• Nenhum resultado encontrado

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA

N/A
N/A
Protected

Academic year: 2018

Share "CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA"

Copied!
89
0
0

Texto

(1)

UNIVERSIDADE FEDERAL DE SÃO CARLOS

CENTRO DE CIÊNCIAS EXATAS E DE TECNOLOGIA

PROGRAMA DE PÓS GRADUAÇÃO EM MATEMÁTICA

❋❛❜✐❛♥❛ ▼❛r✐❛ ❋❡rr❡✐r❛

Pr♦❜❧❡♠❛s ❊❧í♣t✐❝♦s ❙✉♣❡r❧✐♥❡❛r❡s

❝♦♠ ❘❡ss♦♥â♥❝✐❛

❙ã♦ ❈❛r❧♦s ✲ ❙P

❆❣♦st♦ ❞❡ ✷✵✶✺

(2)

❯◆■❱❊❘❙■❉❆❉❊ ❋❊❉❊❘❆▲ ❉❊ ❙➹❖ ❈❆❘▲❖❙

❈❊◆❚❘❖ ❉❊ ❈■✃◆❈■❆❙ ❊❳❆❚❆❙ ❊ ❉❊ ❚❊❈◆❖▲❖●■❆

P❘❖●❘❆▼❆ ❉❊ PÓ❙ ●❘❆❉❯❆➬➹❖ ❊▼ ▼❆❚❊▼➪❚■❈❆

❋❛❜✐❛♥❛ ▼❛r✐❛ ❋❡rr❡✐r❛

❖r✐❡♥t❛❞♦r✿Pr♦❢ ❉r✳ ❋r❛♥❝✐s❝♦ ❖❞❛✐r ❱✐❡✐r❛ ❞❡ P❛✐✈❛

Pr♦❜❧❡♠❛s ❊❧í♣t✐❝♦s ❙✉♣❡r❧✐♥❡❛r❡s

❝♦♠ ❘❡ss♦♥â♥❝✐❛

❚❡s❡ ❛♣r❡s❡♥t❛❞❛ ❛♦ Pr♦❣r❛♠❛ ❞❡ Pós✲ ●r❛❞✉❛çã♦ ❡♠ ▼❛t❡♠át✐❝❛ ❞❛ ❯♥✐✈❡rs✐✲ ❞❛❞❡ ❋❡❞❡r❛❧ ❞❡ ❙ã♦ ❈❛r❧♦s ❝♦♠♦ ♣❛rt❡ ❞♦s r❡q✉✐s✐t♦s ♣❛r❛ ❛ ♦❜t❡♥çã♦ ❞♦ tít✉❧♦ ❞❡ ❉♦✉t♦r ❡♠ ▼❛t❡♠át✐❝❛✱ ár❡❛ ❞❡ ❝♦♥❝❡♥tr❛✲ çã♦✿ ❊q✉❛çõ❡s ❉✐❢❡r❡♥❝✐❛✐s P❛r❝✐❛✐s

(3)

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico

com os dados fornecidos pelo(a) autor(a)

F383pe Ferreira, Fabiana Maria Problemas elípticos superlineares com ressonância / Fabiana Maria Ferreira. -- São Carlos : UFSCar, 2016. 79 p.

Tese (Doutorado) -- Universidade Federal de São Carlos, 2015.

(4)
(5)
(6)

❆❣r❛❞❡❝✐♠❡♥t♦s

(7)

❘❡s✉♠♦

◆❡st❡ tr❛❜❛❧❤♦ ❛♣r❡s❡♥t❛♠♦s ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♥ã♦ tr✐✈✐❛✐s ♣❛r❛ ❝❧❛ss❡s ❞❡ s✐st❡✲ ♠❛s ❡❧í♣t✐❝♦s r❡ss♦♥❛♥t❡s ❡ s✉♣❡r❧✐♥❡❛r❡s✳ ❚❛✐s s✐st❡♠❛s sã♦ tr❛t❛❞♦s ✈✐❛ ♠ét♦❞♦s t♦♣♦❧ó❣✐✲ ❝♦s✳ ❊♥❝♦♥tr❛♠♦s ❡st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ♣❛r❛ ♣♦ssí✈❡✐s s♦❧✉çõ❡s ❞❡st❡s s✐st❡♠❛s ❡ ✉t✐❧✐③❛♠♦s ❡st❛s ❡st✐♠❛t✐✈❛s ❥✉♥t❛♠❡♥t❡ ❝♦♠ ❛ t❡♦r✐❛ ❞♦ ❣r❛✉ t♦♣♦❧ó❣✐❝♦ ♣❛r❛ ❣❛r❛♥t✐r ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s✳

(8)

❆❜str❛❝t

❚❤❡ ❛✐♠ ♦❢ t❤✐s ✇♦r❦ ✐s t♦ ♣r❡s❡♥t r❡s✉❧ts ❛❜♦✉t t❤❡ ❡①✐st❡♥❝❡ ♦❢ ♥♦♥✲tr✐✈✐❛❧ s♦❧✉t✐♦♥s ❢♦r s♦♠❡ ❝❧❛ss❡s ♦❢ r❡s♦♥❛♥t ❛♥❞ s✉♣❡r❧✐♥❡❛r ❡❧✐♣t✐❝ s②st❡♠s ❡♠♣❧♦②✐♥❣ t♦♣♦❧♦❣✐❝❛❧ ♠❡t❤♦❞s✳ ▼♦r❡ s♣❡❝✐✜❝❛❧❧②✱ ✇❡ ✉s❡ ❛✲♣r✐♦r✐ ❜♦✉♥❞s ♦♥ t❤❡ ❡✈❡♥t✉❛❧ s♦❧✉t✐♦♥s ♦❢ t❤✐s ♣r♦❜❧❡♠s ❛♥❞ t♦♣♦❧♦❣✐❝❛❧ ❞❡❣r❡❡ t❤❡♦r②✳

(9)

❙✉♠ár✐♦

■♥tr♦❞✉çã♦ ✶

✶ ❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✺

✶✳✶ ❊st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻

✶✳✷ ❘❡s✉❧t❛❞♦ ❞❡ ❊①✐stê♥❝✐❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷

✶✳✸ ❘❡❣✉❧❛r✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✻

✷ ❙✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦ ✷✶

✷✳✶ ❊st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✷

✷✳✷ ❘❡s✉❧t❛❞♦ ❞❡ ❊①✐stê♥❝✐❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✾

✷✳✸ ❘❡❣✉❧❛r✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹

✸ Pr♦❜❧❡♠❛ ❇✐✲❍❛r♠ô♥✐❝♦ ✸✽

✸✳✶ ❆❧❣✉♠❛s ♦❜s❡r✈❛çõ❡s s♦❜r❡ ♦ ♦♣❡r❛❞♦r ❜✐✲❤❛r♠ô♥✐❝♦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✽

✸✳✷ ❊st✐♠❛t✐✈❛ ❛ ♣r✐♦r✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✶

✸✳✸ ❘❡s✉❧t❛❞♦ ❞❡ ❊①✐stê♥❝✐❛ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✽

✸✳✹ ❘❡❣✉❧❛r✐❞❛❞❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✵

❆♣ê♥❞✐❝❡ ✺✹

❆ ◆♦t❛çõ❡s ✺✺

❆✳✶ ❆❧❣✉♠❛s ♥♦t❛çõ❡s ❢✉♥❞❛♠❡♥t❛✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✺

❆✳✷ ❊s♣❛ç♦s ❞❡ ❋✉♥çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✻

❇ ❘❡s✉❧t❛❞♦s ❛✉①✐❧✐❛r❡s ✺✾

❈ ❖ Pr♦❜❧❡♠❛ ▲✐♥❡❛r ✻✹

(10)

❙✉♠ár✐♦

❈✳✷ Pr♦❜❧❡♠❛ ❞❡ ❛✉t♦✈❛❧♦r ❝♦♠ ♣❡s♦✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✺

❈✳✸ ❖❜s❡r✈❛çõ❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻✽

❉ ●r❛✉ ❚♦♣♦❧ó❣✐❝♦ ✼✵

❉✳✶ ●r❛✉ ❞❡ ❇r♦✉✇❡r ❡ s✉❛s ♣r♦♣r✐❡❞❛❞❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✵

❉✳✷ ●r❛✉ ❞❡ ▲❡r❛②✲❙❝❤❛✉❞❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✹

(11)

■♥tr♦❞✉çã♦

◆❡st❡ tr❛❜❛❧❤♦✱ t❡♠♦s ❝♦♠♦ ♦❜❥❡t✐✈♦ ♣r♦✈❛r r❡s✉❧t❛❞♦s ❞❡ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ❛❧❣✉♥s s✐st❡♠❛s ❡❧í♣t✐❝♦s s✉♣❡r❧✐♥❡❛r❡s ❝♦♠ r❡ss♦♥â♥❝✐❛✳ ▼❛✐s ♣r❡❝✐s❛♠❡♥t❡✱ ❝♦♥s✐❞❡r❛♠♦s s✐st❡♠❛s ❞♦ t✐♣♦ ❣r❛❞✐❡♥t❡ ❡ ❞♦ t✐♣♦ ❤❛♠✐❧t♦♥✐❛♥♦ ❡ t❛♠❜é♠ ✉♠ ♣r♦❜❧❡♠❛ ❡♥✈♦❧✈❡♥❞♦ ♦ ♦♣❡r❛❞♦r ❜✐✲❤❛r♠ô♥✐❝♦✳ ❚❛✐s ♣r♦❜❧❡♠❛s s❡rã♦ tr❛t❛❞♦s ✈✐❛ ♠ét♦❞♦s t♦♣♦❧ó❣✐❝♦s✱ ❡ ❛ ❡str❛✲ té❣✐❛ ✉s❛❞❛ ❝♦♥s✐st❡ ❡♠ ♦❜t❡r ❡st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ♣❛r❛ ♣♦ssí✈❡✐s s♦❧✉çõ❡s ❞♦s ♣r♦❜❧❡♠❛s✳ ❊ ❛ ♣❛rt✐r ❞❛í ✉t✐❧✐③❛r ❛ t❡♦r✐❛ ❞♦ ❣r❛✉ t♦♣♦❧ó❣✐❝♦ ♣❛r❛ ❣❛r❛♥t✐r♠♦s ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s✳

❉❡ ✉♠❛ ♠❛♥❡✐r❛ ❣❡r❛❧✱ ❞❛❞♦ ✉♠ s✐st❡♠❛ ❞❡ ❡q✉❛çõ❡s ❡❧í♣t✐❝❛s

⎧ ⎪ ⎨ ⎪ ⎩

−∆u=h(x, u, v) xΩ

−∆v =k(x, u, v) xΩ,

✭✶✮

❡♠ q✉❡ Ω RN é ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ s✉❛✈❡ ❝♦♠ N 3✳ ❉✐③❡♠♦s q✉❡ ♦ s✐st❡♠❛ ❛❝✐♠❛ é

❣r❛❞✐❡♥t❡ s❡ ❡①✐st❡ K : Ω×R2 R❞❡ ❝❧❛ss❡ C1✱ t❛❧ q✉❡

∂K

∂u =h ❡ ∂K

∂v =k;

❡ é ❞✐t♦ ✉♠ s✐st❡♠❛ ❤❛♠✐❧t♦♥✐❛♥♦ s❡ ❡①✐st❡ H : Ω×R2 R✱ ❞❡ ❝❧❛ss❡ C1✱ t❛❧ q✉❡

∂H

∂u =k ❡ ∂H

∂v =h.

