• Nenhum resultado encontrado

Tópicos de Fundações

N/A
N/A
Protected

Academic year: 2021

Share "Tópicos de Fundações"

Copied!
179
0
0

Texto

(1)

PÓS-GRADUAÇÃO LATO SENSU

EM ENGENHARIA DE ESTRUTURAS

TÓPICOS DE FUNDAÇÕES

PROF. CLAUDERSON BASILEU CARVALHO

MESTRE EM ENGENHARIA DE ESTRUTURAS – DEES/UFMG ESPECIALISTA EM GEOTECNIA – UNICID/SP

(2)

CONTATOS

e-mail:

profclauderson@gmail.com

telefone: 31 9 9999-1979

Link curriculo Lattes: http://lattes.cnpq.br/2759161121752780

(3)

Bibliografia Básica

(4)

Fundações

Conceito: Elemento transmissor dos esforços de uma

estrutura ao solo base. São peças enterradas (ou não)

que fazem a intermediação entre a estrutura e o terreno.

(5)

Fundações

O

engenheiro

de

fundações

precisa

adquirir

conhecimentos de:

-

Cálculo

estrutural:

dimensionamento

das

peças

estruturais

(6)
(7)

Fundações

Variáveis para avaliação do

comportamento das fundações

1 – SUPER-ESTRUTURA CONSTITUÍDA DE LAJES, VIGAS E PILARES, ACIMA DA COTA 0,0;

2 – AMBIENTE OU VIZINHANÇA NO ENTORNO DO LOCAL DE CONSTRUÇÃO;

3 – INFRA-ESTRUTURA CONSTITUÍDA DE CINTAS E PEÇAS ESTRUTURAIS DE FUNDAÇÃO, COMO SAPATAS, BLOCOS, ESTACAS, RADIER, ETC;

(8)
(9)
(10)
(11)

Fundações

ORIGEM DO SOLO

INTEMPERISMO

• NAS BORDAS DAS PLACAS TECTÔNICAS OCORREM RENOVAÇÃO DAS ROCHAS; • JÁ NO INTERIOR DAS PLACAS O INTEMPERISMO CONSEGUE ATUAR.

(12)

Fundações

(13)
(14)
(15)

Fundações

Segundo a NBR 6122/2010, fundação superficial, fundação rasa ou até mesmo fundação direta (três termos similares) é o elemento estrutural em que a carga é transmitida ao terreno, pelas tensões distribuídas sob a BASE da fundação, e a profundidade de assentamento em relação ao terreno adjacente à fundação é inferior a duas vezes a menor dimensão da fundação.

Já as fundações consideradas profundas e/ou indiretas (estacas de diferentes características, por exemplo), são aquelas em que a transmissão da carga para o solo é feita pela superfície lateral (preponderantemente) e também pela base; podendo esta última ser negligenciada. Esta transmissão será tratada por efeito de atrito lateral e efeito de ponta, respectivamente. As dimensões são relativamente grandes exatamente devido à forma reação dos esforços solicitantes.

(16)

Fundações

Caso

“ESPECIAL”: TUBULÃO

Fundação direta

profunda.

Pela NBR 6122/2010 o elemento tubulão é considerado uma peça de fundação profunda, escavado no terreno em que, pelo menos na sua etapa final, há descida de pessoas, que se faz necessária para executar o alargamento de base ou pelo menos a limpeza do fundo da escavação, uma vez que neste tipo de fundação as cargas são transmitidas preponderantemente pela ponta (o atrito

(17)

Fundações

Caso realmente ESPECIAL: FUNDAÇÕES MISTAS

Aquelas que associam fundações superficiais e profundas

Radier estaqueado Estaca T

(18)

Fundações

Condição Ideal:

1 Laje + 4 Vigas + 4 pilares + 4 elementos isolados de fundação = 1

Pórtico Espacial

Devido à resistência do solo de base

essa condição é na grande maioria

dos casos, improvável.

