• Nenhum resultado encontrado

Chemical oxidation of fish canning wastewater by Fenton's reagent

N/A
N/A
Protected

Academic year: 2021

Share "Chemical oxidation of fish canning wastewater by Fenton's reagent"

Copied!
5
0
0

Texto

(1)

Chemical

oxidation

of

fish

canning

wastewater

by

Fenton’s

reagent

Raquel

O.

Cristo´va˜o

a,

*

,

Cristiana

Gonc¸alves

a

,

Cida´lia

M.

Botelho

a

,

Ramiro

J.E.

Martins

a,b

,

Rui

A.R.

Boaventura

a

a

LaboratoryofSeparationandReactionEngineering(LSRE),AssociateLaboratoryLSRE/LCM,DepartamentodeEngenhariaQuı´mica,FaculdadedeEngenharia,UniversidadedoPorto, RuadoDr.RobertoFrias,Porto4200-465,Portugal

b

DepartmentofChemicalandBiologicalTechnology,SuperiorSchoolofTechnology,PolytechnicInstituteofBraganc¸a,CampusdeSantaApolo´nia,Braganc¸a5301-857,Portugal

Introduction

Fish-processingindustry consumeshugequantitiesofwater, producinglarge amounts ofwastewaters, fromfactorycleaning andrawmaterialswashing[1].Theseeffluentshavequiteahigh organicloadandalsohighlevelsofsalinity.Cookingeffluentsfrom fishcanningindustryalsoshowamarkedorganicmatterload.The highsalinity(Na+,Cl,SO

42)iscausedbothbyrawmaterialand

brine, used in the process [2]. The level of total soluble and suspendedchemicaloxygendemand(COD)varieslargelybetween factoryand fishtype[3].Itis alsoknown afrequentchangeof products to be treated, with variation in flow rates and composition,whichimplieschangesinwastewatercharacteristics. These variable operating conditions difficult the planning of a commontreatmentplantforallofthewastewatersproducedina singleunit.Atreatmentprocesssuitabletotreatorevenvalorize andrecyclethiswastewatermustbefound,oritcanbedifficultthe evolutionof thesmalland medium sizeunits,since theyoften cannotaffordaplanformanagingtheireffluents.

Biologicaltreatmentisthemostcommonprocessusedtotreat organics-containingwastewaters[4].Thebiologicalprocessesare frequentlyemployedsincetheyaremoreeconomicand environ-mental friendly, using optimized natural pathways to actually destroy pollution, not only transform it into anotherform [5].

However,somerefractorycompoundspersistafterthebiological treatmentandchemicaloxidativeprocessesariseasgoodmethods to treat the remaining recalcitrantorganic matter. The Fenton reagent (Fe2+/H

2O2) is currently accepted as one of the most

effective methods for the oxidation of organic pollutants [6]. Oxidation of organic substrates by Fenton’s reagent has been studiedsince1894[7].Itiscurrentlyknownthattheefficiencyof theFenton’sreactiondependsmainlyonH2O2concentration,Fe2+/

H2O2ratio,pHandreactiontime.Theinitialconcentrationofthe

pollutantsandtheir characteristics,aswellastemperature,also haveasubstantialinfluenceontheoverallefficiency[6].

The experimental design and response surface methodology (RSM) areusefulstatistical techniquestoidentifyand optimize factors that influence a particular process, through a reduced numberofexperimentstobeperformed.Additionally,therelative significanceofthefactorsandpossiblesynergisticorantagonistic interactions thatmayexistbetweenthemcanbeevaluated[8]. This multivariate technique fits the experimental data to a theoretical model through a response function,estimating this waythemodelcoefficients.Theadequacyofthemodelisevaluated bythecoefficientofdeterminationR2.

ThemostcommondesignofRSMisBox–Behnkendesign(BBD)

[8,9],whichiswellsuitedforfittingaquadraticsurface,sinceit considersthreelevelsperfactorandfillsinthecombinationsof centerandextremelevelsinwhichtheoptimalconditionsforan experimentarefound[10,11].Thisdesignhasbeenwidelyapplied in the optimization of several treatment processes [12–14]

becauseofitsreasoningstrategyandexcellentoutcomes.

