• Nenhum resultado encontrado

Staphylococcus xylosus fermentation of pork fatty waste: raw material for biodiesel production

N/A
N/A
Protected

Academic year: 2021

Share "Staphylococcus xylosus fermentation of pork fatty waste: raw material for biodiesel production"

Copied!
5
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Industrial

Microbiology

Staphylococcus

xylosus

fermentation

of

pork

fatty

waste:

raw

material

for

biodiesel

production

Roger

Vasques

Marques

a,∗

,

Matheus

Francisco

da

Paz

a

,

Eduarda

Hallal

Duval

b

,

Luciara

Bilhalva

Corrêa

a

,

Érico

Kunde

Corrêa

a

aLaboratoryofWastes,FederalUniversityofPelotas,Pelotas,RS,Brazil

bAnimalProductsInspectionLaboratory,FederalUniversityofPelotas,CampusCapãodoLeão,CapãodoLeão,RS,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8October2015 Accepted17February2016 Availableonline21April2016 AssociateEditor:SolangeInes Mussatto Keywords: Sustainability Microorganism Staphylococcusxylosus Wasterecovery Slaughterhousewaste

a

b

s

t

r

a

c

t

The needforcleanersourcesofenergyhasstirredresearchintoutilisingalternatefuel sourceswithfavourableemissionandsustainabilitysuchasbiodiesel.However,thereare technicalconstraintsthathinderthewidespreaduseofsomeofthelowcostraw materi-alssuchasporkfattywastes.Currentlyavailabletechnologypermitstheuseoflipolytic microorganismstosustainablyproduceenergyfromfatsources;andseveral microorgan-ismsandtheirmetabolitesarebeinginvestigatedaspotentialenergysources.Thus,theaim ofthisstudywastocharacterisetheprocessofStaphylococcusxylosusmediatedfermentation ofporkfattywaste.Wealsowantedtoexplorethepossibilityoffermentationeffectinga modificationinthelipidcarbonchaintoreduceitsmeltingpointandtherebyactdirectlyon oneofthemaintechnicalbarrierstoobtainingbiodieselfromthisabundantsourceoflipids. PorkfattywastewasobtainedfromslaughterhousesinsouthernBrazilduringevisceration ofthecarcassesandthekidneycasingofslaughteredanimalswasusedasfeedstock. Fer-mentationwasperformedinBHIbrothwithdifferentconcentrationsoffattywasteandfor differenttimeperiodswhichenabledevaluationoftheeffectoffermentationtimeonthe meltingpointofswinefat.Thelowestmeltingpointwasobservedaround46◦C,indicating thatthesechemicalandbiologicalreactionscanoccurundermilderconditions,andthat suchpre-treatmentmayfurtherfacilitateproductionofbiodieselfromfattyanimalwaste. ©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Contemporarysociety reliesontheuseofvariousformsof energytomeetandachievethebestqualityoflife;andthe

Correspondingauthor.

E-mail:rogermarquesea@gmail.com(R.V.Marques).

products and processes being used tothat end essentially relyonanuninterruptedsupplyofenergywhichalsoneeds tobeofhighquality, becompetitivelypricedandleave the leastpossibleimpactontheenvironment.Theglobalenergy matrixlargelydependsontheuseoffossilfuelsandisthus

http://dx.doi.org/10.1016/j.bjm.2016.04.018

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

non-renewable.Thisisworrisomeasinternationalagencies monitoringenergysourcespredicta60%reductioninoiland coalsupplywithinthenext15years,whichwillinturnleadto aphenomenalriseinextraction,productandprocesscosts.1–3