❖s ♣r♦❜❧❡♠❛s ❝♦♥s✐❞❡r❛❞♦s ♥❡st❛ t❡s❡ sã♦ ♠♦t✐✈❛❞♦s ♣♦r r❡s✉❧t❛❞♦s ♦❜t✐❞♦s ♣♦r ▼✳ ❈✉❡st❛✱ ❉❡ ❋✐❣✉❡✐r❡❞♦ ❡ ❙r✐❦❛♥t❤✱ ❡♠ ❬✶✵❪✱ ♣❛r❛ ❛ s❡❣✉✐♥t❡ ❝❧❛ss❡ ❞❡ s✐st❡♠❛s ❤❛♠✐❧t♦♥✐❛♥♦s

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆u=λ1u+up++f(x) x∈Ω −∆v =λ1v+v+q +g(x) x∈Ω

u= 0 x∈∂Ω,

✭✷✮

❡♠ q✉❡ λ1 ❞❡♥♦t❛ ♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ❞❡ (−∆, H01(Ω))✳ ❊♠ ❬✶✵❪✱ ❢♦✐ ♣r♦✈❛❞♦ ❡①✐stê♥❝✐❛

❞❡ s♦❧✉çã♦ ♣❛r❛ ✭✷✮ s✉♣♦♥❞♦ q✉❡ f, g Lr(Ω) r > N✱ s❛t✐s❢❛③❡♥❞♦

Ω

f φ1 <0 ❡

Ω

gφ1 <0, ✭✸✮

(12)

■♥tr♦❞✉çã♦ ✷

❡♠ q✉❡φ1 ❞❡♥♦t❛ ❛ ❛✉t♦❢✉♥çã♦ ❛ss♦❝✐❛❞❛ ❛♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ❡ p, q >1 s❛t✐s❢❛③❡♠

1

p+ 1 +

N −1

N + 1 1

q+ 1 >

N −1

N+ 1 ❡ 1

q+ 1 +

N−1

N + 1 1

p+ 1 >

N −1

N + 1. ✭✹✮

❆s ❤✐♣ér❜♦❧❡s ❛❝✐♠❛ ❢♦r❛♠ ✐♥tr♦❞✉③✐❞❛s ♣♦r ❈❧é♠❡♥t✲❞❡ ❋✐❣✉❡✐r❡❞♦✲▼✐t✐❞✐❡r✐✱ ❡♠ ❬✼❪✱ ♣❛r❛ ♦❜t❡r ❡st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ♣❛r❛ s✐st❡♠❛s ❡❧í♣t✐❝♦s s✉♣❡r❧✐♥❡❛r❡s ✈✐❛ té❝♥✐❝❛ ❞❡ ❇r❡③✐s✲ ❚✉r♥❡r ✭❬✹❪✮✳ ◆♦t❡ q✉❡ s❡ p=q ❡♥tã♦ ✭✹✮ s❡ r❡❞✉③ ❛ ❝♦♥❞✐çã♦ ❞❡ ❇ré③✐s✲❚✉r♥❡r✱ p < N+1

N−1✳

❆s ♥ã♦ ❧✐♥❡❛r✐❞❛❞❡s ❝♦♥s✐❞❡r❛❞❛s ❛q✉✐ ♣♦❞❡♠ s❡r ❝❛r❛❝t❡r✐③❛❞❛s ❝♦♠♦ ❛ss✐♠étr✐❝❛s✿ s✉♣❡r❧✐♥❡❛r❡s ❡♠ + ❡ ❛ss✐♥t♦t✐❝❛♠❡♥t❡ ❧✐♥❡❛r ❡♠ −∞✳ ❆❧é♠ ❞✐ss♦✱ ♥♦ss♦s ♣r♦❜❧❡♠❛s

sã♦ r❡ss♦♥❛♥t❡s ♥♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ❡♠−∞✳ Pr♦❜❧❡♠❛s ❞❡st❡ t✐♣♦ ❢♦r❛♠ ♣r✐♠❡✐r❛♠❡♥t❡

❝♦♥s✐❞❡r❛❞♦s ♣♦r ❲❛r❞ ❡♠ ❬✷✽❪✳ ◆❡st❡ ❛rt✐❣♦✱ ♣r♦✈♦✉✲s❡ ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ♦ s❡❣✉✐♥t❡ ♣r♦❜❧❡♠❛ s✉♣❡r❧✐♥❡❛r ❝♦♠ ❝♦♥❞✐çã♦ ❞❡ ◆❡✉♠❛♥♥

⎧ ⎪ ⎨ ⎪ ⎩

−∆u=up++f(x) xΩ

∂u

∂ν = 0 x∈∂Ω,

✭✺✮

♦♥❞❡ 1 < p < N

N−2 ❡ f ∈ L

1(Ω) s❛t✐s❢❛③❡♥❞♦

Ωf < 0✳ ❖ ❛✉t♦r ♦❜s❡r✈❛ q✉❡ ♦ ♠ét♦❞♦

✉t✐❧✐③❛❞♦ ♥ã♦ s❡ ❡st❡♥❞❡ ❛♦ ♣r♦❜❧❡♠❛ ❝♦♠ ❢r♦♥t❡✐r❛ ❞❡ ❉✐r✐❝❤❧❡t✳ ❖ ♣r♦❜❧❡♠❛ s✐♠✐❧✐❛r ❝♦♠ ❢r♦♥t❡✐r❛ ❞❡ ❉✐r✐❝❤❧❡t

⎧ ⎪ ⎨ ⎪ ⎩

−∆u=λ1u+up++f(x) x∈Ω

u= 0 x∈∂Ω,

✭✻✮

❢♦✐ ❝♦♥s✐❞❡r❛❞♦ ♣♦st❡r✐♦r♠❡♥t❡ ♣♦r ❑❛♥♥❛♥✲❖rt❡❣❛ ❡♠ ❬✷✵❪✱ ❡♠ q✉❡ 1 p < N N−1 ❡

f ∈C(Ω) s❛t✐s❢❛③❡♥❞♦ ❛ ❝♦♥❞✐çã♦ Ωf φ1 <0 ✳

❆ ❝♦♥❞✐çã♦ ✭✸✮ é ❝❤❛♠❛❞❛ ♥❛ ❧✐t❡r❛t✉r❛ ❞❡ ✧♦♥❡✲s✐❞❡❞ ▲❛♥❞❡s♠❛♥✲▲❛③❡r ❝♦♥❞✐t✐♦♥✧✳ ◆♦t❡ q✉❡✱ q✉❛♥❞♦ ♥ã♦ ❡①✐st❡ r❡ss♦♥â♥❝✐❛ ♥♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r ♦ ♣r♦❜❧❡♠❛ é ❞♦ t✐♣♦ ❆♠❜r♦s❡tt✐✲Pr♦❞✐✳ ▼❛✐s ♣r❡❝✐s❛♠❡♥t❡✱ s❡ λ = λ1 ♥♦ ♣r♦❜❧❡♠❛ ✭✻✮ ❡ f = tφ1 +h✱ ♦♥❞❡

Ωφ1h = 0✱ ❛ ❡①✐stê♥❝✐❛✱ ❛ ♥ã♦✲❡①✐stê♥❝✐❛ ❡ ❛ ♠✉❧t✐♣❧✐❝✐❞❛❞❡ ❞❡♣❡♥❞❡♠ ❞♦ ♣❛râ♠❡tr♦ t✳

(13)

■♥tr♦❞✉çã♦ ✸

◆♦ ♣r✐♠❡✐r♦ ❝❛♣ít✉❧♦ ✈❛♠♦s ❡st✉❞❛r ♦ s✐st❡♠❛ ❣r❛❞✐❡♥t❡

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆u=au+bv+up++f(x) xΩ

−∆v =bu+cv+v+q +g(x) xΩ

u=v = 0 x∂Ω,

✭✼✮

❡♠ q✉❡ Ω RN é ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ s✉❛✈❡✱ ❝♦♠ N 31< p, q < N+1

N−1✱ ❛s ❢✉♥çõ❡s f✱

g ∈Lr(Ω)r > N✱ s❛t✐s❢❛③❡♠ ❛ s❡❣✉✐♥t❡ ❝♦♥❞✐çã♦

Ω

f φ1+

λ1−a

b

Ω

gφ1 <0. ✭✽✮

❆❧é♠ ❞✐ss♦✱ ♦s ♣❛râ♠❡tr♦s a, b, c R sã♦ t❛✐s q✉❡ max{a, c} > 0b > 0✳ ❙✉♣♦✲

♠♦s t❛♠❜é♠ q✉❡ λ1 é ✉♠ ❛✉t♦✈❛❧♦r ❞❛ ♠❛tr✐③ A =

⎛ ⎝ a b

b c

⎠✱ ♠❛✐s ❡s♣❡❝✐✜❝❛♠❡♥t❡

λ1 = a+2c+

(a−c)2

4 +b2✳ ❙♦❜ ❡ss❛s ❝♦♥❞✐çõ❡s ✈❛♠♦s ♠♦str❛r ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛

♦ ♣r♦❜❧❡♠❛ ✭✼✮✳

◆♦ s❡❣✉♥❞♦ ❝❛♣ít✉❧♦ ❡st✉❞❛♠♦s ❛ r❡s♦❧✉❜✐❧✐❞❛❞❡ ❞♦ s✐st❡♠❛ ❤❛♠✐❧t♦♥✐❛♥♦

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆u=au+bv+vp++f(x) x∈Ω −∆v =cu+av+uq++g(x) x∈Ω

u=v = 0 x∈∂Ω,

✭✾✮

❡♠ q✉❡ Ω∈RN é ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ s✉❛✈❡✱ ❝♦♠N 31< p, q < N+1

N−1 ❡ ❛s ❢✉♥çõ❡sf✱

g Lr(Ω)r > N✱ s❛t✐s❢❛③❡♠ ❛ ❝♦♥❞✐çã♦

Ω

φ1f +

Ω

φ1g <0. ✭✶✵✮

❖s ♣❛râ♠❡tr♦sa, b, cRsã♦ t❛✐s q✉❡b, c >0✳ ❙✉♣♦♠♦s t❛♠❜é♠ q✉❡ ♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r

❞♦ ▲❛♣❧❛❝✐❛♥♦λ1 s❡❥❛ t❛♠❜é♠ ❛✉t♦✈❛❧♦r ❞❛ ♠❛tr✐③ M =

⎛ ⎝ a b

b a

⎠✱ ♠❛✐s ❡s♣❡❝✐✜❝❛♠❡♥t❡ s✉♣♦♠♦sλ1 =a+b✳ ◆♦t❡ q✉❡✱ ❛ ❝♦♥❞✐çã♦ ♥❛t✉r❛❧ s♦❜r❡ p ❡q s❡r✐❛ ✭✹✮✳ P♦r ❞✐✜❝✉❧❞❛❞❡s

(14)

■♥tr♦❞✉çã♦ ✹

◆♦ t❡r❝❡✐r♦ ❝❛♣ít✉❧♦ tr❛t❛♠♦s ♦ ♣r♦❜❧❡♠❛ r❡❧❛❝✐♦♥❛❞♦ ❛♦ ♦♣❡r❛❞♦r ❜✐✲❤❛r♠ô♥✐❝♦

⎧ ⎪ ⎨ ⎪ ⎩

(∆)2u=λ2 1u+u

p

++f(x) x∈Ω

u= ∆u= 0 x∂Ω,

✭✶✶✮

❡♠ q✉❡ Ω é ✉♠ ❞♦♠í♥✐♦ s✉❛✈❡ ❧✐♠✐t❛❞♦ ❞❡ RN✱ ❝♦♠ N > 5✳ ❆ ❢✉♥çã♦ f Lr(Ω)✱ ❝♦♠

r > N/3❡ s❛t✐s❢❛③ ❛ ❝♦♥❞✐çã♦ ✭✸✮✳ ❊ ♦ ❡①♣♦❡♥t❡ ps❛t✐s❢❛③

max

1, 4 N −4

< p < N + 1 N −3.