ARTICLE INFO Articlehistory:

Received31October2013

Receivedinrevisedform16December2013 Accepted27December2013

Keywords:

Fishcanningwastewater Wastewatertreatment Fenton’sreagent Chemicaloxidation Box–Behnkendesign Optimization ABSTRACT

Thefishcanningindustrygenerateslargevolumesofwastewaterforwhichthetreatmentisparticularly

difficultduetothehighcontentoforganicmatterandsaltsandtothesignificantamountofoiland

greasetheypresent.

Inthiswork,aclosedjacketedbatchreactorwasusedtostudythefeasibilityofapplyingaFenton

reactionstepafteranactivatedsludgebiologicaltreatment.Forthispurposeandinordertofindoptimal

conditions,a33Box–Behnkenfullfactorialdesignwasused.Thepredictedoptimumvalue(63%DOC

degradation) was found forhydrogen peroxide concentration of1558mg/L, ironconcentration of

363mg/LandpH3.2.

ß2014ElsevierLtd.Allrightsreserved.

* Correspondingauthor.Tel.:+351225081686;fax:+351225081674. E-mailaddress:raquel.cristovao@fe.up.pt(R.O.Cristo´va˜o).

ContentslistsavailableatScienceDirect

Journal

of

Environmental

Chemical

Engineering

j o urna l hom e pa ge : ww w. e l s e v i e r. c om/ l o ca t e / j e ce

2213-3437/$–seefrontmatterß2014ElsevierLtd.Allrightsreserved.

(2)

Advanced oxidationof fishcanning wastewatersby Fenton’s reagenthasnotbeenyetreportedintheliterature.Therefore,the majorobjectiveofthisstudyistoinvestigatethe totalorpartial mineralizationandthereductionofrecalcitrantorganiccompounds byFenton’sreagentofapreviouslybiologicallytreatedfishcanning wastewater,intermsofdissolvedorganiccarbon(DOC),withthe aimtomeettheemissionlimitvaluesfordischargeintowaterbodies established by Decree-Law No. 236/98 (COD150mg/L). The effectsofinitialpH,Fe(II)andH2O2concentrationsonthereaction

wereinvestigatedbyusinga33Box–Behnkenfullfactorialdesign

withRSM.Optimalvaluesoftheoperatingparametersmaximizing DOCremovalsweredetermined.

Materialsandmethods

Fish-processingwastewater

Theclarifiedfishprocessingwastewaterwithafinaldissolved organiccarbon(DOC)ofabout50mg/L,achemicaloxygendemand (COD)ofabout220mg/L,abiochemicaloxygendemand(BOD5)of

about0.8mg/L,aconductivityof30–40mS/cmandapHbetween 7and 8wasobtainedaftera biological treatmentand usedfor chemicaloxidation,withFenton’sreagent.

Fentontrials

Chemicaloxidationwasperformedinaclosedjacketedbatch reactor(1Lcapacity),whichcontained500mLofthepreviously biologicallytreatedeffluent,for 1h.Thereactoroperatedunder constantstirring,accomplishedthroughamagneticbarandaFalc magneticstirrer.Thetemperatureofthereactionmixturewaskept constantat338Cbycouplingthereactortoathermostaticbath. Reagents employed in the oxidation process were FeSO47H2O

(Panreac)andH2O2(30wt.%,fromRiedel-deHae¨n).ThepHinthe

reactionmixturewasadjustedtothedesiredvalueusingH2SO4

(95–97%,Fluka).

Beforeeachrun,theeffluentwasputintothereactor,andthe temperaturestabilized. The catalyst (iron sulphate) was intro-ducedafterpHadjustmenttoavoidironprecipitation.Timezeroof therunswasdefinedasthemomentofhydrogenperoxidesolution addition.Thereactionwasstoppedafter1hbyreducingH2O2with

Na2SO3(Merck)inexcess.Anyremainingsulphitewasoxidizedby

bubbling O2. To measure the solution temperature and pH, a

thermocouple and a pH electrode (WTW, Sentix 41 model), connectedtoapH-meterfromWTW(modelinolabpHLevel2), wereused,respectively.