Thispredicteddecreaseinenergyresources,constitutesone ofthegreatestchallengesofoursocietyandhasresultedin researchintoandimprovementofalternatetechnologiesthat ensureenergysustainability.Biofuelsareapertinent exam-plewhichwhilebeingobtainedfromrenewablerawmaterials suchasbiomass,effluentsandfattywaste,arealsoless pollut-ingbecausetheircombustionresultsinmuchloweremission levelsofcarbon monoxide,sulphurcompounds, particulate matterandaromatichydrocarbons.4–8 Therefore,the

devel-opmentofbiofuelsfromagro-industrialwasteconstitutesan importantalternative asthese can be furthertransformed into second-generation biofuels that do not compete with agriculturefor resources, havenegligible costcompared to vegetablesourcesandareplentifulincountrieswith agricul-turalpotency.9–13Technologicalproblemscontinuetoprevent

the economic, attractive and sustainable use ofpork fatty wastefortheproductionofbiodiesel,oneofthemisthehigh coldfilter pluggingpoint, which precludes its use in vehi-clesoperatinginregionswithtemperaturesbelow15◦Cdue to crystal formation, leading to low or none viscosity.14–16

The high melting point of pork fat (>70◦C) demands sig-nificant energy consumption to liquefy this waste, which contributes to an increase in the final price of biodiesel fromsuchsources.Thus,eventhoughtherawmaterialhas a lower cost compared to vegetable oils, improvements in thetechnologytotransformporkfattywaste intobiodiesel arerequiredtomakethisaneconomicallycompetitivefuel source.17

Biofuelproductionnow increasinglyreliesontheuse of microorganisms,eitherforthedirectorfortheassisteduse oflipidsasbiofuels.18–22Therefore,aprocessthatuses

lipoly-ticmicroorganismsforbothtreatmentandrecoveryofanimal fattywaste showpromise asaworkablestrategythatuses agro-industrial waste for biodiesel production with desir-ablequalitycharacteristicsandundereconomicallyfeasible conditions.23–26 Staphylococcus xylosus,a Gram-positive

coc-cus,isamicroorganismthatfitstheserequirementsasithas GRAScertification(GenerallyRecognisedAsSafe),knownto haveproteolyticand lipolyticactivity,andregularlyusedin thefoodindustryespeciallyforfermentationofmeat prod-ucts as well as for the production and intensification of flavour,colourstabilisationandperoxidedecomposition.27–29

Importantly, apart from these in vivo applications, S. xylo-sus and other bacteria from the same genus also secrete exoenzymes that catalyse lipid-based reactions.22,30–35 A

useful example of such secreted enzymes is the serine acetyltransferase(E.C.3.1.1.3),whichiscapableofcatalysing alcoholysis,esterification,transesterificationandhydrolysis, amongothers.36,37Additionally,theeasewithwhichS.xylosus

canbeisolated andculturedmakesit apotential enhance-ment agent in the use of pork fatty wastes for biodiesel production.38

Giventhese favourable characteristics, the mainaim of this study wasto investigatethe process characteristics of porkfattywastefermentationbyS.xylosus.Wealsowantedto explorethepossibilityofthisfermentationeffectingachange

inlipid carbonchainstoreduceits meltingpointand thus actdirectlyononeofthemaintechnicalbarrierstoobtaining biodieselfromthisabundantsourceoflipids.

Material

and

methods

Collectionofsamples

The fatty waste was collected from freshly slaughtered animalspriortothewashingofthecarcassesfroma slaugh-terhouseinsouthernBrazil.Inordertocollectthefatwith the leastblood contaminationaspossible,the fatty kidney sheathsof25carcasses,eachweighingapproximately0.6kg wereremoved,collectedintosterilebags,transportedonice, andimmediatelysubjectedtofermentation.Allanalyseswere performedintriplicate.

Bacterialculturesandgrowth

S.xylosusNRRLB-14776wasculturedinBrain-HearthInfusion broth(BHI–Acumedia–NeogenCorporation®7116A,Brazil) aspreviouslydescribedbyMaurielloetal.27untilrequired

ini-tialcellmassconcentration(8.0logCFUmL−1),afterwhicha loopofbacteriumwastransferredtotheBHIbrothand incu-batedat35±0.1◦Covernight.