❙♦❜ ❡ss❛s ❝♦♥❞✐çõ❡s ✈❛♠♦s ♠♦str❛r ❛ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ♦ ♣r♦❜❧❡♠❛ ✭✶✶✮✳

❆♦ ✜♥❛❧ ❞❡ ❝❛❞❛ ❝❛♣ít✉❧♦ ❛♣r❡s❡♥t❛r❡♠♦s ❛❧❣✉♥s r❡s✉❧t❛❞♦s s♦❜r❡ r❡❣✉❧❛r✐❞❛❞❡ ❞❛s s♦❧✉çõ❡s✳

(15)

❈❛♣ít✉❧♦ ✶

❙✐st❡♠❛ ●r❛❞✐❡♥t❡

❖ ♦❜❥❡t✐✈♦ ❞❡st❡ ❝❛♣ít✉❧♦ é ❡st✉❞❛r ♦ ♣r♦❜❧❡♠❛ ❞❡ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ❞♦ s❡❣✉✐♥t❡ s✐st❡♠❛ ❞❡ ❡q✉❛çõ❡s ❡❧í♣t✐❝❛s

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆u=au+bv+up++f(x) x∈Ω −∆v =bu+cv+v+q +g(x) x∈Ω

u=v = 0 x∂Ω,

✭✶✳✶✮

❡♠ q✉❡ Ω RN é ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ s✉❛✈❡✱ ❝♦♠ N 31 < p, q < N+1

N−1✳ ❖s

♣❛râ♠❡tr♦s a, b, c R sã♦ t❛✐s q✉❡ max{a, c} >0b >0✳ ❉❡♥♦t❛♠♦s w+ = max{w,0}

❊ ❛s ❢✉♥çõ❡sf, g sã♦ t❛✐s q✉❡✱

f, g Lr(Ω) ♣❛r❛ r > N. ✭✶✳✷✮

P❛r❛ tr❛t❛r ❡ss❡ ♣r♦❜❧❡♠❛ ✈❛♠♦s ✉t✐❧✐③❛r ♠ét♦❞♦s t♦♣♦❧ó❣✐❝♦s✳ ❆ ❡str❛té❣✐❛ é ❡♥❝♦♥tr❛r ❡st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ♣❛r❛ ♣♦ssí✈❡✐s s♦❧✉çõ❡s ❞❡ s✐st❡♠❛ ✭✶✳✶✮ ❡ ✉t✐❧✐③❛r ❛ ❚❡♦r✐❛ ❞♦ ●r❛✉ ❚♦♣♦❧ó❣✐❝♦ ♣❛r❛ ❣❛r❛♥t✐r ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s✳

➱ ❝♦♥✈❡♥✐❡♥t❡ ❡s❝r❡✈❡r♠♦s ♦ s✐st❡♠❛ ✭✶✳✶✮ ♥❛ ❢♦r♠❛ ♠❛tr✐❝✐❛❧✿

⎧ ⎪ ⎨ ⎪ ⎩

−∆U =AU +G(U) +F(x) xΩ

U = 0 x∂Ω,

✭✶✳✸✮

❡♠ q✉❡

U =

⎛ ⎝ u

v

⎠, A=

⎛ ⎝ a b

b c

M2x2(R), G(U) =

⎛ ⎝ u

p

+

v+q

⎠ e F(x) =

⎛ ⎝ f(x)

g(x)

⎞ ⎠.

❈♦♥s✐❞❡r❛♠♦s λ1 < λ2 ≤ λ3 ≤ ... ≤ λn ≤ ... ♦s ❛✉t♦✈❛❧♦r❡s ❞❡ (−∆, H01(Ω)) ❡

φ1, φ2, ..., φn, ... ❛s ❝♦rr❡s♣♦♥❞❡♥t❡s ❛✉t♦❢✉♥çõ❡s ❡ t❛❧ q✉❡ ❛ ♥♦r♠❛ L2 ❞❡ φ1 s❡❥❛ ♥♦r♠❛❧✐✲

③❛❞❛ ✐❣✉❛❧ ❛ 1✳ ❉❡♥♦t❛♠♦s H ♦ ❡s♣❛ç♦ ❞❡ ❍✐❧❜❡rt H1

0(Ω)×H01(Ω) ♠✉♥✐❞♦ ❞❛ ♥♦r♠❛ U2 =u2+v2 =

Ω|∇

u|2+

Ω|∇

v|2

(16)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✻

♣❛r❛ (u, v) H✳ P❡❧♦ ❚❡♦r❡♠❛ ❞❡ ❙♦❜♦❧❡✈✱ ♣❛r❛ 1 σ 2∗ ✜①❛❞♦✱ ❛ ✐♠❡rsã♦ H ֒(Ω)×Lσ(Ω) é ❝♦♥tí♥✉❛✳ ❆❧é♠ ❞✐ss♦✱ s❡ σ < 2✱ ❡♥tã♦ ❛ ✐♠❡rsã♦ é ❝♦♠♣❛❝t❛✳

❈♦♠ r❡❧❛çã♦ ❛ ♥♦t❛çã♦ ✉s❛❞❛ ❞✉r❛♥t❡ ♦ ❝❛♣ít✉❧♦✱ q✉❛♥❞♦ tr❛t❛r♠♦s s♦❜r❡ ♦ ♣r♦❞✉t♦ ❞❡ ❡s♣❛ç♦s ❞❡ ❇❛♥❛❝❤ A ×B✱ ❛❞♦t❛r❡♠♦s✱ ❛ ♠❡♥♦s q✉❡ s❡❥❛ ❡s♣❡❝✐✜❝❛❞♦✱ ❛ ♥♦r♠❛ ❞❛

s♦♠❛✳ P♦ss✐✈❡❧♠❡♥t❡✱ q✉❛♥❞♦ tr❛t❛r♠♦s ❞♦ ♣r♦❞✉t♦ ❞❡ ❡s♣❛ç♦s ✐❣✉❛✐s A×A❞❡♥♦t❛r❡♠♦s

❛ ♥♦r♠❛ ❞❡ ✉♠ ✈❡t♦r (a, b)A×A s✐♠♣❧❡s♠❡♥t❡ ♣♦r (a, b)A =aA+bA

✶✳✶✳ ❊st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐

◆❡st❛ s❡çã♦ ✈❛♠♦s ♠♦str❛r ✉♠❛ ❡st✐♠❛t✐✈❛ ❛ ♣r✐♦r✐ ♣❛r❛ ♣♦ssí✈❡✐s s♦❧✉çõ❡s ❞♦ s✐st❡♠❛ ✭✶✳✸✮✳

P❛r❛ ✐ss♦ ✈❛♠♦s s✉♣♦r q✉❡ ♦ ♣r✐♠❡✐r♦ ❛✉t♦✈❛❧♦r λ1 ❞❡ (−∆, H01(Ω))s❡❥❛ ✉♠ ❛✉t♦✈❛❧♦r

❞❛ ♠❛tr✐③ A✳ ❉❡st❛❝❛♠♦s q✉❡ ♦s ❛✉t♦✈❛❧♦r❡s ❞❛ ♠❛tr✐③ A sã♦

ξ= a+c 2 +

ac

2

2

+b2 ❡ η= a+c

2 −

ac

2

2

+b2.

▼❛✐s ❡s♣❡❝✐✜❝❛♠❡♥t❡ ✈❛♠♦s s✉♣♦r q✉❡ λ1 = ξ✳ ❙❡♥❞♦ ❛ss✐♠ ♣❡❧♦s r❡s✉❧t❛❞♦s ❞❛❞♦s ♥♦

❆♣ê♥❞✐❝❡❈✱ ♦❜t❡♠♦s q✉❡ Φ = (αφ1, βφ1)✱ ❝♦♠ α= 1 ❡ β = λ1b−a✱ é s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛

⎧ ⎪ ⎨ ⎪ ⎩

−∆U =AU xΩ

U = 0 x∂Ω.

✭✶✳✹✮

◆♦t❡ q✉❡✱λ1 =ξ ✐♠♣❧✐❝❛ q✉❡ λ1 > a ❡ ❛ss✐♠ β >0✳

✶✳✶ ▲❡♠❛✳ ❈♦♥s✐❞❡r❡ 1 < p, q < NN+11 ❛s ❢✉♥çõ❡s f, g Lr(Ω) r > N✱ s❛t✐s❢❛③❡♥❞♦ ❛

❝♦♥❞✐çã♦

Ω

f φ1+

λ1−a

b

Ω

gφ1 <0 ✭✶✳✺✮

❡ λ1 = ξ✳ ❙❡❥❛ U ∈ H ✉♠❛ ♣♦ssí✈❡❧ s♦❧✉çã♦ ❞❡ ✭✶✳✸✮✳ ❊♥tã♦ ❡①✐st❡ ❢✉♥çã♦ ❝r❡s❝❡♥t❡

ρ:R+ R+✱ ❞❡♣❡♥❞❡♥❞♦ s♦♠❡♥t❡ ❞❡ pqΩ✱ t❛❧ q✉❡ ρ(0) = 0

UC1

(17)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✼

❉❡♠♦♥str❛çã♦✳ ❙❡❥❛ U H ✉♠❛ ♣♦ssí✈❡❧ s♦❧✉çã♦ ❞❡ ✭✶✳✸✮✳ ▼✉❧t✐♣❧✐❝❛♥❞♦ ✭✶✳✸✮ ♣♦r Φ ❡

✐♥t❡❣r❛♥❞♦✱ ♦❜t❡♠♦s

Ω−

∆U ·Φ =

Ω

AU ·Φ +

Ω

G(U)·Φ +

Ω

F(x)·Φ,

❝♦♠♦ ❛ ♠❛tr✐③ A é ❛✉t♦❛❞❥✉♥t❛ ❡Φ é s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛ ✭✶✳✹✮✱ t❡♠♦s q✉❡

Ω

G(U)·Φ =

Ω

F(x)·ΦCF(x)r. ✭✶✳✼✮

P♦❞❡♠♦s ❞❡❝♦♠♣♦r U ❡♠ U = tΦ + U1 ❡♠ q✉❡ U1 = (u1, v1) é ♦rt♦❣♦♥❛❧ ❛ Φ ❡♠ H✱

✈❡❥❛ ❙❡çã♦ ✭❈✳✷✮✳ ❈♦♥s❡q✉❡♥t❡♠❡♥t❡✱ U1 é ♦rt♦❣♦♥❛❧ ❛ Φ t❛♠❜é♠ ❡♠ L2 ×L2✱ ✐st♦ é✱

ΩU1·Φ = 0✳ ▼✉❧t✐♣❧✐♣❧✐❝❛♥❞♦ t❛❧ ❞❡❝♦♠♣♦s✐çã♦ ♣♦r Φ❡ ✐♥t❡❣r❛♥❞♦✱ ♦❜t❡♠♦s

Ω

U ·Φ =t

Ω

Φ·Φ +

Ω

U1·Φ,

❧♦❣♦

t =C

Ω

U ·Φ =C

Ω

αuφ1+

Ω βvφ1 =C Ω

α(u+−u−)φ1+

Ω

β(v+−v−)φ1

≤C

Ω

αu+φ1+

Ω

βv+φ1.