Analyticalmethods

The DOCwasdeterminedbycatalyticoxidation followedby quantificationoftheCO2formedthroughnon-dispersiveinfra-red

spectrometry(NDIR),asdescribedin MethodNo.5310Dofthe StandardMethodsfortheExaminationofWaterandWastewater

[15]. For that, a Shimadzu 5000A Total Organic Carbon (TOC) analyzerwasused.DOCvaluesreportedrepresenttheaverageofat leasttwomeasurements;inmostcaseseachsamplewasinjected threetimes,validationbeingperformedbytheapparatusonlyif coefficientofvariation(CV)wassmallerthan2%.

Standardmethodsfortheexaminationofwastewater[15]were alsoadoptedfor themeasurement ofCOD and BOD5 (methods

5220Cand5210B,respectively).

Factorialdesign

A 33 Box–Behnken full factorial design, including three

replicatesat centralpoint, was carriedout in order toanalyze

theinfluenceofthefactorspH,Fe(II)andH2O2concentrationson

the DOC abatement of a fish canning wastewater by Fenton’s reaction.However,firstofall,inordertodecidethefactorvaluesto study,thestoichiometricH2O2requirementsforsample

degrada-tionweredeterminedtakingintoaccounttheCODvalue.Afterthis, the initial Fe(II) concentration was established by varying the molar[Fe(II)]/[H2O2]ratiofrom1/2to1/65.Nevertheless,perhaps

becauseofthehighvariabilityoftherealwastewaterthatisbeing studied,theoptimumconditionsdeterminationwasnoteasy,but itseemedthattherewasatrendtowardhighervaluesofH2O2.So,

itwasdecidedtostartwithaBox–Behnkenfactorialdesignonly with 2 factors (H2O2 and Fe(II) concentrations)to analyze the

resultstrend.WiththathelpandknowingthenormalpHvalues rangeforFenton’sreagentwastewatertreatment[16,17],aBox– Behnkenfullfactorialdesignwith3factorsand3levelswasdone later,inordertodefinethereactionoptimumconditionsandto analyze the factors influence. Each independent variable was codedatthreelevelsbetween1(lowlevel),0(middlepoint)and +1(highlevel).ThecodingofthevariableswasdonebyEq.(1)[18]:

xi¼

XiXz

D

Xi

; i¼1;2;3;...;k (1)

wherexi,isthedimensionlessvalueofanindependentvariable,Xi

istherealvalueofanindependentvariable,Xzistherealvalueofan

independentvariableatthecenterpointand

D

Xiisthestepchange

oftherealvalueofthevariableicorrespondingtoavariationofa unitforthedimensionlessvalueofthevariablei.Thelevelsofeach factorarelistedinTable1.Table2givestheexperimentaldesign matrix.

The experimental Box–Behnken design, analysis of variance (ANOVA) and 3D response surface were carried out using thesoftwareStatisticav12.0(StatsoftInc.).Eq.(2)describesthe regression model of the present system, which includes the interactionterms:

b

b

1x1þ

b

2x2þ

b

3x3þ

b

12x1x2þ

b

13x1x3þ

b

23x2x3

þ

b

11x21þ

b

22x22þ

b

33x23 (2)

whereYisthepredictedresponse,i.e.theDOCremoval;x1,x2and

x3 are the coded levels of the independent factors (H2O2

concentration, Fe(II) concentration and pH, respectively). The regressioncoefficientsare:

b0

theinterceptterm;

b1

,

b2

and

b3

the linearcoefficients;

b12

,

b13

,

b23

theinteractioncoefficientsand

b11

,

b22

,

b33

thequadraticcoefficients.Themodelevaluatestheeffect ofeachindependentfactorontheresponse.

Resultsanddiscussion

Thecharacteristicsofthebiologicallytreatedwastewatershow thehighrecalcitrantnatureoftheorganiccompoundspresentinit, whichisreflectedbyitsverylowBOD5/CODratio(<0.005).For

treatmentofsuchawastewater,anadvancedoxidationprocess, suchasFenton’sreagent,seemstobeasuitableoption.

The performance and optimization of Fenton treatment was investigatedapplyingaBox–Behnkenfullfactorialdesignwiththree factors:hydrogenperoxideconcentration,ironconcentrationand

Table1

Factorlevelsfora33

Box–Behnkenfactorialdesign.