Porkfattywastefermentation

The experiment followed a fully randomised two-factorial designwiththreerepetitionswherein thetwofactors were fermentation time(1.5, 3.0,4.5, 6.0and 7.5h)and fat con-centrationofthe BHIbroth(2,4,6,8,10,50,60,70,80 and 90%).

Thefermentationwascarriedoutundersemi-solid-state conditions and consisted ofpork fatty waste asthe water insolublecomponentthatprovidednutrients(primarily car-bon)andanchorageformicroorganisms,apartfromBHIbroth andtheinoculum(1%,v/v).Thefattywastewasmelted,dried, filtered (filter paper Whatman 12.5cm), ground and sieved througha0.5mmsieve(32mesh).Next,thefatwassterilised bymembranefiltrationandasepticallyweighedinsterile plas-tic bags. Afterthe addition ofthe required volume ofBHI brothwiththenecessaryinitialcellconcentrationofboththe strainsofS.xylosus,thebagswereplacedina“Stomacher” homogeniser(SPLabour–modelSP-190-type)for2minand thentransferredtosterileErlenmeyerflasks;thetotal fermen-tationvolumewas200mL.Theflaskswerekeptinashaker incubator(35±0.1◦C,bufferpH7.0,100rpm)forinitiationof fermentation,andformaintenanceofaerobicconditionsin thereactor.Dissolvedoxygenwasmeasuredwithaportable oximeter (LUTRON DO-5519) and dissolved oxygen satura-tionwasmaintainedat100%throughoutfermentation.The choiceofgrowthconditionsandculturemediumusedwere basedonpreviouslyreportedoptimalgrowth conditionsfor

S.xylosus.27Fermentationwasinterruptedatthementioned

targetanalyticalpoints,whichcorrespondedtotendifferent concentrationsoftesting;andsamplesofapproximately1g wereasepticallycollectedfromeachErlenmeyerflaskand sub-jectedtomeltingpointanalysis.

(3)

Meltingpointanalysis

Testtubescontainingapproximately1gofsamplewere par-tially immersedin avolumetricflask withwater and kept onaheatingmantlethatslowlyincreasedthetemperature from30◦Cto80◦C.39Thismethoddetectsthreetemperatures

thatcharacterisethemeltingpointsofthreedifferentfatty acidsasdescribedbyDouareetal.40AsKnotheandDunn41

havereportedthatinitialandfinalmeltingtemperaturesare affectedbythequantityofthesamplebeinganalysed,only coretemperatureofthesamplewasconsidered.Meltingpoint ofthenon-fermentedfattywastewasdeterminedaccording toAOCSmethodology.39

Statisticalanalysis

ThenormalityofdatawastestedusingShapiro-Wilk’stest, homoscedasticitywastestedwiththeHartleytest,andresidue independence was tested using graphical analysis. After ensuringthat the assumptions were met,analysis of vari-ance (ANOVA) was performed using F test on values with

p<0.05.Experimentaldatawereanalysedusingresponse sur-facemethodologytofitasecond-orderpolynomialequation thatwasgeneratedusingregression.Theresponsewas ini-tiallyfit tofactorsusingmultipleregression andthe initial modelselectionwas basedon: (a) lowresiduals;(b)low

p-value;(c)lowstandarddeviation;and(d)highR2.Asecond orderpolynomialequation was thenfitted tothe response data(Eq.(1)). y=ˇ0+



ˇixi+



ˇii·x2i +



ˇijxixj (1)

wherey isthe response factor (fattywaste melting point),

xi is the first independent factor (fermentation time), xj is

thesecondindependentfactor(fatconcentration),ˇ0 isthe intercept,ˇiand ˇj arethefirst-ordermodelcoefficients,ˇii

and ˇjj are the quadratic coefficients for the factors i and

j and ˇij is the linear model coefficient of the interaction

betweenfactorsiandj.AlldatawereanalysedusingTheR Projectsoftware(version3.1.0,TheRFoundation®).Statistical parametersshowingap-valuelowerthan0.05wereconsidered significant.