❆♣❧✐❝❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r ❥✉♥t❛♠❡♥t❡ ❝♦♠ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✼✮✱ r❡s✉❧t❛ q✉❡

tC

Ω

up+φ1

1/p

+C

Ω

v+qφ1

1/q

≤C(F1r/p+F1r/q). ✭✶✳✽✮

▲❡♠❜r❡♠♦s q✉❡ ♥♦ss♦ ♦❜❥❡t✐✈♦ é ❧✐♠✐t❛r U✱ ♣❛r❛ ✐ss♦ ❞❡✈❡♠♦s ❧✐♠✐t❛r U1 ❡ |t|✳ ❙❡ t ≥

0✱ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✽✮ ♥♦s ❞á ✉♠❛ ❧✐♠✐t❛çã♦ ♣❛r❛ |t|✳ ❙❡♥❞♦ ❛ss✐♠✱ ✈❛♠♦s ❞✐✈✐❞✐r ❛

❞❡♠♦♥str❛çã♦ ❡♠ ❞✉❛s ♣❛rt❡s✿

❈❛s♦ ✶✿ t0✳ ❙♦❜ ❡ss❛ ❝♦♥❞✐çã♦ r❡st❛ ❡♥❝♦♥tr❛r♠♦s ✉♠❛ ❧✐♠✐t❛çã♦ ♣❛r❛ U1✳ ▼✉❧t✐✲

♣❧✐❝❛♥❞♦ ❛❣♦r❛ ❛ ❡q✉❛çã♦ ✭✶✳✸✮ ♣♦r U1 ❡ ✐♥t❡❣r❛♥❞♦✱ ♦❜t❡♠♦s

Ω

∆U ·U1 =

Ω

AU ·U1+

Ω

G(U)·U1+

Ω

(18)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✽

✉s❛♥❞♦ ❛ ❞❡❝♦♠♣♦s✐çã♦ U =tΦ +U1✱ t❡♠♦s U12 =

Ω

AU1·U1+

Ω

G(U)·U1+

Ω

F(x)·U1 ≤

Ω

AU1·U1+

Ω

G(U)·U1+

Ω

F(x)·U1

.

◆❡st❡ ♠♦♠❡♥t♦ ✈❛♠♦s ✉t✐❧✐③❛r ❛ t❡♦r✐❛ ❡s♣❡❝tr❛❧ ♣❛r❛ ♦♣❡r❛❞♦r❡s ❝♦♠♣❛❝t♦s✱ ✈❡❥❛ ❆♣ê♥✲ ❞✐❝❡ ❈✳ ❈♦♠♦ U1 é ♦rt♦❣♦♥❛❧ ❛ Φ ❡♠ H ❡ Φ = cΦA1 ❡♥tã♦ U1 t❛♠❜é♠ é ♦rt♦❣♦♥❛❧ ❛ ΦA1

❡♠ H✳ ▲♦❣♦ ♣♦❞❡♠♦s ✉s❛r ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭❈✳✹✮ ♣❛r❛ k = 1 ❡ ❛ss✐♠ ♦❜t❡♠♦s

U12 ≤ 1

λ2(A)

U12+

Ω

G(U)·U1 +

Ω|

F(x)·U1|,

✐st♦ é✱

1− 1

λ2(A)

U12 ≤

Ω

G(U)·U1+

Ω|

F(x)·U1|.

❈♦♠♦1 = λ1(A)< λ2(A)❡ ❛♣❧✐❝❛♥❞♦ ❛ ❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r✱ ♦❜t❡♠♦s q✉❡ U12 C

Ω

G(U)·U1+CF2U12.

❋✐♥❛❧♠❡♥t❡ ♣❡❧❛ ✐♠❡rsã♦ H1

0(Ω) ֒→L2(Ω)✱ ❝♦♥❝❧✉í♠♦s q✉❡ U12 C

Ω

G(U).U1+CFrU1. ✭✶✳✾✮

❱❛♠♦s ❛❣♦r❛ ❡st✐♠❛r ❛ ♣r✐♠❡✐r❛ ✐♥t❡❣r❛❧ ❞♦ ❧❛❞♦ ❞✐r❡✐t♦ ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✾✮✱

Ω

G(U)·U1 =

Ω

up+u1 +vq+v1

=

Ω

up+u+1 −

Ω

up+u−1 +

Ω

v+qv1+−

Ω

vq+v1−

Ω

up+u+1 +

Ω

v+qv1+,

❝♦♠♦t ≥0t❡♠♦s q✉❡ u+1 ≤u+ ❡v1+≤v+✱ ❧♦❣♦

Ω

G(U)·U1 ≤

Ω

up++1+

Ω

(19)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✾

❆♣❧✐❝❛♥❞♦ ♦ ▲❡♠❛ ✭❇✳✾✮ ❡ ❡♠ s❡❣✉✐❞❛ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✼✮✱ ♦❜t❡♠♦s

Ω

G(U)·U1 ≤ Ω

up+φ1

α

Ω|∇

u+|2δ/2+ Ω

v+qφ1

α′

Ω|∇

v+|2δ

/2

≤CFαr u+ δ

+Fαr′v+ δ′

≤CFαr uδ+Fαrvδ′

≤CFαr Uδ+FαrUδ′.

❯s❛♥❞♦ ❛ ❞❡❝♦♠♣♦s✐çã♦ U =tΦ +U1✱ t❡♠♦s

Ω

G(U)·U1 ≤CFαr (|t| Φ+U1) δ

+CFαr′(|t| Φ+U1)δ′,

❡ ♣❡❧❛ ❡st✐♠❛t✐✈❛ ❞❡ t=|t|✱ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✽✮✱ ❝♦♥❝❧✉í♠♦s

Ω

G(U)·U1 ≤CFαr

F1r/p+F1r/qδ+CFαrFr1/p+F1r/qδ

+CFαr U1δ+CFαrU1δ′. ✭✶✳✶✵✮

❙✉❜st✐t✉✐♥❞♦ ❛ ❡st✐♠❛t✐✈❛ ✭✶✳✶✵✮ ❡♠ ✭✶✳✾✮✱ r❡s✉❧t❛

U12 ≤C

Fαr+δ/p+Fαr+δ/q+Frα′+δ′/p+Frα′+δ′/q

+CFαr U1 δ

+CFαr′U1 δ′

+CFrU1.

❈♦♠♦ p < N+1

N−1 s❡❣✉❡ ❞♦ ▲❡♠❛❇✳✾q✉❡ δ, δ

(1,2)✳ ❙❡♥❞♦ ❛ss✐♠✱ ❛♣❧✐❝❛♥❞♦ ❛ ❞❡s✐❣✉❛❧✲ ❞❛❞❡ ❞❡ ❨♦✉♥❣✱ ♦❜t❡♠♦s q✉❡

U12 ≤C

Fαr+δ/p+Fαr+δ/q+Frα′+δ′/p+Frα′+δ′/q

+CFr2α/(2−δ)+CF

2α′/(2δ)

r +CF

2

r.

P♦rt❛♥t♦✱

U1 ≤CFαr+δ/p+F α+δ/q

r +F α′+δ/p

r +F

α′+δ/q

r

1/2

+CFα/r (2−δ)+CFrα′/(2−δ′)+CFr,

♥♦✈❛♠❡♥t❡ ✉s❛♥❞♦ ❛ ❞❡❝♦♠♣♦s✐çã♦ U =tΦ +U1✱ ❝♦♥❝❧✉í♠♦s q✉❡

UCF1r/p+Fr1/q+CFαr+δ/p+Fαr+δ/q+Frα′+δ′/p+Frα′+δ′/q1/2

(20)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✵

❙✉❜st✐t✉✐♥❞♦ ♦s ✈❛❧♦r❡s ❞❡ α✱ α′δ δ✱ ❞❛❞♦s ♣❡❧♦ ▲❡♠❛ ❇✳✾✱ ♣♦❞❡♠♦s ✈❡r q✉❡

U ≤CmaxF1r/p,F

1/q r ,F

α/(2−δ)

r ,F

α′/(2δ)

r

. ✭✶✳✶✶✮

❖❜s❡r✈❛✲s❡ q✉❡ ❡♥❝♦♥tr❛♠♦s ✉♠❛ ❧✐♠✐t❛çã♦ ♣❛r❛ U ❡♠ H✱ ♠❛s ♣r❡❝✐s❛♠♦s ❡♥❝♦♥tr❛r

✉♠❛ ❧✐♠✐t❛çã♦ ♣❛r❛ U ♥♦ ❡s♣❛ç♦ C1

0(Ω)2✳ ❖ ♣r✐♠❡✐r♦ ♣❛ss♦ ♣❛r❛ ❝❤❡❣❛r♠♦s ❛♦ ♥♦ss♦

♦❜❥❡t✐✈♦ é ❛♣❧✐❝❛r ✉♠ ❛r❣✉♠❡♥t♦ ❞❡ r❡❣✉❧❛r✐❞❛❞❡✱ ❝♦♥❤❡❝✐❞♦ ♣♦r ❛r❣✉♠❡♥t♦ ❞❡ ❜♦♦tstr❛♣✱ q✉❡ ❡♥❝♦♥tr❛✲s❡ ❡♠ ❞❡t❛❧❤❡s ♥❛ ❙❡çã♦ ✭✶✳✸✮✳ ❆♣❧✐❝❛♥❞♦ ♦ ❛r❣✉♠❡♥t♦ ❞♦ t✐♣♦ ❜♦♦tstr❛♣✱ ♦❜t❡♠♦s q✉❡ u, v W2,r(Ω) ❡ ❡①✐st❡ C > 0t❛❧ q✉❡

U2,r C(Fγr +Uη)

❝♦♠ η, γ ❝♦♥st❛♥t❡s✱ t❛✐s q✉❡ η, γ 1✳ ❊st❡ ❢❛t♦✱ ❥✉♥t❛♠❡♥t❡ ❝♦♠ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✶✶✮✱

✐♠♣❧✐❝❛ q✉❡

U2,r ≤ρ(Fr).

P♦r ✜♠✱ ❝♦♠♦ r > N✱ ✈❛❧❡ ❛ ✐♠❡rsã♦ W2,r(Ω)֒C1(Ω)✱ ❡ ♣♦rt❛♥t♦ UC1

0( ¯Ω)≤ρ(Fr).

❈❛s♦ ✷✿ t <0✳ P❡❧♦ Pr✐♥❝í♣✐♦ ❞♦ ▼á①✐♠♦ ❞❡ ❍♦♣❢✱ ✭✈❡❥❛ ❚❡♦r❡♠❛ ❇✳✼✮✱ s❛❜❡♠♦s q✉❡

❛ ♣r✐♠❡✐r❛ ❛✉t♦❢✉♥çã♦ φ1 >0 s❡ ❡♥❝♦♥tr❛ ♥♦ ✐♥t❡r✐♦r ❞❡ ✉♠ ❝♦♥❡ ❞❡ ❢✉♥çõ❡s ♣♦s✐t✐✈❛s ♥♦

❡s♣❛ç♦C1

0(Ω)✳ ❊♥tã♦ ❡①✐st❡ ǫ >0t❛❧ q✉❡

wBC1

0( ¯Ω)(φ1, ǫ)⇒w >0 ❡♠ Ω ❡

∂w

∂η <0 ❡♠ ∂Ω,

❡♠ q✉❡ η ❞❡♥♦t❛ ♦ ✈❡t♦r ❡①t❡r✐♦r ♥♦r♠❛❧ ❛ ❢r♦♥t❡✐r❛ ❞❡ Ω✳ ❈♦♠♦ Φ C1

0(Ω)×C01(Ω) é

t❛❧ q✉❡ Φ =

⎛ ⎝ αφ1

βφ1

⎠✱ ❝♦♠ α✱β >0✱ ♣♦❞❡♠♦s ❛✜r♠❛r q✉❡ ❡①✐st❡ ǫ >0✱ t❛❧ q✉❡ (w1, w2)∈BC1

0( ¯Ω)(φ1, ǫ)×BC01( ¯Ω)(φ1, ǫ)⇒w1, w2 >0 ❡♠ Ω ❡

∂w1

∂η , ∂w2

∂η <0 ❡♠ ∂Ω.