Factors Parameters Codedlevel

+1 0 1

X1 [H2O2](mg/L) 2000 1050 100

X2 [Fe(II)](mg/L) 400 225 50

(3)

pH.Theresultsfromthe29experimentsarepresentedinTable2. Usingtheexperimentaldata,thesecondorderpolynomialmodel (Eq.(2))wasfittedtotheseresultsandobtainedintermsofcoded factors:

Y¼247:70:001x1þ0:1x2þ183:8x332:36x23

þ0:005x1x3þ0:04x2x3 (3)

TheDOCoxidationresultspredictedbythemodelpresented above,ateachexperimentalpoint,arepresentedinTable2.The statistical significance of the polynomial model for the experi-mental response was evaluated by ANOVA. According to the ANOVAresults (Table 3), the quadratic model, includinglinear interactions,fittedadequatelytotheexperimentaldatagivinga coefficientofdetermination,R2,of0.9053.

Theregressioncoefficientsand theinteractionbetweeneach independentfactorcanbeconsideredstatisticallysignificantfor p-valueslowerthan0.05,with95%ofconfidenceinterval.ThePareto chartalsodisplaysthestatisticallyrelevanteffectofeachfactoron theresponseanditisapracticalmodetoviewtheresults.These aresortedfromthelargesttothesmallest,andtheeffectstothe right of the divisor line are significant. Thus, accordingto the ANOVA results (Table 3)and to thePareto chart (Fig. 1), it is possible toobserve that thelinearand quadratic terms of iron concentration(x2)arethefactorsthatmostaffectthereductionof

DOCofthefishcanningwastewaterinstudy,byFenton’sreagent. However,bothtermsofhydrogenperoxideconcentration(x1)and

thequadratictermofpH(x3)alsohaveaneffectonthereaction

whilst theinteractionbetween thethree factorsand thelinear termofpHdonotaffecttheoxidativeprocess.

Theeffectsoftheindependentfactorsandtheirinteractionon the oxidation are alsorepresented by RSM, withwhich is also possibletopredicttheresponseandtodeterminetheoptimum values of the parameters affecting the reaction. The response surfaceplots (Fig.2)showtheDOCremovalasfunctionof two factors,whilstthethirdwaskeptataconstantlevel.Bytheseplots isthenpossibletoclearlyobservethattheoptimumconditionsfor obtainingthemaximumdegradationarewithintheexperimental rangestested.

Particularly, the surface plots show the increase of DOC degradation with the increase of iron concentrations. Plots 2a and2c(Fig.2)clearlyshowthattheDOCdegradationbyFenton’s reagentwassensitiveeventosmallalterationsofiron concentra-tion. TheDOC degradationof thefish canning wastewaterwas increaseduptoacriticalironconcentrationandthereaftertheDOC degradationdecreased.Theexistenceofanoptimaliron concen-trationisexplainedbythereactionoftheexcessofironionswith thehydroxylradical(Eq.(4)),therebydecreasingtheconcentration of radicals available and limiting the oxidation of organic compounds[19].

HO

þFe2þ!OH

þFe3þ (4)

Furthermore,thehighconcentrationsofironarenotdesirable fortwopractical reasons:thereagentcostandtheneedofiron sludgetreatment,whichmeansalsohighercosts[20].

Asitcanbeseenfromplot2b(Fig.2),thehydrogenperoxide concentrationandthepHdidnotseemtoplayanimportantroleon DOCabatement,inthestudyranges.Butitispossibletoobserve theexistence ofan optimum hydrogen peroxide concentration, whichisjustifiedbyparallelreactionsbetweentheH2O2inexcess

and thehydroxyl radical,generating HO2.species witha lower

oxidationpotential[21].

Table3

Analysis of variance(ANOVA) for the fittedquadratic polynomial modelfor optimizationofDOCoxidationofafishcanningwastewaterbyFenton’sreagent.

Source Sumofsquares(SS) dfa

Meansquare(MS) F-value p-Value

(1)x1(Lb) 221.2 1 221.2 6.9 0.0168 x1(Qc) 211.4 1 211.4 6.6 0.0191 (2)x2(L) 3564.5 1 3564.5 110.6 0.0000 x2(Q) 724.6 1 724.6 22.5 0.0001 (3)x3(L) 75.2 1 75.2 2.3 0.1429 x3(Q) 435.1 1 435.1 13.5 0.0016 1Lby2L 50.0 1 50.0 1.6 0.2279 1Lby3L 69.1 1 69.1 2.1 0.1593 2Lby3L 149.8 1 149.8 4.7 0.0441 Error 612.1 19 32.2 TotalSS 6462.7 28 Note:R2 =0.9053;adjR2 =0.8604. a df:degreesoffreedom. b L:linear. c Q:quadratic.