Results

Meltingpoint

Theestimatedvaluesforthevariousfactorsarepresentedin

Table1,andthep-valuesindicatedthatmostofthecoefficients

weresignificantandthaterrorinmodeldesignwasminimised whenallofthesecoefficientswereconsideredtogether. Addi-tionally,thefinalestimatedresponseofthemodeladequately representedrealvaluesandtheestimatedvaluesofthese fac-tors.

Thefinalresponsemodelequationwasderived(Eq.(2))and theresponsesurfaceforthisequation(Fig.1)showsthatthe meltingpointtendstodecreasewhenintermediate fermenta-tiontimeswerereachedandformedacellpointbetweenfour andfivehoursofthefermentationprocess.Atthistime-point, italsoappearsthatthefatconcentrationofthemedium sig-nificantlycontributes(linearly)totheobservedphenomenaas thelevelcurvesatthispointhaveanearnullslope.

100 90 80 Melting point (ºC) Fat concentr ation ( %) Ferm entation t ime (h) 70 60 50 40 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8

Fig.1–Responsesurfaceplotrepresentingtheeffectsoffat concentration,fermentationtimeandtheirreciprocal interactiononporkfattywastemeltingpoint.

Table1–Estimativeresponsemodelregressioncoefficients,standarderror,tvalueandsignificanceoftheresponse surfacemodelforthemeltingpointbehaviourofporkfattywasteobtainedthroughS.xylosusfermentation.

Factor* Parameterestimate DF Standarderror Fvalue*

tvalue** p>t Generalmodel – 5 2.817 155.854* <0.001 Intercept 81.873 5 1.283 63.836** <0.001 X1 −15.650 5 0.574 −27.279** <0.001 X2 −0.128 5 0.036 −3.607* <0.001 X12 1.648 5 0.061 26.978** <0.001 X22 0.0005 5 <0.0001 1.452** 0.149 X1X2 0.022 5 0.0032 6.680** <0.001

(4)

Y=81.873−15.650X1−0.128X2+1.648X21+0.0005X22

+0.022X1X2 (2)

Discussion

Theresponsesurfaceplotofthefermentationprocessshows thattheinitialestimatedmeltingpointwas81.87◦C(X1=0;

X2=0),whichsignificantlydeclinedasfatconcentrationand fermentationtimeincreasedandthemaximumdecreasein estimatedmeltingtemperature(Y=44.8◦C)occurredbetween 4and5hoursoffermentationandat38–42%fat concentra-tion.Further,duringthisperiod,themeltingpointappearsto beinfluencedneitherbyfermentationtimenorbyfat concen-trationofthemedium,indicatingastabilisationinbacterial activitywhichinturnledtotheobserveddecreasein physi-cochemicalparameters.Fatconcentrationofthemediumdid notindividuallyinfluencemetabolicactivity asthemelting pointshowedanon-significantvariationovertherangeoffat concentrationusedintheexperiments.However,Fig.1also showsthatthereisapossibilityofaninteractionbetweenthe twoprocessvariables(i.e.,fatconcentrationandtime),with fermentationtimebeingthemostprominentfactorcapable ofeffectingamodificationinporkfattywaste.Theseprocess characteristicsareespeciallypromisingbecausearelatively cheapfeedstockwasused forfermentation. Wefoundthat after reaching the lowest estimated melting point, the fat waste then exhibitedan increasein melting pointas both fermentationtimeand fat concentrationincreased;similar processcharacteristicshavebeenpreviouslyreported.42

Zhou et al.43 have reported that sudden changes in

theoperationalconditionsofindustrialandlaboratory pro-cessesinvolvingmicroorganismscausesdisturbancesintheir metabolismand physiologicalactivity which inturn accel-erate or halt microbial growth. This reflects a period of adaptationthatmicrobesrequiretoadjustDNAsynthesisand RNAreplicationtosuitthechangesinculturemediumandto resumetheirgrowth.