(19)
(20)
(21)
(22)
(23)

Fundações

Fundações Superficiais x Fundações Profundas

Orientações quanto à escolha

(24)

Fundações

Fundações Superficiais x Fundações Profundas

Orientações quanto à escolha

(25)

Fundações

Fundações Profundas x Fundações Profundas

Orientações quanto à escolha do tipo de Estaca

(26)

Fundações

Fundações Profundas x Fundações Profundas

Orientações quanto à escolha do tipo de Estaca

(27)

Fundações

(Live load)

(28)
(29)
(30)

Fundações

Ações nas fundações

Segundo a NBR 6122/2010, os esforços determinados a partir das ações e suas combinações, conforme prescrito na ABNT NBR 8681 (ações e segurança nas estruturas), devem ser fornecidos pelo projetista da estrutura a quem cabe individualizar qual o conjunto de esforços para verificação dos estados-limites últimos (ELU) e qual o conjunto para verificação dos estados-limites de serviço (ELS). Esses esforços devem ser fornecidos em termos de valores de projeto, já considerando os coeficientes de majoração conforme prescreve a norma.

Para o caso do projeto de fundações ser desenvolvido em termos de fator de segurança global, devem ser solicitados ao projetista estrutural os valores dos coeficientes pelos quais as solicitações em termos de valores de projeto devem ser divididas, em cada caso, para reduzi-las às solicitações características.

Os esforços devem ser fornecidos no nível do topo das fundações ou ao nível da interface entre os projetos de superestrutura e infra-estrutura, devendo ficar bem caracterizado este nível.

(31)

Fundações

NBR 8681/2003

(32)

Fundações

Investigação do subsolo

Ensaios in situ

SPT – “STANDARD PENETRATION TEST” Avalia resistência dos solos perfurados;

CPT – “CONE PENETRATION TEST”  Avalia resistência dos solos perfurados e pode ou não medir pressão intersticial da água;

PMT – “PRESSURE METER TEST”  Avalia resistência à partir de uma resposta a compressão horizontal do solo na zona envolvente;

DMT – “DILATOMETER TEST”  Avalia resistência do solo à partir de uma resposta a expansão de um membrana com intrusão de gás nitrogênio;

VST – “VANE SHEAR TEST” Avalia resistência dos solos à partir da rotação de uma palheta.

(33)

Fundações

Investigação do subsolo

Ensaios in situ

ENSAIOS DE PLACA

(34)

Fundações

Investigação do subsolo

(35)

Fundações

Investigação do subsolo

(36)

Fundações

Investigação do subsolo

(37)

Fundações

Investigação do subsolo

(38)

Fundações

Investigação do subsolo

(39)

Fundações

Investigação do subsolo

(40)

Fundações

Investigação do subsolo

(41)

Fundações

Investigação do subsolo

(42)

Fundações

Investigação do subsolo

(43)

Fundações

Investigação do subsolo

(44)

Fundações

Investigação do subsolo

(45)

Fundações

Investigação do subsolo

(46)

Fundações

Investigação do subsolo

(47)

Fundações

Investigação do subsolo

Métodos Indiretos - Geofísica

• Refração sísmica;

• Eletro-resistividade;

• Indução magnética

.

Propriedades são estimadas por meio

de medição, análise e interpretação

dos campos físicos na superfície ou

próxima a ela.

(48)

Fundações

Investigação do subsolo

Ensaios in situ

SPT

As sondagens às percussão (SPT) foram elaborados para

solos de resistência moderada. Um ou dois golpes para mais

ou para menos é considerado erro corriqueiro. Solos com 1, 2

ou 3 de N

SPT

(solos considerados

“fracos”) podem ter mais

resistência que o esperado nos cálculos semi-empíricos

(estudados à diante).

(49)

Fundações

(50)

Fundações

(51)

Fundações

(52)

Fundações

(53)

Fundações

(54)

Cálculo da Eficiência do equipamento de sondagem

e

m

x N

m

= e

60

x N

60

em mede-se com “analyzer” ou pode-se estimar (± 84% em média segundo artigos técnicos); e60 é a eficiência de 60% (eficiência considerada pela norma americana);

N60 é o NSPT corrigido para uma eficiência de 60%.

No Brasil a eficiência aproximada é de 72%

Fundações

(55)

Fundações

Investigação do subsolo

Solo resistente (15 golpes) a

± 6 m

profundidade.

(56)

Fundações

Investigação do subsolo

Solo resistente (15 golpes) a

± 1,5 m

profundidade.