Fig.1.Paretochartofstandardizedeffectsfor33

Box–Behnkenfactorialdesign.(1) H2O2concentration;(2)Fe(II)concentration;(3)pH.

Table2

Box–Behnkendesignmatrixwithexperimentalresultsandpredictedvaluesforfish canningwastewaterDOCoxidation.

Run Factors DOCremoval(%)

X1(mg/L) X2(mg/L) X3 Actualvalue Predictedvalue

1 100 50 2.5 23.9 20.0 2 100 50 3.0 22.6 24.2 3 100 50 3.5 5.0 12.2 4 100 225 2.5 41.2 38.9 5 100 225 3.0 46.3 46.7 6 100 225 3.5 42.7 38.2 7 100 400 2.5 26.5 37.0 8 100 400 3.0 53.9 48.2 9 100 400 3.5 46.6 43.3 10 1050 50 2.5 26.6 24.7 11 1050 50 3.0 33.7 31.3 12 1050 50 3.5 26.4 21.7 13 1050 225 2.5 50.1 45.7 14 1050 225 3.0 49.6 55.8 15 1050 225 3.5 49.8 49.8 16 1050 400 2.5 48.0 45.8 17 1050 400 3.0 65.4 59.4 18 1050 400 3.5 51.1 56.9 19 2000 50 2.5 10.3 18.1 20 2000 50 3.0 29.2 27.1 21 2000 50 3.5 21.5 19.9 22 2000 225 2.5 44.4 41.1 23 2000 225 3.0 52.0 53.7 24 2000 225 3.5 53.4 50.0 25 2000 400 2.5 43.5 43.3 26 2000 400 3.0 62.7 59.3 27 2000 400 3.5 54.8 59.2 28 1050 225 3.0 54.8 55.8 29 1050 225 3.0 47.1 55.8

(4)

Theadequacyoftheproposedmodel(Eq.(3))fororganicmatter oxidation of pre-treated fish canning wastewaters by Fenton’s reagent was evaluated at the optimum operating conditions. Accordingtothemodeltheoptimumconditionswere:hydrogen peroxide concentration of 1558mg/L, iron concentration of 363mg/LandpH3.2,predictingabove63%DOCreduction.Under these optimalconditions, new experiments were conductedin triplicateandaDOCabatementof64.4%wasachieved,whichisin good agreement with the oxidation predicted by the model. Furthermore, for the entire range of the tested factors, the experimental results are very close to the predicted values obtainedfromthemodel.

The optimum Fe(II) concentration attained, emphasizes the need of sludge treatment, which brings associated costs. The optimumironconcentrationfound(363mg/L)isarelativelyhigh concentration and foreffluent discharge,thepHvaluemust be adjusted for the range of 6–9, according to the Portuguese legislation(Decree-LawNo.236/98).TherequiredpHadjustment will cause theproduction of a significant quantityof chemical sludge.Knowingthattheironemissionlimitvaluefordischargeis 2mg/L,aconcentrationof361mg/LofFe3+staysfreeto(according

toFe3+speciationdiagram)totallyprecipitateasFe(OH)

3whenthe

pHisincreasedtothemaximumvalueallowedtodischarge.This precipitateneedsfurthertreatment,butthecostsinvolveddepend notonlyon thetreatment sequence(sedimentation,thickening, drying)butalsoontransportationandlandfillingcosts.

The observed maximum of DOC reduction at pH 3.2 is in agreement with the values found in the literature for other wastewaters treated by Fenton’s reagent [20,22,23]. The high amounts of reagents necessary to obtain some organic matter removal can beexplained firstly by thenature of theeffluent, which has already been biologically treated and contains predominantly recalcitrant matter and then, by the high salt concentration, which decreases the process efficiency due to chlorideions,thatareabletotraphydroxylradicals,producing hypochlorousacidprecursorsortoreactwiththehydroxylradicals producing less reactive radicals [24]. So the concentration of Fenton’s reagent employed must be enough to overcome the restrictionsimposedbythesalinity.