Accordingly,ourdatasuggestthatoptimaloperating con-ditions were achieved at fat concentrations between 55% and62%andbetween3.8and4.5hoursoffermentation,as theseconditionsreducedthemeltingpointtoapproximately 45–47◦C.Theseinferencesarebasedontheassumptionsthat thebestprocessconditionsarethosethatresultinthe great-estdecreaseinmeltingpoint,usethehighestconcentration offattywastepossibleandrequiretheshortestfermentation timesoastoincreasetheeconomicfeasibilityoftheoverall process.

Conclusion

Basedontheresultspresentedherein,itispossibleto con-cludethat semi-solid fermentationofporkfatty wastes by

S.xylosuscauses adropupto36◦Cinmeltingpointunder idealprocessconditions.Thisimpliesthataliquidstate fer-mentationprocess,whichisclosertoambienttemperature, mayfacilitateareductioninreactioncostsandalsoproduce anincreaseinreactionyield.Further,processenhancements

suchasflowconditionsduringfermentation,wouldensure thatmilderprocessconditionsaresufficienttoachieve effi-ciency.Therefore,pre-treatmentofthefattywastecanhelp optimisetheproductionofbiodieselfromsuchagro-industrial wastesinaprocessthatisbotheconomicallyattractiveand sustainable.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

TheauthorsthanktheCoordinationfortheImprovementof Higher Education(CAPES–fromPortuguese)forthefinancial supportgiventothisresearch.

r

e

f

e

r

e

n

c

e

s

1.SinghSP,SinghD.Biodieselproductionthroughtheuseof

differentsourcesandcharacterizationofoilsandtheiresters

asthesubstituteofdiesel:areview.RenewSustainEnergyRev.

2010;14:200–216.

2.Internationalenergyagency–IEA.KeyWorldEnergyStatistics 2014.Paris:OECD/IEA;2014.http://www.iea.org/publications/

freepublications/publication/KeyWorld2014.pdf[Accessed

22.02.15].

3.BPGroupEnergyoutlook2035.2015.Availableat: <http://www.bp.com/energyoutlook>[Accessed01.06.15].

4.FargioneJ,HillJ,TilmanD,PolaskyS,HawthorneP.Land

clearingandthebiofuelcarbondebt.Science.

2008;319:1235–1238.

5.XueJ,GriftTE,HansenAC.Effectofbiodieselonengine

performancesandemissions.RenewSustainEnergyRev.

2011;15:1098–1116.

6.SantoriG,DiNicolaG,MoglieM,PolonaraF.Areview

analyzingtheindustrialbiodieselproductionpractice

startingfromvegetableoilrefining.ApplEnergy.

2012;92:109–132.

7.SelvamDJP,VadivelK.Anexperimentalinvestigationon

performance,emission,andcombustioncharacteristicsofa

dieselenginefueledwithmethylestersofwasteporklard

anddieselblends.IntJGreenEnergy.2013;10:908–923.

8.ShojaeefardMH,EtgahniMM,MeisamiF,BarariA.

Experimentalinvestigationonperformanceandexhaust

emissionsofcastoroilbiodieselfromadieselengine.Environ

Technol.2013;34:2019–2026.

9.BhattiHN,HanifMA,QasimM,RehmanAU.Biodiesel

productionfromwastetallow.Fuel.2008;87:2961–2966.

10.GuiMM,LeeKT,BhatiaS.Feasibilityofedibleoilvs.

non-edibleoilvs.wasteedibleoilasbiodieselfeedstock.

Energy.2008;33:1646–1653.

11.AnH,WilhelmWE,SearcySW.Biofuelandpetroleum-based

fuelsupplychainresearch:aliteraturereview.Biomass

Bioenergy.2011;35:3763–3774.