Indicação para fundação rasa

Observação (experiência autor): Profundidade mínima é a profundidade que as livre de variações sazonais de volume de solo, raízes e erosões (> 1,5m). NBR 6122/2010:

Profundidade mínima nas divisas com terrenos vizinhos é maior que 1,5m, salvo assentamento em rocha.

(57)

Fundações

Investigação do subsolo

Qual tipo de

Fundação?

(58)

Fundações

Investigação do subsolo

Número mínimo de furos de sondagem prescritos pela NBR 8036/1983

• 2 para área da projeção em planta do edifício até 200 m²;

• 3 para área entre 200 m² e 400 m²;

• Entre 400 m² e 1200 m² de área deve-se acrescentar 1 sondagem

para cada 200 m² aos 3 estabelecidos anteriormente;

• Entre 1200 m² e 2400 m² de área deve-se fazer 1 sondagem para

cada 400 m² que excederem de 1200 m²;

• Acima de 2400 m² o número de sondagens deve ser fixado de

acordo com o plano particular da construção.

Intervalos em m² 0-200 200-400 400-600 600-800 800-1000 1000-1200 1200-1600 1600-2000 2000-2400

Nº de furos 2 3 3 4 5 6 7 8 9

Tabela prática de referência do número de furos em função da área de projeção do edifício

(59)

Fundações

Investigação do subsolo

Sondagem rotativa

Utilizada para investigação geotécnica de

maciços

rochosos

e

solos

impenetráveis

a

percussão

-

SPT.

Recomenda-se uma amostragem mínima de aproximadamente 3

metros da rocha avaliada. Possibilita classificação da qualidade da

rocha à partir do RQD.

Rock Quality Designation (RQD) é definido como a percentagem de

recuperação obtida quando se eliminam da amostra as porções de solo

e os fragmentos de rocha menores que 10 cm.

Índices de qualidade de maciços rochosos

(60)

Fundações

(61)

Fundações

Investigação do subsolo

Métodos Semi-empíricos – Correlações com o N

SPT

Compacidade e consistência Pesos específicos

Parâmetros de resistência

(62)

Fundações

Investigação do subsolo

Métodos Semi-empíricos – Correlações com o N

SPT

Parâmetros de compressibilidade

(63)

Fundações

Investigação do subsolo

Métodos Semi-empíricos – Correlações com o N

SPT

(64)

Fundações

A tensão de ruptura ou capacidade de carga de um solo é, assim, a força que

aplicada a uma área de solo, causa o seu colapso. Adotando um adequado

coeficiente de segurança, da ordem de 2 a 3, obtém-se a tensão admissível, a qual

deverá ser

“admissível” não só à ruptura como também às deformações excessivas

do solo.

“O material solo apresenta um comportamento

elasto-plástico-viscoso”

Sólido = mecânica dos sólidos; Ar = fenômenos de transporte; Água = mecânica dos fluidos.

(65)
(66)
(67)

Fundações

O solo rompe por cisalhamento

(b)

(a)

(68)

Fundações

Solos rígidos

(areia compacta ou argila rija a dura)

Solos deformáveis (areias fofas ou argilas moles a médias)

Solos sem resistência mecânica (areia extremamente compressível ou argila mole)

(69)

Fundações

Ruptura Geral  Ruptura local ou puncionamento 

Reação insuficiente 

(70)
(71)

Fundações

Formulação clássica de Terzaghi (1943)

coesão

Sobrecarga solo adjacente Peso próprio

(72)

Fundações

(73)

Fundações

Formulação clássica de Terzaghi (1943)

Em caso de ruptura local, utiliza-se os seguintes parâmetros:

(74)

Fundações

(75)

Fundações

Formulação de Vésic (1975)

Incorporou aos métodos anteriores as influências

de:

1. Profundidade de assentamento;

2. Inclinação da carga em relação ao plano;

3. Inclinação do terreno adjacente;

(76)

Fundações

Formulação de Vésic (1975)

(77)

Fundações

(78)

Fundações

Formulação de Vésic (1975)

Segundo Wayne C. Teng em “Foundation Design este valor deve ser inferior a 5 tf/m²

(79)

Fundações

Área Efetiva segundo a NBR 6122/1996 (não mais em vigor)

(80)

Fundações

(81)

Fundações

DETERMINAÇÃO DA CAPACIDADE DE CARGA

1 – Prova de carga;

2 – Formulações teóricas (Terzaghi e Vésic); 3 – Correlação com o NSPT, sem o bulbo; 4 – Correlação com o NSPT, com o bulbo .