Fig.3 shows theDOC removalby Fenton oxidation and the correspondingpHvariationovertime,undertheoptimal condi-tionsfound.Itispossibletoobservethatthedecompositionwas performed in two stages: via a rapid first-stage (up to 2min) followedbyaslowsecond-stage(from2mintoend).Thisprofileof degradationwasfoundinliteratureandhadbeenrecognizedin variousFenton processes [25–28].During thefirst2min ofthe reaction, rapid pollutantdegradation is attributed tohigh OH

concentrations,asaresultofgreateramountsofFe2+catalystin

solutionthatreactswithH2O2.Atthesecondstage,Fe3+ionswere

combinedwithH2O2toproduceweakeroxidantradicalscompared

toOH,inadditiontotheirslowerrateofproduction[27].

ThepH,whichwasnotcorrectedduringeachexperiment,hada similarprofiletotheDOCabatementbutinthereversedirection, decreasinguntiltheend.Adetailedkineticstudyisverydifficultto perform for Fenton process in this kind of effluents due to complexity of chemical compounds formed as intermediates during the reaction [29] and to the high initial reaction rate. However, it wasattemptedto fit theexperimental resultstoa paralleldecay kineticmodel (Eq.(5)), which simulatesthetwo differentstagesobserved:

DOCt¼C0pexpðk1tÞþC0ð1pÞexpðk2tÞ (5)

whereDOCtistheDOCconcentration(mg/L)attimet,C0istheDOC

initialconcentration(49.43mg/L),prepresentsafractionofC0,k1

andk2arethedecaykineticconstantsandtisthetime(min). Fig.2.ResponsesurfaceplotsforDOCremovalofafishcanningwastewaterby

Fenton’sreagentasafunctionof:(a)H2O2andFe(II)concentrationatpH3;(b)H2O2

Fig.3.TimecourseofpHvariation(&)andDOCremoval(&).Eachpointrepresents theaverageofthreereplicates(S.D.<10%ofthemean).

(5)

UsingtheprogramFig.P-TheScientificFig.Processor,v.2.98, Biosoft,thekineticconstantsofthemodelwereachieved,leading tothemodelpresentintheEq.(6)withacoefficientofcorrelation R2of0.997.

DOCt¼22:47expð0:005tÞþ26:96expð7:04tÞ (6)

Inordertoevaluatetheadequacyoftheproposedmodelforthe kineticsofDOCremovalofafishcanningwastewaterpreviously biologically treated by Fenton’s oxidation, the time course calculated by the kinetic model was compared with the experimental one (Fig. 4). The close correlation between the predicted and the experimental results seems to support the reliabilityoftheestablishedmodel.

Conclusions

Theoverallresultsofthisstudyindicatethattheapplicationof Fenton’sreagentisafeasiblemethodtopartiallytreatfishcanning wastewaters,allowingachieveasatisfactorydecreaseofDOC.

Therefore,thecombinationofabiologicaltreatmentofafish canningwastewaterwithachemicaloxidationbyFenton’sreagent gaveaneffluentthat intermsoforganicmattercontentcanbe directly discharged into water bodies or sewerage systems (reachingavalueof20mg/LofDOC,that,bytheinitialCODvs DOCproportionandconsideringthatpracticallyonlytheorganic matterisremovedbyFenton’sreagenttreatment,correspondstoa CODvalueofapproximately90mg/L,whichisbelowtheemission limit value (150mg/L)). Just to note: since during the Fenton processthewastewaterisstronglyacidic,todirectlydischargeitto environment,thepHvalueshouldbeincreasedtotheemission limitvalues(pH6–9)establishedbyDecree-LawNo.236/98.

Acknowledgments

ThisworkispartiallysupportedbyprojectPEst-C/EQB/LA0020/ 2011, financed by FEDER through COMPETE – Programa Oper-acionalFactoresdeCompetitividadeandbyFCT–Fundac¸a˜oparaa Cieˆncia e a Tecnologia and by ValorPeixe – Valorizac¸a˜o de SubprodutoseA´guasResiduaisda Indu´striadeConservasdePeixe, projectinco-promotionI&DTQREN,n813634,financedbyFEDER throughPOFC–Programa OperacionalFactoresde Competitivi-dadeforwhichtheauthorsarethankful.Theauthorsalsowishto thank thecannery in studyfor wastewater samples. RaquelO.