12.CarriquiryMA,DuXD,TimilsinaGR.Secondgeneration

biofuels:economicsandpolicies.EnergyPolicy.

2011;39:4222–4234.

13.GohCS,LeeKT.Second-generationbiofuel(SGB)in

SoutheastAsiavialignocellulosicbiorefinery:penny-foolish

butpound-wise.RenewSustainEnergyRev.2011;15:2714–2718.

14.JoshiRM,PeggMJ.Howpropertiesofbiodieselfuelblendsat

(5)

15.OnerC,AltunS.Biodieselproductionfrominedibleanimal

tallowandaexperimentalinvestigationofitsuseas

alternativefuelinadirectinjectdieselengine.ApplEnergy.

2009;86:2114–2120.

16.JanchivA,OhY,ChoiS.Highqualitybiodieselproduction

fromporklardbyhighsolventadditive.ScienceAsia.

2012;38:95–101.

17.JanaunJ,EllisN.Perspectivesonbiodieselasasustainable

fuel.RenewSustainEnergyRev.2010;14:1312–1320.

18.JangY,ParkJM,ChoiS,etal.Engineeringofmicroorganisms

fortheproductionofbiofuelsandperspectivesbasedon

systemmetabolicengineeringapproaches.BiotechnolAdv.

2012;30:989–1000.

19.SharmaM,SinghSS,MannP,SharmaM.Biocatalytic

potentialoflipasefromStaphylococcussp.MS1for

transesterificationofjatrophaoilintofattyacidmethyl

esters.WorldJMicrobiolBiotechnol.2014;30:2885–2897.

20.ThliverosP,KiranEU,WebbC.Microbialbiodieselproduction

bydirectmethanolysisofoleaginousbiomass.Bioresource

Technol.2014;157:181–187.

21.ZhangX,YanS,TyagiRD,SurampalliRY,ValéroJR.

Wastewatersludgeasrawmaterialformicrobialoil

production.ApplEnergy.2014;135:192–201.

22.ZhaoX,QiF,YuanC,DuW,LiuD.Lipase-catalyzedprocess

forbiodieselproduction:enzymeimmobilization,process

simulationandoptimization.RenewSustainEnergyRev.

2015;44:182–197.

23.YooHY,SimkhadaJR,ChoSS,etal.Anovelalkalinelipase

fromRalstoniawithpotentialapplicationinbiodiesel

production.BioresourceTechnol.2011;102:6104–6111.

24.XingMN,ZhangXZ,HuangH.Applicationofmetagenomic

techniquesinminingenzymesfrommicrobialcommunities

forbiofuelsynthesis.BiotechnolAdv.2012;30:920–929.

25.CaspetaL,NielsenJ.Economicandenvironmentalimpacts

ofmicrobialbiodiesel.NatBiotechnol.2013;31(9):789–793.

26.XuX,KimJY,OhYR,ParkJM.Productionofbiodieselfrom

carbonsourcesofmacroalgaeLaminariajaponica.Bioresource

Technol.2014;169:455–461.

27.MaurielloG,CasaburiA,BlaiottaG,VillaniF.Isolationand

technologicalpropertiesofcoagulasenegativestaphylococci

fromfermentedsausagesofSouthernItaly.MeatSci.

2004;67:149–158.

28.MansourS,BaillyJ,LandaudS,etal.Investigationof

associationofYarrowialipolytica,Staphylococcusxylosus,and

Lactococcuslactisincultureasafirststepinmicrobial

interactionanalysis.ApplEnvironMicrobiol.

2009;7520:6422–6430.

29.CichoskiAJ,CansianAP,LuccioDIM.Viabilityof

Staphylococcusxylosusduringshelf-lifeofdulcedeleche

preparedbyvaccumevaporation.CiêncRural.

2011;41(11):2026–2031.

30.LanserAC,NakamuraLK.IdentificationofaStaphylococcus

warnerispeciesthatconvertsoleicacidto10-ketostearic

acid.CurrMicrobiol.1996;32:260–263,1996.