Valor mais conservador

Correlações com o NSPT

Fundações em sapatas, blocos e radier’s  s = NSPT/5 kgf/cm² Fundações em tubulão  s = NSPT/4 kgf/cm²

Considerações:

• Não deve-se apoiar uma fundação em solos que apresentem NSPT < 5 (estendendo-se ao bulbo de tensões). Caso ocorra deve-se reforçar o solo de base ou “movimentar” verticalmente a fundação).

• O valor máximo de NSPT a ser considerado nas correlações é limitado a 20.

• Se no bulbo de tensões ocorrerem valores de NSPT decrescentes deverá ser verificada a tensão admissível nessas profundidades;

• Os NSPT dentro do bulbo de tensões devem ser analisados com coerência. Pegar valores médios à partir de resultados com desvio padrão alto podem ser perigosos.

(82)

Fundações

Bulbo de Tensões

- A atuação do bulbo de tensões descrito acima, está condicionada à deformabilidade do solo base; ou seja, a(s) camada(s) suporte(s) deve(m) ser deformável(is). • Sapatas quadradas, circulares e retangulares de lados menores que 1/5 de relação  2B • Sapatas corridas (retangulares com relação de 1/5 entre os lados)  4B

onde B é a largura da base.

Definição: Conjunto de isóbaras; ou região de concentração de isóbaras, onde as tensões superiores a 10% em relação à tensão de contato, estão localizadas. Levando-se em conta os efeitos práticos de análise.

(83)

Fundações

(84)

Fundações

(85)

Fundações

(86)

Fundações

(87)

Fundações

Critérios de projeto

(88)

Fundações

(89)

Fundações

Critérios de projeto

(90)

Fundações

(91)

Fundações

Critérios de projeto

Denomina-se recalque a deformação ou “afundamento” de uma fundação.

Os recalques podem ser classificados em:

- Recalque total (s): corresponde à máxima deformação observada em um dado ponto.

- Recalque diferencial (): corresponde à diferença entre os recalques totais de dois pontos quaisquer. - Recalque diferencial específico ou distorção angular (β): corresponde ao recalque diferencial dividido

pela distância entre os pontos considerados.

- Inclinação (ω): corresponde ao recalque diferencial específico entre dois pontos extremos da estrutura

(92)

Fundações

Critérios de projeto

Recalque

(93)

Fundações

Rasas, diretas ou superficiais

Fundações Superficiais Rígidas e Flexíveis

Para as mesmas condições de solo e superfície de contato, a altura da fundação é que definirá se ela será rígida ou flexível.

(94)

Fundações

Rasas, diretas ou superficiais

Fundações Superficiais Rígidas e Flexíveis

Em análise estrutural clássica, o coeficiente de rigidez (inverso de coeficiente de flexibilidade) é definido como a relação entre uma ação aplicada e seu deslocamento provocado; ou seja:

Como a avaliação global da estrutura recomenda a interação entre a fundação e o solo, sugere-se relacionar a rigidez da base com a rigidez do terreno, ou seja, relacionar a flecha do elemento com o recalque do solo. À partir disso, pode-se aplicar a seguinte expressão:

(95)

Fundações

Rasas, diretas ou superficiais

Fundações Superficiais Rígidas e Flexíveis

Rigidez segundo a NBR 6118/2014

Segundo a norma NBR 6118 uma sapata será considerada rígida se atender às duas equações à seguir. Caso contrário ela deverá ser considerada flexível.

' 3 3 d a A b B e          

Obs: o d’ das fórmulas acima, não estão descritas na norma brasileira. Este parâmetro não influenciará na classificação, devido à sua ordem de grandeza, mas é uma sugestão do autor para aplicação técnica mais rigorosa.