Cristo´va˜o thanks FCT for the Pos-doc Scholarship (SFRH/BPD/ 81564/2011).

References

[1]J.Lim,T.Kim,S.Hwang,Treatmentoffish-processingwastewaterbyco-cultureof CandidarugopelliculosaandBrachionusplicatilis,WaterRes.37(2003)2228–2232.

[2]E.Garcia-Sanda,F.Omil,J.Lema,Cleanproductioninfishcanningindustries: recoveryandreuseofselectedwastes,CleanTechnol.Environ.Policy5(2003) 289–294.

[3]P.Chowdhury,T.Viraraghavan,A.Srinivasan,Biologicaltreatmentprocessesfor fishprocessingwastewater—areview,BioresourceTechnol.101(2010)439–449.

[4]A.Christensen,M.D.Gurol,T.Garoma,Treatmentofpersistentorganic com-poundsbyintegratedadvancedoxidationprocessesandsequentialbatchreactor, WaterRes.43(2009)3910–3921.

[5]A.Z.Gotvajn,J.Zagorc-Koncan,CombinationofFentonandbiologicaloxidationfor treatmentofheavilypollutedfermentationwastebroth,ActaChim.Slov.52 (2005)131–137.

[6]K. Barbusinski,Fentonreaction—controversyconcerningthe chemistry,Ecol. Chem.Eng.S.16(2009)347–358.

[7]H.B.Dunford,Oxidationsofiron(II)/(III)byhydrogenperoxide:fromaquoto enzyme,Coord.Chem.Rev.233(2002)311–318.

[8]G.E.P.Box,W.G.Hunter,J.S.Hunter,StatisticsforExperimenters:AnIntroduction toDesign,DataAnalysis,andModelBuilding, JohnWiley&Sons,1978.

[9]A.M.Dean,D.T.Voss,DesignandAnalysisofExperiments, Springer-Verlag,Inc, NewYork,1999,pp.547–558.

[10]G.E.P.Box,D.W.Behnken,Somenewthreeleveldesignsforthestudyof quanti-tativevariables,Technometrics2(1960)455–475.

[11]G.Hanrahan,K.Lu,Applicationoffactorialandresponsesurfacemethodologyin modernexperimentaldesignandoptimization,Crit.Rev.Anal.Chem.36(2006) 141–151.

[12]A.P.M.Tavares,R.O.Cristo´va˜o,J.M.Loureiro,R.A.R.Boaventura,E.A.Macedo, Applicationofstatisticalexperimentalmethodologytooptimizereactivedye decolourizationbycommerciallaccase,J.Hazard.Mater.162(2009)1255–1260.

[13]M.Li,C.Feng,Z.Zhang,R.Chen,Q.Xue,C.Gao,N.Sugiura,Optimizationofprocess parameters for electrochemical nitrateremoval using Box–Behnken design, ElectrochimicaActa56(2010)265–270.

[14]M.Eisapour,A.Keshtkar,M.A.Moosavian,A.Rashidi,Bioleachingofuraniumin batch stirredtankreactor:process optimizationusingBox–Behnken design, AnnalsofNuclearEnergy54(2013)245–250.

[15]APHA,StandardMethodsfortheExaminationofWaterandWastewater,17ed., Washington,D.C.,1989.

[16]L.A.Ioannou, C.Michael, N. Vakondios,K. Drosou, N.P.Xekoukoulotakis,E. Diamadopoulos,D.Fatta-Kassinos,Winerywastewaterpurificationbyreverse osmosisand oxidationoftheconcentratebysolarphoto-Fenton, Sep.Purif. Technol.118(2013)659–669.

[17]B.S.Souza,F.C.Moreira,M.W.C.Dezotti,V.J.P.Vilar,R.A.RBoaventura,Application ofbiologicaloxidationandsolardrivenadvancedoxidationprocessesto remedi-ationofwinerywastewater,Cat.Today209(2013)201–208.

[18]J.P.Maran,S.Manikandan,K.Thirugnanasambandham,C.V.Nivetha,R.Dinesh, Box–Behnkendesignbasedstatisticalmodelingforultrasound-assisted extrac-tionofcornsilkpolysaccharide,CarbohydratePolym.92(2013)604–611.