❉❡✜♥✐♠♦sǫ0 ♦ s✉♣r❡♠♦s ❞❡ t❛✐s ǫ✬s ❡ r❡❧❡♠❜r❛♠♦s q✉❡✱ ♣❡❧❛ ❙❡çã♦✶✳✸✱ U = (u, v)s♦❧✉çã♦

❞❡ ✭✶✳✸✮ ❜❡♠ ❝♦♠♦ U1 = (u1, v1) ♣❡rt❡♥❝❡♠ ❛ C01(Ω)×C01(Ω)✳ P♦❞❡♠♦s ❡s❝r❡✈❡r

u=tαφ1 +

u1

αt

❡ v =tβ

φ1+

v1

βt

(21)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✶

❆✜r♠❛♠♦s q✉❡ −u1/αt /∈ BC1

0( ¯Ω)(0, ǫ0) ❡ −v1/βt /∈ BC01( ¯Ω)(0, ǫ0)✳ P♦✐s✱ ❝❛s♦ ❝♦♥trár✐♦✱ t❡rí❛♠♦s q✉❡

u

αt =φ1−(− u1

αt)∈BC10( ¯Ω)(φ1, ǫ0) ❡

v

βt =φ1−(− v1

βt)∈BC01( ¯Ω)(φ1, ǫ0) ♦ q✉❡ é ✉♠❛ ❝♦♥tr❛❞✐çã♦✱ ❥❛ q✉❡ u+, v+0 α, β >0 t <0✳ ❙❡♥❞♦ ❛ss✐♠✱

|t| ≤ 1

αǫ0

u1C1

0( ¯Ω) ❡ |t| ≤

1

βǫ0

v1C1 0( ¯Ω).

P♦rt❛♥t♦✱

|t| ≤Cu1C1

0( ¯Ω)+Cv1C01( ¯Ω) =CU1C01( ¯Ω). ✭✶✳✶✷✮ ❘❡st❛ ❡♥❝♦♥tr❛r♠♦s ✉♠❛ ❧✐♠✐t❛çã♦ ❛ ♣r✐♦r✐ ♣❛r❛ U1C1

0(Ω)✳ ❖❜s❡r✈❛♠♦s q✉❡ ❛ ❞❡s✐❣✉❛❧✲ ❞❛❞❡ ✭✶✳✾✮ ❝♦♥t✐♥✉❛ ✈á❧✐❞❛ ♣❛r❛ t <0✱ ✐st♦ é✱

U12 ≤C

Ω

G(U)·U1+CFrU1. ✭✶✳✶✸✮

❆❣♦r❛ ✈❛♠♦s ❡st✐♠❛r ❛ ♣r✐♠❡✐r❛ ✐♥t❡❣r❛❧ ❞♦ ❧❛❞♦ ❞✐r❡✐t♦ ❞❡ ✭✶✳✶✸✮✳ ◆♦t❡ q✉❡

Ω

G(U)·U1

≤ Ω

up+|u1|+

Ω

v+|q v1|,

❝♦♠♦ t < 0t❡♠♦s q✉❡ u+ <|u1| ❡ v+ < |v1|✱ s❡♥❞♦ ❛ss✐♠ ♣♦❞❡♠♦s ❛♣❧✐❝❛r ♦ ▲❡♠❛ ✭❇✳✾✮

❡ ♦❜t❡♠♦s q✉❡

Ω

G(U)·U1

Ωup+φ1

α

Ω

|∇u1|δ/2+

Ω

vq+φ1

α′

Ω

|∇v1|δ

/2

.

P❡❧❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✼✮✱ r❡s✉❧t❛

Ω

G(U)·U1

≤CFαr u1 δ

+CFαrv1δ′

≤CFαr U1δ+CFα

r U1 δ′

. ✭✶✳✶✹✮

❙✉❜st✐t✉✐♥❞♦ ✭✶✳✶✹✮ ❡♠ ✭✶✳✶✸✮✱ t❡♠♦s q✉❡

U12 ≤CFαr U1 δ

+CFαr′U1 δ′

+CFrU1.

◆♦✈❛♠❡♥t❡✱ ❝♦♠♦ δ, δ′ (1,2)✱ ❛♣❧✐❝❛♠♦s ❛ ❉❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❨♦✉♥❣ ❡ ❝♦♥❝❧✉í♠♦s q✉❡

U1 ≤CF

α

2−θ

r +CF

α′

2−θ′

(22)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✷

❈♦♠♦U1 é s♦❧✉çã♦ ❢r❛❝❛ ❞♦ ♣r♦❜❧❡♠❛

⎧ ⎪ ⎨ ⎪ ⎩

−∆U1 =AU1+G(U) +F(x) x∈Ω

U1 = 0 x∈∂Ω,

✭✶✳✶✻✮

♣♦❞❡♠♦s ❛♣❧✐❝❛r ♦ ❛r❣✉♠❡♥t♦ ❞♦ t✐♣♦ ❜♦♦tstr❛♣✱ ✭✈❡❥❛ ❙❡çã♦✶✳✸✮✱ ♣❛r❛ ♦ s✐st❡♠❛ ✭✶✳✶✻✮ ❡ ❝♦♥❝❧✉✐r q✉❡ U1 ∈W2,r×W2,r(Ω) ❡ t❛♠❜é♠ q✉❡ ❡①✐st❡ ❝♦♥st❛♥t❡ C >0✱ t❛❧ q✉❡

U12,r ≤C(Fγr +Uη)

❝♦♠ η, γ ❝♦♥st❛♥t❡s✱ t❛✐s q✉❡ η, γ 1✳ ❊st❡ ❢❛t♦✱ ❥✉♥t❛♠❡♥t❡ ❝♦♠ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✶✺✮✱

✐♠♣❧✐❝❛ q✉❡

U12,r ≤ρ(Fr).

❆❧é♠ ❞✐ss♦✱ ❝♦♠♦ r > N✱ ✈❛❧❡ ❛ ✐♠❡rsã♦ W2,r(Ω) ֒ C1(Ω)✳ ❙❡♥❞♦ ❛ss✐♠✱ ♣♦❞❡♠♦s

❝♦♥❝❧✉✐r q✉❡

U1C1

0(Ω) ≤ρ(Fr). ✭✶✳✶✼✮ ❈♦♠♦U =U1+tΦ❡ ✉s❛♥❞♦ ❛s ❞❡s✐❣✉❛❧❞❛❞❡s ✭✶✳✶✷✮ ❡ ✭✶✳✶✼✮✱ ♦❜t❡♠♦s q✉❡

UC1

0(Ω)≤ρ(Fr).

✶✳✷✳ ❘❡s✉❧t❛❞♦ ❞❡ ❊①✐stê♥❝✐❛

◆❡st❛ s❡çã♦ ✈❛♠♦s ♠♦str❛r ✉♠ r❡s✉❧t❛❞♦ ❞❡ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s ♣❛r❛ ♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮✳

✶✳✷ ❚❡♦r❡♠❛✳ ❆ss✉♠✐♥❞♦ ❛s ❤✐♣ót❡s❡s ❞♦ ▲❡♠❛ ✭✶✳✶✮ ❡①✐st❡ ♣❡❧♦ ♠❡♥♦s ✉♠❛ s♦❧✉çã♦

U = (u, v)(W2,r(Ω)H1 0(Ω))

2 ❞♦ s✐st❡♠❛ ✭✶✳✸✮✳

◆❛ ❞❡♠♦♥str❛çã♦ ✈❛♠♦s ♣r♦❝❡❞❡r ❞❛ s❡❣✉✐♥t❡ ❢♦r♠❛✱ ✈❛♠♦s ♠♦str❛r q✉❡ t♦❞❛ s♦❧✉çã♦

(23)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✸

♣❡q✉❡♥❛s ❡ s❛t✐s❢❛③❡♥❞♦ ❛ ❝♦♥❞✐çã♦ ✭✶✳✺✮✳ ❈♦♥s✐❞❡r❡ ❛ ❧✐♥❡❛r✐③❛çã♦ ❞❡ ♣r♦❜❧❡♠❛ ✭✶✳✶✮✱ ♣❛r❛ (u0, v0) s♦❧✉çã♦ ❞❡ ✭✶✳✸✮✿

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆w=aw+bz+p(u+0)p−1w xΩ −∆z =bw+cz+q(v0+)q−1z xΩ

w=z = 0 x∈∂Ω.

✭✶✳✶✽✮

❆ ♥ã♦ ❞❡❣❡♥❡r❛❝✐❞❛❞❡ ❡ ♦ ❝á❧❝✉❧♦ ❞♦ í♥❞✐❝❡ sã♦ ❝♦♥s❡q✉ê♥❝✐❛ ❞♦s s❡❣✉✐♥t❡s r❡s✉❧t❛❞♦s✿

✶✳✸ ▲❡♠❛✳ ❊①✐st❡ǫ >0t❛❧ q✉❡❀ ♣❛r❛ ❝❛❞❛ m, k L∞ sR t [0,1]t❛✐s q✉❡ m, k 0 q✳t✳♣✳✱ m = 0✱ k = 0✱ m∞,k∞ < ǫ ❡ 0< s < ǫ❀ s✉♣♦♥❤❛ t❛♠❜é♠✱ q✉❡ ❡①✐st❛ Ω˜ ⊂ Ω ❝♦♠ ♠❡❞✐❞❛ ♣♦s✐t✐✈❛✱ t❛❧ q✉❡ ❛s ❢✉♥çõ❡s m ❡ k ♥ã♦ s❡ ❛♥✉❧❡♠ s✐♠✉❧t❛♥❡❛♠❡♥t❡ ♣❛r❛ t♦❞♦ x∈Ω˜✳ ❊♥tã♦ ♦ s✐st❡♠❛

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆w=aw+bz+tm(x)w+ (1−t)sw x∈Ω

−∆z =bw+cz+tk(x)z+ (1−t)sz x∈Ω

w=z = 0 x∈∂Ω,

✭✶✳✶✾✮

♣♦ss✉✐ s♦♠❡♥t❡ s♦❧✉çã♦ tr✐✈✐❛❧ w=z = 0✳

❉❡♠♦♥str❛çã♦✳ ❈♦♥s✐❞❡r❡ ❛ ❢♦r♠❛ ♠❛tr✐❝✐❛❧ ♣❛r❛ ♦ s✐st❡♠❛ ✭✶✳✶✾✮✿

⎧ ⎪ ⎨ ⎪ ⎩

−∆W = ˜AW xΩ

W = 0 x∂Ω,

❡♠ q✉❡

˜

A(x) =

⎝ a+tm(x) + (1−t)s b

b c+tk(x) + (1t)s

⎠ e W =

⎛ ⎝ w

z

⎞ ⎠.

❱❛♠♦s ♠♦str❛r q✉❡ ❛s ♠❛tr✐③❡sA❡A˜(x)s❛t✐s❢❛③❡♠ ❛ r❡❧❛çã♦AA˜(x)✱ ✈❡❥❛ ❉❡✜♥✐çã♦

✭❈✳✷✮✳ ❉❛❞♦ (x, y)∈Ω×R2✱ ❡♠ q✉❡ y= (y1, y2)✱ t❡♠♦s

˜

(24)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✹

P❡❧❛s ❤✐♣ót❡s❡s ❞❛❞❛s s♦❜r❡m, k ❡♠ Ω❡Ω˜✱ ❡ s♦❜r❡t ❡s ✱ t❡♠♦s q✉❡ ❛ ❡①♣r❡ssã♦ ❛♥t❡r✐♦r

é ♥ã♦ ♥❡❣❛t✐✈❛ ❡♠Ω×R2 ❡ ❡str✐t❛♠❡♥t❡ ♣♦s✐t✐✈❛ ❡♠ Ω˜ ×R2✳ P♦rt❛♥t♦ AA˜(x)

❆❧é♠ ❞✐ss♦✱ s❛❜❡♠♦s q✉❡ ❛ ❛✉t♦❢✉♥çã♦ ΦA

1 ❛ss♦❝✐❛❞❛ ❛♦ ❛✉t♦✈❛❧♦r λ1(A) s❛t✐s❢❛③❛

Pr♦♣r✐❡❞❛❞❡ ❞❡ ❈♦♥t✐♥✉❛çã♦ Ú♥✐❝❛✱ ✈❡❥❛ ❞❡✜♥✐çã♦ ✭❈✳✸✮✳ ❙❡♥❞♦ ❛ss✐♠✱ ✉t✐❧✐③❛♥❞♦ ❛ Pr♦✲ ♣♦s✐çã♦ ✭❈✳✹✮✱ t❡♠♦s q✉❡ λ1( ˜A(x)) < λ1(A) = 1✳ ❚❡♠♦s t❛♠❜é♠ q✉❡ ❝❛❞❛ ❡♥tr❛❞❛ ❞❛