(96)

Fundações

Rasas, diretas ou superficiais

Determinação dos Recalques

• Não leva-se em conta a flexibilidade da fundação;

• Recalque real para fundações rígidas e médio para fundações flexíveis;

• O recalque total é a soma do recalque imediato (imediatamente após o

carregamento) com o recalque ao longo do tempo (adensamento +

fenômenos viscosos);

(97)

Fundações

Rasas, diretas ou superficiais

Determinação dos Recalques

Métodos racionais

associação com parâmetros de laboratório ou in situ;

Métodos semi-empíricos

associação com SPT ou CPT;

Métodos empíricos

uso de tabelas.

- Terzaghi (1955);

- Harr (1966);

- Giroud (1973);

- Poulos e Davis (1974);

- Perloff (1975);

- Schmertmann (1978);

- Padfield e Sharrock (1983);

etc...

Utilizaremos os valores de Terzaghi (1955) com aplicação segundo o

American Concrete Institute (ACI,1988), associando o k

s1

, obtido no ensaio

(98)

Fundações

Rasas, diretas ou superficiais

Determinação dos Recalques

(99)

Fundações

Rasas, diretas ou superficiais

Determinação dos Recalques

onde b é a menor dimensão da placa utilizada no ensaio; B é a menor dimensão da fundação avaliada e n varia entre 0,5 e 0,7. Sendo que utiliza-se o menor valor de n se a espessura da camada compressível, abaixo da fundação, for menor que 4B.

Tensão

v

k

A V

  Deslocamento

Determinação da tensão solicitante:

v

(100)

Fundações

Rasas, diretas ou superficiais

Determinação dos Recalques

No caso de radier, onde as dimensões são consideravelmente grandes,

levando-se a k

v

’s extremamente pequenos,

recomenda-se a utilização do método

preconizado pelo ACI com a adoção de sapatas isoladas fictícias. Depois tira-se a

média dessas variáveis. Pode-se ainda utilizar, segundo Teixeira e Godoy (1996),

0,67k

vb

= K

v

.

Com relação ao coeficiente horizontal de mola (k

h

) dos elementos de fundação, e

bastante utilizado nos modelos de análise e dimensionamento, recomenda-se

utilizar este parâmetro como sendo 20% do coeficiente vertical (k

h

= 0,2k

v

). Em

análises dinâmicas, este fator pode ser considerado como sendo 50% do k

v

(k

h

=

(101)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Fundações Flexíveis e Rígidas

k

v

onde:  é a tensão de contato em determinado ponto; ω é o

deslocamento do solo em um determinado ponto (recalque) e kv é o coeficiente de recalque do solo.

Normalmente, evita-se projetar fundações superficiais flexíveis. Entretanto, quando a fundação é assentada sobre rocha, não há como contornar o problema, sendo a fundação obrigatoriamente flexível, visto que a espessura a ser adotada para torná-la rígida é inviável.

O cálculo de fundações flexíveis é bastante complexo, tendo sua aplicação difundida pelo advento computacional (SAP 2000), utilizando os conceitos de placa (fundação) sobre base elástica (solo).

(102)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Fundações Flexíveis e Rígidas

A fundação assentada sobre rocha, segundo a NBR 6122/96 recomendava que, no cálculo estrutural, fosse adotado o diagrama de tensões mostrado abaixo. E o autor utiliza esta recomendação nos dias atuais.

(103)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Em fundações rígidas, a superfície de contato tende a permanecer plana, com isso, a tensão em um determinado ponto sob a base será função do carregamento, da geometria e da posição em relação ao centro de gravidade da seção da base.

Com isso, a equação das tensões oblíquas compostas, estudada em RESISTÊNCIA DOS MATERIAIS, deve ser aplicada.

(104)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Revisão – Resistência dos Materiais

(105)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Revisão – Resistência dos Materiais

(106)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Quando houver “tração ou descolamento” no fundo da base

- Deve-se garantir que 2/3 da base estejam em contato com o solo. Ou seja, 67% da fundação/solo devem estar comprimida. Observa-se porém, que algumas empresas projetistas, em seus “critérios de projeto”, indicam que no mínimo 80% e até 90% do solo sob a fundação, seja comprimido. Isto eleva o nível de segurança, mas encarece o dimensionamento.

Excentricidade em relação a apenas um dos eixos principais de inércia (x ou y)

) 2 ( 3 2 e L B N máx            L e X 2 3

(107)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Excentricidade em relação aos dois eixos principais de inércia (x e y)

A determinação do diagrama de tensões no solo é, neste caso, mais complexa.