31.FieglerH,BrucknerR.Identificationoftheserine

acetyltransferasegeneofStaphylococcusxylosus.FEMS

MicrobiolLett.1997;148:181–187.

32.MosbahH,SayariA,BezzineS,GargouriY.Expression,

purification,andcharacterizationofHis-tagged

Staphylococcusxylosuslipasewild-typeanditsmutantAsp 290Ala.ProteinExprPurif.2006;47:516–523.

33.SouissiN,BougatefA,Triki-ellouzY,NasriM.Productionof

lipaseandbiomassbyStaphylococcussimulansgrownon

sardinella(Sardinellaaurita)hydrolysatesandpeptone.

AfricanJBiotechnol.2009;8:451–457.

34.BrodFCA,PelisserMR,BertoldoJB,etal.Heterologous

expressionandpurificationofaheat-tolerantStaphylococcus

xylosuslipase.MolBiotechnol.2010;44:110–119.

35.KimSH,KimS,ParkS,KimHK.Biodieselproductionusing

cross-linkedStaphylococcushaemolyticuslipaseimmobilized

onsolidpolymericcarriers.JMolCatalB:Enzymatic.

2013;85–86:10–16.

36.Al-zuhairS.Productionofbiodieselbylipase-catalyzed

transesterificationofvegetableoils:akineticstudy.Biotechnol

Progr.2005;21:1442–1448.

37.FengX,PattersonDA,BalabanM,EmanuelssonEAC.

Characterizationoftributyrinhydrolysisbyimmobilized

lipaseonwoolenclothusingconventionalbatchandnovel

spinningclothdiscreactor.ChemEngResDes.

2013;91:1684–1692.

38.JaegerKE,EggertT.Lipasesforbiotechnology.CurrOpin

Biotechnol.2002;13(4):390–397.

39.AmericanoilChemistsSociety–AOCS.AOCSOfficialMethod Cj1-94:MeltingPropertiesofFatsandOils.2009.

40.DouareM,diBariV,NortonJE,etal.Fatcrystallizationat

oil–waterinterfaces.AdvColloidInterfaceSci.2014;203:1–10.

41.KnotheG,DunnRO.Acomprehensiveevaluationofthe

meltingpointsoffattyacidsandestersdeterminedby

differentialscanningcalorimetry.JAmOilSoc.

2009;86:843–856.

42.MarquesRV,DuvalEH,CorrêaLB,CorrêaEK.Increaseof

unsaturatedfattyacids(lowmeltingpoint)ofbroilerfatty

wasteobtainedthroughStaphylococcusxylosusfermentation.

CurrMicrobiol.2015;71(5):601–606.

43.ZhouZ,MengF,LiangS,etal.Roleofmicroorganismgrowth

phaseintheaccumulationandcharacteristicsof

biomacromolecules(BMM)inamembranebioreactor.RSC

Referências

Documentos relacionados

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

TABELA 13 Fatores que em conjunto apresentaram diferença na Qualidade de Vida da criança, na perspectiva do cuidador, no domínio Social VARIÁVEL SDQ Emocional SDQ Prósocial

Com base nos autores citados referente ao comparecimento do público nos estádios e na necessidade de se desenvolver um melhor entendimento do estágio atual

Ao Dr Oliver Duenisch pelos contatos feitos e orientação de língua estrangeira Ao Dr Agenor Maccari pela ajuda na viabilização da área do experimento de campo Ao Dr Rudi Arno

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Foi usando ela que Dold deu condições para a SEP ser uma propriedade local dos espaços (Teorema de Extensão de Seção) o que possibilitou a ele reobter todos os resultados de

Tendo como base teórica a Análise do Discurso de Linha Francesa, esta pesquisa pretendeu demonstrar que o discurso, no ciberespaço, assim como em toda e qualquer enunciação, não