♠❛tr✐③ A˜ ❝♦♥✈❡r❣❡ ❡♠ L♣❛r❛ A✱ ✉s❛♥❞♦ ❛ ❝♦♥t✐♥✉✐❞❛❞❡ ❞♦s ❛✉t♦✈❛❧♦r❡s ❡♠ r❡❧❛çã♦ ❛s ♣❡s♦s A(x)✱ r❡s✉❧t❛ q✉❡ λj( ˜A(x)) → λj(A) ♣❛r❛ ❝❛❞❛ j = 1,2...✳ ❊♠ ♣❛rt✐❝✉❧❛r ♣❛r❛ j = 2 t❡♠♦s q✉❡ λ2( ˜A(x))→ λ2(A) > λ1(A) = 1✳ P♦rt❛♥t♦✱ λ1( ˜A(x))< 1< λ2( ˜A(x)) ❡

❝♦♥s❡q✉❡♥t❡♠❡♥t❡w=z = 0 é ❛ ú♥✐❝❛ s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✾✮✳

✶✳✹ ▲❡♠❛✳ ❙❡❥❛ 0 < s < ǫ ✜①❛❞♦✱ ❝♦♥s✐❞❡r❡ ♦ s❡❣✉✐♥t❡ ♣r♦❜❧❡♠❛ ❞❡ ❛✉t♦✈❛❧♦r ❝♦♠

♣❛râ♠❡tr♦ μ

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆w=λ(aw+bz+sw) x∈Ω

−∆z =λ(bw+cz+sz) x∈Ω

w=z = 0 x∈∂Ω.

✭✶✳✷✵✮

❊♥tã♦ ❡①✐st❡ s♦♠❡♥t❡ ✉♠ ❛✉t♦✈❛❧♦r λ ♥♦ ✐♥t❡r✈❛❧♦ [0,1]✳

❉❡♠♦♥str❛çã♦✳ Pr✐♠❡✐r❛♠❡♥t❡ ✈❛♠♦s ❡s❝r❡✈❡r ♦ ♣r♦❜❧❡♠❛ ✭✶✳✷✵✮ ♥❛ ❢♦r♠❛ ♠❛tr✐❝✐❛❧

⎧ ⎪ ⎨ ⎪ ⎩

−∆W =λAW˜ x∈Ω

W = 0 x∈∂Ω,

❡♠ q✉❡ A˜=

⎝ a+s b

b c+s

⎠ ❡ W =

⎛ ⎝ w

z

⎞ ⎠✳

❱❛♠♦s ♣r♦❝❡❞❡r ❝♦♠♦ ♥❛ ❞❡♠♦♥str❛çã♦ ❞♦ ▲❡♠❛ ✭✶✳✸✮✳ ◆♦t❡ q✉❡✱ A ≺ A˜ ❡♥tã♦✱ ♣❡❧❛

Pr♦♣♦s✐çã♦ ✭❈✳✹✮✱ r❡s✉❧t❛ q✉❡ λ1( ˜A) < λ1(A) = 1✳ ❋❛③❡♥❞♦ ǫ s✉✜❝❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦

(25)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✺

❉❡♠♦♥str❛çã♦ ❞♦ ❚❡♦r❡♠❛ ✭✶✳✷✮✿

❈♦♥s✐❞❡r❡ ❛ ❛♣❧✐❝❛çã♦ TF :C01(Ω)2 −→C01(Ω)2 t❛❧ q✉❡

TF(U) = (−∆)−1(AU +G(U) +F(x))

=(−∆)−1(au+bv+up++f(x)),(−∆)−1(bu+cv+v+q +g(x))

.

◆♦t❡ q✉❡ TF é ✉♠ ♦♣❡r❛❞♦r ❝♦♠♣❛❝t♦ ❡ ❝♦♥tí♥✉♦ ❡ TF(u, v) = (u, v)s❡✱ ❡ s♦♠❡♥t❡ s❡✱ U = (u, v)é s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛ ✭✶✳✶✮✳ ❈♦♥s✐❞❡r❡ F1 = (f1, g1) ❝♦♠

f1 =−(γαφ1)p ❡ g1 =−(γβφ1)q

❡♠ q✉❡ γ > 0✳ ❙❡♥❞♦ ❛ss✐♠✱ U0 = (u0, v0) = (γαφ1, γβφ1) é s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛ ✭✶✳✸✮

♣❛r❛ F =F1✳ ❉❡ ❢❛t♦✱

AU0+G(U0) +F1(x) =AU0 =γAΦ =−γ∆Φ =−∆U0.

❈♦♥s✐❞❡r❡ ❛ s❡❣✉✐♥t❡ ❤♦♠♦t♦♣✐❛ H : [0,1]×C1

0(Ω)2 −→C01(Ω)2 ❝♦♠

H(τ, U) = (I(∆)−1) (AU +G(U) + (1τ)F(x) +τ F1(x)).

◆♦t❡ q✉❡✱

H(0, U) =(I(∆)−1)(AU +G(U) +F(x))=ITF

H(1, U) =(I−(−∆)−1)(AU +G(U) +F1(x))

=I −TF1. ❆❧é♠ ❞✐ss♦✱ s❡❣✉❡ ❞❛ ❡st✐♠❛t✐✈❛ ❛ ♣r✐♦r✐✱ ▲❡♠❛ ✭✶✳✶✮✱ q✉❡ t♦❞❛ s♦❧✉çã♦ ❞❡

⎧ ⎪ ⎨ ⎪ ⎩

−∆U =AU +G(U) + (1−τ)F(x) +τ F1(x) x∈Ω

U = 0 x∈∂Ω

é ✉♥✐❢♦r♠❡♠❡♥t❡ ❧✐♠✐t❛❞❛ ❡♠ C1

0(Ω)2✳ ❙❡♥❞♦ ❛ss✐♠✱ ♣❛r❛ R > 0 s✉✜❝✐❡♥t❡♠❡♥t❡ ❣r❛♥❞❡✱

t❡♠♦s q✉❡ H(τ, U) = 0 ♣❛r❛ t♦❞♦ (τ, U) [0,1]×∂BC1

(26)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✻

❛ ❤♦♠♦t♦♣✐❛ H é ❛❞♠✐ssí✈❡❧ ✭✈❡❥❛ ❆♣ê♥❞✐❝❡ ❉✮✱ ❡ ♣❡❧❛ ♣r♦♣r✐❡❞❛❞❡ ❞❛ ✐♥✈❛r✐â♥❝✐❛ ♣♦r

❤♦♠♦t♦♣✐❛ ❞♦ ❣r❛✉ t♦♣♦❧ó❣✐❝♦✱ t❡♠♦s q✉❡

deg(I−TF, BC1

0(Ω)2(0, R),0) = deg(I−TF1, BC01(Ω)2(0, R),0). ❋❛ç❛♠♦s γ s✉✜❝✐❡♥t❡♠❡♥t❡ ♣❡q✉❡♥♦ t❛❧ q✉❡ ♦ ▲❡♠❛ ✭✶✳✸✮ s❡❥❛ ❛♣❧✐❝á✈❡❧ ♣❛r❛

m(x) =pup+−1 ❡ k(x) =qv+q−1,

♣❛r❛ t♦❞❛ (u, v) s♦❧✉çã♦ ❛r❜✐trár✐❛ ❞❡ ✭✶✳✶✮ ❝♦♠ F = F1✳ ❆♣❧✐❝❛♥❞♦ ❡♥tã♦ ♦ ▲❡♠❛ ✭✶✳✸✮

♣❛r❛t= 1✱ ♦❜t❡♠♦s q✉❡(u, v)é ♥ã♦ ❞❡❣❡♥❡r❛❞❛✳ ❆❧é♠ ❞✐ss♦✱ ♦ í♥❞✐❝❡ ❞❡ I−TF1 ♣♦❞❡ s❡r ❝❛❧❝✉❧❛❞♦ ❛tr❛✈és ❞❛ ❤♦♠♦t♦♣✐❛ ❞❛❞❛ ❡♠ ✭✶✳✶✾✮ ❡ ❡st❡ ❝♦✐♥❝✐❞❡ ❝♦♠ ♦ í♥❞✐❝❡ ❞❛ s♦❧✉çã♦ tr✐✈✐❛❧ ❞❡ ✭✶✳✶✾✮ ♣❛r❛ t = 0✳ ❯s❛♥❞♦ ♦ ▲❡♠❛ ✭✶✳✹✮ ♥ós ❞❡❞✉③✐♠♦s q✉❡ ❡ss❡ í♥❞✐❝❡ é −1✱

✭✈❡❥❛ t❛♠❜é♠ ❚❡♦r❡♠❛ ✭❉✳✽✮✮✳ P♦rt❛♥t♦

deg(ITF1, BC01(Ω)2(0, R),0) =

(1)= 0,

♥♦t❡ q✉❡ ❛ s♦♠❛ ❛❝✐♠❛ é ✜♥✐t❛✱ ✈❡❥❛ ❞❡t❛❧❤❡s ❡♠ ✭❉✳✷✮✳ ❙❡♥❞♦ ❛ss✐♠✱

deg(ITF, BC1

0(Ω)2(0, R),0)= 0

❡ ♣♦r ✜♠✱ ✉s❛♥❞♦ ❛ ♣r♦♣r✐❡❞❛❞❡ ❞❡ s♦❧✉çã♦ ❞♦ ❣r❛✉ t♦♣♦❧ó❣✐❝♦ ❝♦♥❝❧✉í♠♦s q✉❡ ❡①✐st❡

U BC1

0(Ω)2(0, R)t❛❧ q✉❡ (I−TF)(U) = 0✱ ✐st♦ é✱U é s♦❧✉çã♦ ❞❡ ✭✶✳✶✮✳

✶✳✸✳ ❘❡❣✉❧❛r✐❞❛❞❡

❙❡❥❛ΩRN ✉♠ ❞♦♠í♥✐♦ s✉❛✈❡ ❡ ❧✐♠✐t❛❞♦✱ ❝♦♠ N 3✳ ❱❛♠♦s ❞✐s❝✉t✐r ❛ r❡❣✉❧❛r✐❞❛❞❡

❞♦ s❡❣✉✐♥t❡ s✐st❡♠❛ ❡❧í♣t✐❝♦

⎧ ⎪ ⎨ ⎪ ⎩

−∆U =H(x, U(x)) xΩ

U(x) = 0 x∂Ω,

✭✶✳✷✶✮

❡♠ q✉❡U(x) =

⎛ ⎝ u(x)

v(x)

H(x, U(x)) =

⎝ h(x, u, v)

k(x, u, v)

✳ ❆s ❢✉♥çõ❡sh, k: Ω×R×R−→ Rsã♦ ❝♦♥tí♥✉❛s ❡ ❡①✐st❡♠ F(x) = (f(x), g(x))Lr(Ω)×Lr(Ω)C > 0 t❛✐s q✉❡

(27)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✼

❝♦♠ 1< s <2∗1❡ ❛❧❣✉♠ r > N ❙❡❥❛ U = (u, v)H1

0(Ω)×H01(Ω) s♦❧✉çã♦ ❢r❛❝❛ ❞❡ ✭✶✳✷✶✮✳ ❱❛♠♦s ♠♦str❛r q✉❡ u, v ∈

W2,r(Ω) ❡ q✉❡ ❡①✐st❡ ❝♦♥st❛♥t❡ C >0✱ t❛❧ q✉❡

U2,r C(Fγr +Uη),

❝♦♠ γ, η > 1✳ P❛r❛ ✐ss♦✱ ✈❛♠♦s ✉s❛r ✉♠ ♠ét♦❞♦ ❞♦ t✐♣♦ ❜♦♦tstr❛♣✱ q✉❡ é ✉♠ ♠ét♦❞♦

❞❡ ✐t❡r❛çõ❡s ✉s❛♥❞♦ s❡q✉ê♥❝✐❛s ❞❡ ✐♠❡rsõ❡s ❡♥tr❡ ♦s ❡s♣❛ç♦s ❞❡ ❙♦❜♦❧❡✈ Wk,p(Ω) Lq(Ω)