Quatro situações distintas podem ocorrer, dependendo da posição (região) onde se localizar a carga normal excêntrica. A figura abaixo indica essas quatro regiões.

Caso a maior dimensão da sapata

(a) esteja na direção “y”, trocar “a”

por “b” em todas as expressões à

(108)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Excentricidade em relação aos dois eixos principais de inércia (x e y) Região 1

Tensões nos pontos I e II

(109)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Excentricidade em relação aos dois eixos principais de inércia (x e y) Região 2

(110)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Excentricidade em relação aos dois eixos principais de inércia (x e y) Região 3

(111)

Fundações

Rasas, diretas ou superficiais

Tensões de Contato – Teoria da Elasticidade

Excentricidade em relação aos dois eixos principais de inércia (x e y) Região 4

Com a excentricidade nesta região, o cálculo das tensões conduziria a um diagrama de tensões com área comprimida inferior a 67% da área total da fundação.

Quando a excentricidade cair nessa região as dimensões da fundação devem ser alteradas.

Para que seja garantido que a carga normal excêntrica não cai na região 4, basta que as excentricidades “ex” e “ey” atendam à inequação:

(112)

Fundações

Rasas, diretas ou superficiais

Deslizamento

Após analisarmos as tensões de contato comparando-as com as tensões admissíveis, bem como a

porcentagem de área comprimida, fazendo referência a um possível “tombamento”; o último critério a ser

verificado nas fundações diretas seria o da estabilidade aos deslocamentos transversais (translação). Assim:

5

,

1

F

F

h v

onde  é o coeficiente de atrito entre o solo e o concreto armado, que pode ser tomado simplificadamente

por tg2/3 (mais conservador) ou tg (menos conservador);

Fvé o somatório de cargas verticais (Peso próprio + peso do solo + carga vertical + etc...);

(113)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Geométrico

O dimensionamento geométrico de fundações superficiais consiste na definição da geometria de sua superfície de contato (base), para que as tensões transmitidas ao solo não ultrapassem sua tensão admissível ( adm). Esta geometria ainda deve ser capaz de garantir a estabilidade às translações ou deslizamentos e às rotações ou tombamentos.

Além disso:

- nenhuma das dimensões deve ser menor do que 60 cm;

- apesar de não haver qualquer menção na NBR-6122, é cultura difundida que, sempre que possível, a relação entre os lados do retângulo (a/b) seja menor ou igual a 2,5;

- sempre que possível, os quatro balanços da fundação devem ser iguais (La = Lb), pois isso conduz a um dimensionamento mais econômico;

- para que haja filosofia única de cálculo, em qualquer situação de solicitação, a carga normal a ser considerada no projeto deve ser igual a:

(114)

Fundações

Rasas, diretas ou superficiais

(115)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas

Considerações iniciais:

- Em sapatas rígidas o dimensionamento/verificação da punção é desnecessária, segundo a NBR6118/2014.

- Se a espessura da sapata for maior que 0,5La ou 0,5Lb (vide figura anterior), ocorrerá o surgimento de tensões elevadas de tração acima da face inferior do elemento, exigindo dois níveis de armadura.

- o rodapé, ou espessura nas extremidades, mínimo das sapatas devem obedecer: um terço da espessura abaixo da coluna ou 20 cm (em caso de sapatas em “tronco de

pirâmide”).

- espessura deve ser suficiente para ancorar 60% do comprimento básico de ancoragem das armaduras verticais do pilar (≥ o,6lb).

(116)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Método das bielas comprimidas

onde: P é a carga do pilar, “a” é a medida da sapata na direção estudada, “a0” é a medida do pilar na direção estudada, “d” é a altura útil, Ta é força de tração na biela inferior, As é a área de aço projetada e fyd é a tensão de escoamento de cálculo do aço.

(117)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Os métodos de cálculo e dimensionamento descritos abaixo referem-se a sapatas que apresentam as características mostradas abaixo.

Se h ≥ 2Lmáx bloco

Os momentos fletores em cada direção são calculados em relação a seção de referência S1 correspondente, considerando-se a reação do solo em toda a área da sapata definida por S1 e suas bordas. Essas seções devem ser consideradas, em cada direção, do lado onde ocorrem as maiores tensões no solo.