[19]B.Lodha,S.Chaudhari,OptimizationofFenton-biologicaltreatmentschemefor thetreatmentofaqueousdyesolutions,J.Hazard.Mater.148(2007)459–466.

[20]P.Bautista,A.F.Mohedano,M.A.Gilarranz,J.A.Casas,J.J.Rodriguez,Applicationof Fenton oxidationtocosmeticwastewaterstreatment, J.Hazard.Mater.143 (2007)128–134.

[21]J.H.Ramirez,C.A.Costa,L.M. Madeira,Experimental designtooptimizethe degradationofthesyntheticdyeOrangeIIusingFenton’sreagent,Catal.Today 107–108(2005)68–76.

[22]V.J.P.Vilar,T.F.C.V.Silva,M.A.N.Santos,A.Fonseca,I.Saraiva,R.A.R.Boaventura, Evaluationofsolarphoto-Fentonparametersonthepre-oxidationofleachates fromasanitarylandfill,SolarEnergy86(2012)3301–3315.

[23]G.Hodaifa,J.M.Ochando-Pulido,S.Rodriguez-Vives,A.Martinez-Ferez, Optimi-zationofcontinuousreactoratpilotscaleforolive-oilmillwastewatertreatment byFenton-likeprocess,Chem.Eng.J.220(2013)117–124.

[24]R. Maciel,G.L.Sant’Anna Jr.,M. Dezotti,Phenol removalfromhighsalinity effluentsusingFenton’sreagentandphoto-Fentonreactions,Chemosphere57 (2004)711–719.

[25]K.H.Chan,W.Chu,Modelapplicationsandmechanismstudyonthedegradation ofatrazinebyFenton’ssystem,J.Hazard.Mater.118(2005)227–237.

[26]M.C.Lu,Y.F.Chang,I.M.Chen,Y.Y.Huang,Effectofchlorideionsontheoxidation ofanilinebyFenton’sreagent,J.Environ.Manag.75(2005)177–182.

[27]M.D.G.Luna,R.M.Briones,C.C.Su,M.C.Lu,Kineticsofacetaminophendegradation byFentonoxidationinafluidized-bedreactor,Chemosphere90(2013)1444– 1448.

[28]S.K.Leong,N.A.A.Bashah,KineticstudyonCODremovalofpalmoilrefinery effluentbyUV-Fenton,APCBEEProcedia3(2012)6–10.

[29]M.S.Lucas,J.A.Peres,RemovalofCODfromolivemillwastewaterbyFenton’s reagent:kineticstudy,J.Hazard.Mater.168(2009)1253–1259.

Fig.4.(a)Comparisonofexperimental(^)andsimulated(continuousline)time courses of DOC removal by Fenton oxidation of a fish canning wastewater previouslybiologicallytreated,withinitialDOCconcentrationof49.43mg/L.(b) Scaleamplificationof(a).

Referências

Documentos relacionados

Os tumores benignos foram reportados em maior número na classe etária entre os 2 e os 8 anos de idade; já os malignos foram-no nos animais com idade superior a 8

Figura 15 – Touriga Nacional: Comparação da percentagem de abrolhamento para os dois tipos de poda (Poda 1 - Vara; Poda 2 - Talões).. Diferença significativa segundo teste

e permita produzir novos fotogramas com informação consistente e actualizada. Porém, torna-se es sencial limitar o número de solicitações a efectuar ao motor de síntese de

Estudo epidemiológico retrospectivo descritivo que teve como objetivos verificar a frequência e o perfil dos acidentes com material biológico entre estudantes de

Grupo de Trabalho realizou vistorias técnicas, acompanhados por técnicos do IBAMA e SEMACE, representantes da sociedade civil/ONG, em empreendimentos de carcinicultura (selecionados)

Finally, patients with sleep distur- bances presented significantly worse personal and social functioning in every domain of functioning, as well as significantly worse

Para os problemas de excesso de material no fim de linha e para o grande fluxo de operadores no armazém, foi realizado um trabalho de levantamento de dados e um estudo para a criação

Portanto, o objetivo deste estudo foi analisar os encaminhamentos realizados pelo serviço de Triagem do curso de Odontologia da Universidade Federal de Santa Maria (UFSM),