❖❜s❡r✈❡ q✉❡✱

Ω|

H(x, U)|2∗/s

Ω|

F(x)|2∗/s+C

Ω|

U|2∗. ✭✶✳✷✷✮

❉❡s❡❥❛♠♦s q✉❡ ❛s ✐♥t❡❣r❛✐s ❞❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❛♥t❡r✐♦r s❡❥❛♠ ✜♥✐t❛s✳ P❡❧❛ ✐♠❡rsã♦ ❞❡ ❙♦✲ ❜♦❧❡✈✱ H1

0(Ω) ֒→ L2

(Ω)✱ t❡♠♦s q✉❡ |U| ∈ L2∗

(Ω)✳ ❉❡♥♦t❛♥❞♦ p1 := 2∗/s✱ r❡st❛ s❛❜❡r s❡ |F(x)| ∈Lp1(Ω)

❙❡ N 4 ❡♥tã♦ 2∗ N✱ ❡st❡ ❢❛t♦ ❥✉♥t❛♠❡♥t❡ ❝♦♠ ❛ ❤✐♣ót❡s❡ s > 1 ✐♠♣❧✐❝❛ q✉❡ p1 := 2

s <2∗ ≤N < r✳ ❊ ❛ss✐♠ t❡♠♦s q✉❡ |F| ∈Lp1(Ω)✳ ❆❣♦r❛ s❡ N = 3 ❡♥tã♦ p1 ♣♦❞❡

s❡r ♠❛✐♦r ♦✉ ♠❡♥♦r q✉❡ r✳ ❙❡♥❞♦ ❛ss✐♠✱ ✈❛♠♦s ❞✐✈✐❞✐r ❛ ❞❡♠♦♥str❛çã♦ ❡♠ ❞♦✐s ❝❛s♦s✿

❈❛s♦ ✶✿ N = 3 ❡ p1 ≥ r✳ ◆❡ss❡ ❝❛s♦ ❝♦♥s✐❞❡r❛♠♦s r ♥♦ ❧✉❣❛r ❞❡ p1 ♥❛ ✐♥t❡❣r❛❧ ❡♠

✭✶✳✷✷✮✱ ❞❛í

Ω|

H(x, U)|r ≤

Ω|

F(x)|r+C

Ω|

U|rs ✭✶✳✷✸✮

❝♦♠♦p1 = 2

s ≥r t❡♠♦s q✉❡ rs≤2

❧♦❣♦ |U| ∈Lrs ❡ ♣♦rt❛♥t♦ ❝♦♥❝❧✉í♠♦s q✉❡ |H| ∈Lr

❆♣❧✐❝❛♥❞♦ ♦ ❚❡♦r❡♠❛ ✭❇✳✶✸✮✱ ❝♦♥❝❧✉í♠♦s q✉❡ u, v ∈W2,r(Ω) ❡ q✉❡

U2,r CHr.

❯t✐❧✐③❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✷✸✮✱ r❡s✉❧t❛

U2,r C(Fr+Usrs).

❊♥✜♠✱ ❝♦♠♦ 1< rs≤2∗✱ ♦❜t❡♠♦s

(28)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✽

❈❛s♦ ✷✿ N 3 ❡ p1 < r✳ ◆❡ss❡ ❝❛s♦✱ ♦❜s❡r✈❛♠♦s q✉❡ |F(x)| ∈ Lp1(Ω) ❡ ❞❛ ❞❡s✐✲

❣✉❛❧❞❛❞❡ ✭✶✳✷✷✮✱ ❝♦♥❝❧✉í♠♦s q✉❡ |H| ∈Lp1✳ ❆♣❧✐❝❛♥❞♦ ♦ ❚❡♦r❡♠❛ ✭❇✳✶✸✮✱ ❝♦♥❝❧✉í♠♦s q✉❡

u, v W2,p1(Ω) ❡ q✉❡

U2,p1 ≤CHp1.

❯s❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✷✷✮✱ r❡s✉❧t❛ q✉❡

U2,p1 CFp1 +Us2

,

❡ ♣❡❧❛ ✐♠❡rsã♦ ❞❡ H1

0(Ω) ❡♠ L2

(Ω)✱ ❝♦♥❝❧✉í♠♦s q✉❡

U2,p1 ≤C

Fp1 +U

s

. ✭✶✳✷✹✮

❆❣♦r❛ ♣r❡❝✐s❛♠♦s ❛♥❛❧✐s❛r três s✐t✉❛çõ❡s✿

❈❛s♦ ✷✐✿ ❙❡2p1 > N ❡♥tã♦ ♣❡❧♦ ✐t❡♠ ✭✐✐✐✮ ❞♦ ❚❡♦r❡♠❛ ✭❇✳✶✷✮✱ t❡♠♦s q✉❡ W2,p1(Ω)֒→

C0,α(Ω)✱ ♣❛r❛α <1✳ ❆ss✐♠✱

Ω|

H(x, U)|r

Ω|

F(x)|r+C

Ω|

U|rs<, ✭✶✳✷✺✮

♣♦rt❛♥t♦✱ |H| ∈Lr(Ω)✳ P❡❧♦ ❚❡♦r❡♠❛ ✭❇✳✶✸✮✱ r❡s✉❧t❛ q✉❡ |U| ∈W2,r(Ω)

U2,r ≤CHr,

✉s❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✷✺✮✱ r❡s✉❧t❛ q✉❡

U2,r C(Fr+Usrs)

≤CFr+UsC0,α(Ω)

.

P♦rt❛♥t♦✱

U2,r ≤C

Fr+U s

2,p1

.

❯s❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡✱ ✭✶✳✷✹✮✱ ♦❜t❡♠♦s

(29)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✶✾

❈❛s♦ ✷✐✐✿ ❙❡ 2p1 =N ❡♥tã♦ ♣❡❧♦ ❚❡♦r❡♠❛ ✭❇✳✶✷✮✭✐✐✮ ✈❛❧❡ ❛ ✐♠❡rsã♦ W2,p1(Ω) ֒→Lσ

♣❛r❛ t♦❞♦ p1 < σ <∞✳ ❯s❛♥❞♦ ❡st❛ ✐♠❡rsã♦ ♣❛r❛ σ =rs✱ t❡♠♦s q✉❡ |U| ∈Lrs✱ ❧♦❣♦

Ω|

H(x, U)|r≤

Ω|

F(x)|r+C

Ω|

U|rs<∞, ✭✶✳✷✻✮

♣♦rt❛♥t♦✱ |H| ∈Lr(Ω)✳ P❡❧♦ ❚❡♦r❡♠❛ ✭❇✳✶✸✮✱ r❡s✉❧t❛ q✉❡ |U| ∈W2,r(Ω)

U2,r CHr.

❯s❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✷✻✮✱ r❡s✉❧t❛ q✉❡

U2,r C(Fr+Usrs)

≤Fr+Us2,p1.

❊♣❡❧❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✶✳✷✹✮✱ ♦❜t❡♠♦s

U2,r CFr+Fsr+Us2.

❈❛s♦ ✷✐✐✐✿ ❙❡ 2p1 < N ❡♥tã♦ ❛♣❧✐❝❛♠♦s ♦ ❚❡♦r❡♠❛ ✭❇✳✶✷✮✭✐✮ ❡ ❝♦♥❝❧✉✐♠♦s q✉❡ u, v ∈

Lq1(Ω)✱ ❡♠ q✉❡ q

1 = NN p21p1✳ ◆♦t❡ q✉❡✱

Ω|

H(x, U)|q1/s

Ω|

F(x)|q1/s+C

Ω|

U|q1.

❊♥tã♦ r❡♣❡t✐♠♦s ♦ ♣r♦❝❡ss♦✱ ❛❣♦r❛ ❝♦♠ p2 =q1/s✳

❱❛♠♦s ✐t❡r❛r ♦ ♣r♦❝❡ss♦ k ✈❡③❡s ♣❛r❛ ♦❜t❡r ♥ú♠❡r♦s pm ❡ qm ❝♦♠ m= 1, ...k✱ t❛✐s q✉❡ pm =

qm−1

s ❡ qm =

N pm

(N 2pm) .

◆♦t❡ q✉❡✱ ♦ ♥ú♠❡r♦ ❞❡ ✐t❡r❛çõ❡s é ✜♥✐t♦✳ ■st♦ é✱ ❡①✐st❡ k > 0 t❛❧q✉❡ 2pk > N✳ ❉❡

❢❛t♦✱ ❝♦♠♦ s <2∗1✱ t❡♠♦s q✉❡ p2

p1

= q1 2∗ =

N

N s−2.2∗ >

N

N(2∗1)2.2∗ = 1. P♦rt❛♥t♦✱

p2

p1

(30)

❙✐st❡♠❛ ●r❛❞✐❡♥t❡ ✷✵

♣❛r❛ ❛❧❣✉♠δ >0✳ ❆❣♦r❛❀

p3

p2

= q2

q1

= p2

p1

N−2p1

N2p2

> p2 p1

= 1 +δ.

❞❡ ♦♥❞❡ s❡ ❝♦♥❝❧✉✐ q✉❡ p3 > p2(1 +δ)✳ ▼❛s p2 = (1 + δ)p1 ♣♦rt❛♥t♦ p3 > (1 + δ)2p1✳

■t❡r❛♥❞♦ ♦ ♣r♦❝❡ss♦ t❡♠♦s

pk>(1 +δ)k−1p1.

▲♦❣♦✱ ♣❛r❛ ❛❧❣✉♠ k s✉✜❝✐❡♥t❡♠❡♥t❡ ❣r❛♥❞❡ t❡♠♦s 2pk > N✳ P♦rt❛♥t♦✱ ♦ ♥ú♠❡r♦ ❞❡

✐t❡r❛çõ❡s é ✜♥✐t♦✳

❙❡♥❞♦ ❛ss✐♠✱ ❝♦♥❝❧✉í♠♦s q✉❡ U ∈W2,r(Ω)×W2,r(Ω) ❡ q✉❡

U2,r C(Fγr +Uη),

(31)

❈❛♣ít✉❧♦ ✷

❙✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦

◆❡st❡ ❝❛♣ít✉❧♦ ✈❛♠♦s ❡st✉❞❛r ♦ s✐st❡♠❛ ❞❡ ❡q✉❛çõ❡s ❡❧í♣t✐❝❛s ❞♦ t✐♣♦ ❤❛♠✐❧t♦♥✐❛♥♦

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆u=au+bv+vp++f(x) xΩ

−∆v =cu+av+uq++g(x) xΩ

u=v = 0 x∂Ω,

✭✷✳✶✮

❡♠ q✉❡Ω∈RN é ✉♠ ❞♦♠í♥✐♦ ❧✐♠✐t❛❞♦ s✉❛✈❡ ❝♦♠ N 3a, b, cRsã♦ t❛✐s q✉❡ b, c >0

❛s ❢✉♥çõ❡s f, g Lr ❝♦♠ r > N ❡ ❞❡♥♦t❛♠♦s w

+ = max{w,0}✳ ❖s ❡①♣♦❡♥t❡s p ❡ q sã♦

t❛✐s q✉❡1< p, q < NN+11

◆♦ss♦ ♦❜❥❡t✐✈♦✱ é ❡♥❝♦♥tr❛r ❡st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ♣❛r❛ ♣♦ssí✈❡✐s s♦❧✉çõ❡s ❞❡st❡ s✐st❡♠❛ ❡ ♠♦str❛r ✉♠ r❡s✉❧t❛❞♦ ❞❡ ❡①✐stê♥❝✐❛ ❞❡ s♦❧✉çõ❡s✳