(118)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

L q V e 2 ² L q M     Asmín = 0,1%Ac

(119)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Considerações:

- A relação entre as áreas das armaduras nas duas direções deve ser maior do que 1/5; - Se o peso próprio da sapata e peso de terra sobre ela tiverem sido considerados na determinação das tensões no solo, eles devem ser descontados na avaliação dos momentos.;

- Caso esta consideração resulte em algum momento negativo, a sapata deverá ser dotada de armadura superior conforme figura abaixo.

(120)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Condições de aderência da armadura

A seguinte relação desse ser verificada

onde:

V1d= esforço cortante de cálculo relativo à seção de referência S1 (por unidade de comprimento);

d= altura útil da sapata;

n= número de barras por unidade de comprimento;

p= perímetro de uma barra = π ;

fcd em kgf/cm²

(121)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Resistência ao esforço cortante

O esforço cortante de referência atua na sapata entre a seção de referência S2 e a borda paralela mais próxima a esta seção. Deve-se verificar o cortante nos dois balanços e analisar o maior entre eles.

A seção S2 é perpendicular à superfície de contato da sapata e situa-se a uma distância, medida da face do pilar, igual a metade da altura útil (d/2). Se largura é b2 = b0 + d; onde b0 é a dimensão do pilar paralela a S2 e d a altura útil junto ao pilar.

A altura útil d2 é a altura útil medida na seção S2. Este valor não deve ser maior do que 1,5 vezes a aba t2 da sapata (vide próxima figura).

(122)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Resistência ao esforço cortante

(123)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Resistência ao esforço cortante

(124)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Armaduras Secundárias

(125)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas

Para utilização do método das bielas comprimidas e também da teoria da flexão, nos casos de carga normal com excentricidade embutida (N + M), é preciso uniformizar o diagrama de tensões no solo e transformar a carga aplicada em uma carga fictícia (x A)

(126)

Fundações

Rasas, diretas ou superficiais

Dimensionamento Estrutural de Sapatas Rígidas – Teoria da Flexão

Revisão – Concreto Armado – Dimensionamento de seções retangulares

               dupla Armação k k k k simples Armação k k k k d b f M k L L L w c d ' ' ²                       ) ' 1 ( ) ' ( ) ' 2 1 1 ( 2 1 2 1 d d k k f d b f A k f d b f A A A A yd w c s yd w c s s s s

2 's As A

(127)

Fundações

“Direta e profunda”

TUBULÕES

Sem escoramento – Convencional (discriminado devido à segurança do trabalho)

- Escavado manualmente, apresenta diâmetro mínimo de 70 cm de fuste, tem ângulo de 60º no alargamento da base, para que não se tenha necessidade de armadura no fundo. São executados, à priori, para receber apenas esforços verticais (presença de cintas de travamento nas duas direções para a resistência aos demais esforços), executado acima do lençol freático, em solos coesivos e com o enchimento em concreto ciclópico. A Armadura vertical é colocada apenas na parte superior, para melhor distribuição das tensões, na transição com as cintas.

Com escoramento – Tipo Chicago e Gow

- Escoramento das paredes do fuste é feito em madeira com anéis metálicos no tubulão Chicago ou com anéis metálicos telescópicos no tubulão Gow. Os elementos de escoramento podem ou não ser recuperados, e estas escoras podem ou não ser utilizadas apenas em solo de baixa consistência. São executados, à priori, para receber apenas esforços verticais (presença de cintas de travamento nas duas direções para a resistência aos demais esforços), executado acima do lençol freático e com o enchimento em concreto ciclópico. A Armadura vertical é colocada apenas na parte superior, para melhor distribuição das tensões, na transição com as cintas.

(128)

Fundações

“Direta e profunda”

(129)

Fundações

“Direta e profunda”

TUBULÕES

Ar comprimido

O revestimento das paredes laterais do fuste é feito com anéis de concreto armado com diâmetro externo igual ao diâmetro do fuste. Os anéis de concreto movem-se verticalmente pelo peso próprio. A escavação é feita manualmente, abaixo do nível d’água (N.A.) e com o auxílio de uma campânula à ar comprimido. Os trabalhadores ficam submetidos à pressão artificial, causadora de efeitos colaterais irreversíveis ou até mesmo à morte se não realizada com extrema responsabilidade (segurança do trabalho).

