❛③cβ

1✱ ❡ é ✉♠ ✈❛❧♦r ❝rít✐❝♦ ♣❛r❛ J✳

❊♥t❡♥❞❡♠♦s ♣♦r[0, R]{u

ǫ} ♦ ❝♦♥❥✉♥t♦{suǫ : 0≤s≤R}✳

❖❜s❡r✈❡ q✉❡ ♦s ❝♦♥❥✉♥t♦s ❛❝✐♠❛ ❞❡♣❡♥❞❡♠ ❞❡m❡ ❞❡ǫ✳ ❊s❝♦❧❤❡r❡♠♦sm s✉✜❝✐❡♥t❡♠❡♥t❡ ❣r❛♥❞❡ ❡ǫ

(34)

❙❊➬➹❖ ✶✳✹ ∗ ❈♦♥❞✐çõ❡s ❣❡♦♠étr✐❝❛s ✷✸

◆♦t❡ ♣r✐♠❡✐r❛♠❡♥t❡ q✉❡ ♣❛r❛ v ∈ H−

m⊕R{uǫ}✱ v = w+suǫ✱ t❡♠♦s✱ ♣♦r ❝♦♥str✉çã♦✱

s✉♣♣(uǫ)∩s✉♣♣(w) = ∅.■ss♦ ✐♠♣❧✐❝❛ q✉❡

J(v) =J(w+suǫ) =J(w) +J(suǫ).

❈♦♠❡❝❡♠♦s ♠♦str❛♥❞♦ q✉❡ ♦ ❢✉♥❝✐♦♥❛❧J s❛t✐s❢❛③ ❛ ❝♦♥❞✐çã♦ ✭✶✳✷✹✮✳

▲❡♠❛ ✶✳✶✶✳ ❊①✐st❡♠ r >0 ❡ β1 >0 t❛✐s q✉❡

J(v)β1, ♣❛r❛ t♦❞♦ v ∈Sr=∂Br∩H+.

❉❡♠♦♥str❛çã♦✳ ❙❡❥❛v ∈H+

❆✜r♠❛çã♦ ✶✳✶✷✳ ❉❡✜♥❛ k · k∗ :H+ →R✱ ❞❛❞❛ ♣♦r kvk∗ =

Z

Ω|∇

v|2

12

=|∇v|2, v∈H+.

❊♥tã♦✱ k · k∗ ❞❡✜♥❡ ✉♠❛ ♥♦r♠❛ ❡♠ H+ q✉❡ é ❡q✉✐✈❛❧❡♥t❡ à ♥♦r♠❛ ✉s✉❛❧ k · k ❞❡ H1(Ω)✱

r❡str✐t❛ ❛ H+

❉❛s ♣r♦♣r✐❡❞❛❞❡s ❞❛ ❞❡✜♥✐çã♦ ❞❡ ♥♦r♠❛✱ ❛♣❡♥❛s ✉♠❛ ♥ã♦ é ✐♠❡❞✐❛t❛✿

kvk= 0⇔v = 0.

▲❡♠❜r❡ q✉❡ ❛s ❢✉♥çõ❡s ❝♦♥st❛♥t❡s ♥ã♦ ♥✉❧❛s sã♦ ❛✉t♦❢✉♥çõ❡s ❛ss♦❝✐❛❞❛s ❛♦ ❛✉t♦✈❛❧♦r

λ1 = 0✱ ❧♦❣♦✱ ♥ã♦ ♣❡rt❡♥❝❡♠ ❛ H+✳ P♦rt❛♥t♦✱ ❞❛❞♦ v ∈H+✱ t❡♠♦s✿

kvk∗ = 0⇔ ∇v ≡0⇔v ≡constante⇒v ≡0.

P❛r❛ ♠♦str❛r ❛ ❡q✉✐✈❛❧ê♥❝✐❛ ❞❛s ♥♦r♠❛s✱ ♥♦t❡ ♣r✐♠❡✐r❛♠❡♥t❡ q✉❡ ✉♠❛ ❞❡s✐❣✉❛❧❞❛❞❡ é ó❜✈✐❛✱ ♣♦✐s✿

kvk2 =|∇v|22 ≤ |v|22+|∇v|22 =kvk2, v.

P♦r ♦✉tr♦ ❧❛❞♦✱ ✉s❛♥❞♦ ❛ ❝❛r❛❝t❡r✐③❛çã♦ ✈❛r✐❛❝✐♦♥❛❧ ❞❡λk+1✱ ♦❜t❡♠♦s✿

kvk2 =|v|2

2+kvk2∗ ≤

1

λk+1k

vk2

∗+kvk2∗ =

1

λk+1

+ 1

kvk2

∗, ∀v ∈H+,

Referências

Documentos relacionados

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico.. com os dados fornecidos

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da

dições para dizer quando um dado ompatível é realizável por algum

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico. com os dados fornecidos

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico.. com os dados fornecidos

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico.. com os dados fornecidos