◆♦t❡ q✉❡✱ s❡♠ ♣❡r❞❛ ❞❡ ❣❡♥❡r❛❧✐❞❛❞❡ ♣♦❞❡♠♦s t♦♠❛r b=c♥♦ s✐st❡♠❛ ✭✷✳✶✮✳ ❉❡ ❢❛t♦✱

s❡(u, v) é s♦❧✉çã♦ ❞❡

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆u=au+bv/δ+v+p/δ+f(x)/δ x∈Ω −∆v =cδu+av+δquq

++g(x) x∈Ω

u=v = 0 x∈∂Ω,

❝♦♠ δ >0✱ ❡♥tã♦ (δu, v) é s♦❧✉çã♦ ❞♦ s✐st❡♠❛ ✭✷✳✶✮✳ ❆ss✐♠ ❝♦♠♦ ❢❡✐t♦ ❡♠ ❬✷✸❪✱ ♣♦❞❡♠♦s

❡s❝♦❧❤❡r δ =b/c ❡ ♦❜t❡♠♦s ❛ ❞✐❛❣♦♥❛❧ s❡❝✉♥❞ár✐❛ ❝♦♠ ✈❛❧♦r❡s ✐❣✉❛✐s ❛ √bc✳ ❆ ♠❡♥♦s

❞❡ r❡❡s❝❛❧❛r ♦s ✈❛❧♦r❡s ♣♦❞❡♠♦s tr❛❜❛❧❤❛r ❛❣♦r❛ ❝♦♠ ♦ s✐st❡♠❛

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

−∆u=au+bv+vp++f(x) x∈Ω −∆v =bu+av+uq++g(x) x∈Ω

u=v = 0 x∂Ω.

✭✷✳✷✮

(32)

❙✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦ ✷✷

➱ ❝♦♥✈❡♥✐❡♥t❡ ❡s❝r❡✈❡r♠♦s ♦ s✐st❡♠❛ ✭✷✳✷✮ ♥❛ ❢♦r♠❛ ♠❛tr✐❝✐❛❧✿

⎧ ⎪ ⎨ ⎪ ⎩

−∆U =M U+G(U) +F(x) xΩ

U = 0 x∂Ω,

✭✷✳✸✮

♦♥❞❡

U =

⎛ ⎝ u

v

⎠, M =

⎛ ⎝ a b

b a

M2x2(R), G(U) =

⎛ ⎝ v

p

+

uq+

⎠ e F(x) =

⎛ ⎝ f(x)

g(x)

⎞ ⎠.

❖s ❛✉t♦✈❛❧♦r❡s ❞❛ ♠❛tr✐③ M sã♦ ξ=a+b ❡ η=ab✳

❈♦♥s✐❞❡r❛♠♦s λ1 < λ2 ≤ λ3 ≤ ... ≤ λn ≤ ... ♦s ❛✉t♦✈❛❧♦r❡s ❞❡ (−∆, H01(Ω)) ❡

φ1, φ2, ..., φn, ... ❛s ❝♦rr❡s♣♦♥❞❡♥t❡s ❛✉t♦❢✉♥çõ❡s ❡ t❛❧ q✉❡ ❛ ♥♦r♠❛ L2 ❞❡ φ1 s❡❥❛ ♥♦r♠❛❧✐✲

③❛❞❛ ✐❣✉❛❧ ❛ 1✳

✷✳✶✳ ❊st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐

P❛r❛ ❡♥❝♦♥tr❛r♠♦s ❡st✐♠❛t✐✈❛s ❛ ♣r✐♦r✐ ♣❛r❛ ♣♦ssí✈❡✐s s♦❧✉çõ❡s ❞♦ ♣r♦❜❧❡♠❛ ✭✷✳✷✮✱ ♥♦s ❜❛s❡❛♠♦s ❡♠ ❛r❣✉♠❡♥t♦s ❡♥❝♦♥tr❛❞♦s ❡♠ ❬✼❪ ❡ ❬✶✵❪✳ ■♥✐❝✐❛❧♠❡♥t❡ ❡♥❝♦♥tr❛r❡♠♦s ✉♠❛ ❡st✐♠❛t✐✈❛ ♣❛r❛ ♣♦ssí✈❡✐s s♦❧✉çõ❡s U ❞♦ s✐st❡♠❛ ✭✷✳✸✮✱ ♥♦ ❡s♣❛ç♦ W2,p+1p (Ω)×W2,

q+1

q (Ω)✳

❱❛♠♦s s✉♣♦r q✉❡λ1é ✉♠❛ ❛✉t♦✈❛❧♦r ❞❛ ♠❛tr✐③M✱ ♠❛✐s ❡s♣❡❝✐✜❝❛♠❡♥t❡ q✉❡λ1 =a+b✱

❙❡❣✉❡ ❞♦s r❡s✉❧t❛❞♦s ❞❛❞♦s ♥♦ ❆♣ê♥❞✐❝❡❈q✉❡ Φ = (φ1, φ1) é ✉♠❛ s♦❧✉çã♦ ❞♦ ♣r♦❜❧❡♠❛

⎧ ⎪ ⎨ ⎪ ⎩

−∆U =M U xΩ

U = 0 x∂Ω.

✭✷✳✹✮

✷✳✶ ▲❡♠❛✳ ❙✉♣♦♥❤❛ q✉❡ λ1 =a+b✳ ❈♦♥s✐❞❡r❡ f, g∈Lr✱ r > N✱ s❛t✐s❢❛③❡♥❞♦

Ω

φ1f +

Ω

φ1g <0; ✭✷✳✺✮

❡ 1< p, q < NN+11. ❚♦❞❛ ♣♦ssí✈❡❧ s♦❧✉çã♦ U ∈H ❞❡ ✭✷✳✸✮ s❛t✐s❢❛③

UC1

(33)

❙✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦ ✷✸

❉❡♠♦♥str❛çã♦✳ ❙❡❥❛ U H s♦❧✉çã♦ ❞❡ ✭✷✳✸✮✳ ▼✉❧t✐♣❧✐❝❛♥❞♦ ✭✷✳✸✮ ♣♦r Φ ❡ ✐♥t❡❣r❛♥❞♦✱

♦❜t❡♠♦s

Ω−

∆U.Φ =

Ω

M U.Φ +

Ω

G(U).Φ +

Ω

F(x).Φ

❝♦♠♦M é ❛✉t♦❛❞❥✉♥t❛ ❡ Φé s♦❧✉çã♦ ❢r❛❝❛ ❞❡ ✭✷✳✹✮✱ r❡s✉❧t❛

Ω

G(U).Φ =

Ω

F(x).ΦCF(x)r ✭✷✳✼✮

P♦❞❡♠♦s ❞❡❝♦♠♣♦r U =tΦ +U1 t❛❧ q✉❡ Φ, U1H = 0✳ ◆♦t❡ q✉❡

(Φ, U1)H = 0 ⇒

Ω

(φ1∇u1+∇φ1∇v1) = 0 ⇒λ1

Ω

(φ1u1+φ1v1) = 0 ⇒

Ω

Φ·U1 = 0.

✐st♦ é✱ U1 é ♦rt♦❣♦♥❛❧ ❛ Φ t❛♠❜é♠ ❡♠ L2(Ω)× L2(Ω)✳ P♦rt❛♥t♦✱ ♠✉❧t✐♣❧✐❝❛♥❞♦ ❡st❛

❞❡❝♦♠♣♦s✐çã♦ ♣♦r Φ ❡ ✐♥t❡❣r❛♥❞♦✱ r❡s✉❧t❛

Ω

U ·Φ =t

Ω

Φ·Φ +

Ω

U1·Φ = t

Ω

Φ·Φ,

❧♦❣♦

t =C

Ω

U ·Φ =C

Ω

(uφ1+vφ1)

≤C

Ω

(u+φ1+v+φ1).

❆♣❧✐❝❛♥❞♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r✱ t❡♠♦s

t

Ω

uq+φ1

1/q

Ω

φ1

1/q′

+

Ω

vp+φ1

1/p

Ω

φ1

1/p′

❡♠ q✉❡✱p ❡ p′ sã♦ ❡①♣♦❡♥t❡s ❝♦♥❥✉❣❛❞♦s✱ ♦ ♠❡s♠♦ ♣❛r❛ q q✳ P♦rt❛♥t♦

(34)

❙✐st❡♠❛ ❍❛♠✐❧t♦♥✐❛♥♦ ✷✹

❆♥á❧♦❣♦ ❛♦ ❝❛♣ít✉❧♦ ❛♥t❡r✐♦r✱ s❡ t >0 ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✷✳✽✮ ♥♦s ❞á ✉♠ ❧✐♠✐t❛çã♦ ♣❛r❛ |t|

❉❡ss❛ ❢♦r♠❛✱ ✈❛♠♦s ❞✐✈✐❞✐r ❛ ❞❡♠♦♥str❛çã♦ ❡♠ ❞♦✐s ❝❛s♦s✳

❈❛s♦ ✶✿ t 0✳ ◆❡ss❡ ❝❛s♦ ❛ ❞❡s✐❣✉❛❧❞❛❞❡ ✭✷✳✽✮ ♥♦s ❞á ✉♠❛ ❧✐♠✐t❛çã♦ ♣❛r❛ |t|

❝♦♥s❡q✉❡♥t❡♠❡♥t❡ r❡st❛ ❡♥❝♦♥tr❛r♠♦s ✉♠❛ ❡st✐♠❛t✐✈❛ ♣❛r❛ U1✳

❱❛♠♦s ❞❡✜♥✐r ♦s s❡❣✉✐♥t❡s ❡s♣❛ç♦s✿

L=Lp+1p ×L q+1

q ❡ W =W2, p+1

p ×W2, q+1

q ,

r❡s♣❡❝t✐✈❛♠❡♥t❡ ❝♦♠ s✉❛s ♥♦r♠❛s

UL=up+1

p +v q+1

q ❡ UW =u2, p+1

p +v2, q+1

q .

◆♦t❡ q✉❡ U1 s❛t✐s❢❛③ ❛ ❡q✉❛çã♦

−∆U1 =M U1+G(U) +F(x),

♣❛ss❛♥❞♦ ❛ ♥♦r♠❛ ❞♦ ❡s♣❛ç♦ L ❡♠ ❛♠❜♦s ♦s ❧❛❞♦s✱ t❡♠♦s

∆U1+M U1L =G(U) +F(x)L≤ G(U)L+F(x)L.

P♦rt❛♥t♦✱

∆U1 +M U1L≤ v p

+p+1

p +u

q

+q+1

q +F(x)L

Ω

v+p+1

p p+1

+

Ω

uq++1

q q+1

+F(x)r. ✭✷✳✾✮

P♦❞❡♠♦s ❡s❝r❡✈❡r✱

Ω

v+p+1 =

Ω

v+pαφα1φ−1αv

p(1−α)+1 +

♣❛r❛ 0 < α < 1 ❛ s❡r ❞❡t❡r♠✐♥❛❞♦ ♣♦st❡r✐♦r♠❡♥t❡✳ P❡❧❛ ❞❡s✐❣✉❛❧❞❛❞❡ ❞❡ ❍ö❧❞❡r✱ t❡♠♦s

q✉❡

Ω

vp++1 ≤

Ω

v+pφ1

α⎛

Ω

vp+

1 1−α

+

φ

α

1−α

1

⎞ ⎠

1−α

Referências

Documentos relacionados

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico.. com os dados fornecidos

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da

dições para dizer quando um dado ompatível é realizável por algum

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico. com os dados fornecidos

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária da

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico.. com os dados fornecidos

Ficha catalográfica elaborada pelo DePT da Biblioteca Comunitária UFSCar Processamento Técnico.. com os dados fornecidos