(130)

Fundações

“Direta e profunda”

TUBULÕES

(131)

Fundações

“Direta e profunda”

TUBULÕES

Procedimentos secundários:

A partir de 1 metro de profundidade, o acesso da saída do poço ou tubulão será efetuado por meio de sistemas que garantam a segurança do trabalhador, tais como sarilho com trava e/ou guincho mecânico.

(132)

Fundações

“Direta e profunda”

TUBULÕES

Roteiro de dimensionamento 1 – Diâmetro do fuste 2 – Diâmetro da base 3 – Altura da base 4 – Altura do rodapé 20 cm

O Peso próprio do tubulão é negligenciado nos cálculos exatamente pela desconsideração da resistência lateral ao longo do fuste.

cm f N c d Fuste 70 875 , 0 4    

 (NR18 – Ministério do Trabalho e Emprego)

onde Nd é a carga vertical majorada e fc =

0,85fck/1,4 adm Base N       4

onde N é a carga vertical característica e σadm é a tensão admissível do

solo de base

(133)

Fundações

“Direta e profunda”

TUBULÕES

Com relação às considerações elásticas; mais precisamente à análise e determinação dos coeficientes verticais e horizontais de elementos lineares (inclusive tubulões), elas serão estudadas à diante; nos módulos referentes à fundações profundas. Estes parâmetros em tubulões são similares aos utilizados em estacas.

(134)

Fundações

Indireta ou profunda - Estacas

Fundação em Estacas

De acordo com a NBR 6122/2010 (Projeto e execução de fundações) define-se por fundação profunda qualquer elemento estrutural que transmita carga ao terreno pela base, denominada à partir de agora de resistência de ponta ou por sua superfície lateral, denominada resistência de fuste ou apenas resistência lateral. Pode-se ainda ter a combinação duas reações. Outra característica seria quanto à sua dimensão; fundação profunda deve estar assentada em profundidade superior ao dobro de sua menor dimensão em planta, e a no mínimo 3 metros.

Caracterização

1 – Quanto ao material utilizado: madeira, concreto (simples, armado ou protendido) e metálica. 2 – Quanto à execução: pré-moldadas (perfis laminados em I ou H, tubos, chapas soldadas, trilhos (associados ou não), concreto de seção circular, anelar ou quadrada) ou moldadas in-loco (franki, Strauss, microestacas, raiz, hélice contínua, trado, pressoancoragem, barrete).

3 – Quanto ao deslocamento do solo: de deslocamento (pré-moldadas e franki) ou escavadas (Strauss, hélice contínua, raiz, trado)

(135)

Fundações

Indireta ou profunda - Estacas

(136)

Fundações

Indireta ou profunda - Estacas

(137)

Fundações

Indireta ou profunda - Estacas

(138)

Fundações

Indireta ou profunda - Estacas

(139)

Fundações

Indireta ou profunda - Estacas

(140)

Fundações

Indireta ou profunda - Estacas

(141)

Fundações

Indireta ou profunda - Estacas

(142)

Fundações

Indireta ou profunda - Estacas

(143)

Fundações

Indireta ou profunda - Estacas

(144)

Fundações

Indireta ou profunda - Estacas

Capacidade de Carga em Estacas – Carga de projeto em fundações profundas

Métodos consagrados e aplicados na engenharia brasileira

- Aoki e Velloso, 1975;

- Décourt e Quaresma, 1978;

- Pedro Paulo Costa Velloso, 1979;

- Alberto Henriques Teixeira; 1996;

- Urbano Rodrigues Alonso; 1996;

- Entre outros...

(145)

Fundações

Indireta ou profunda - Estacas

Cálculo da carga admissível sobre estacas pelo método empírico de Décourt e

Quaresma

(146)

Fundações

Indireta ou profunda - Estacas

Cálculo da carga admissível sobre estacas pelo método empírico de Décourt e

Quaresma

onde:

K é um coeficiente em função do tipo de solo;

N é o valor médio de NSPT em torno da ponta da estaca (1 metro acima e

1 metro abaixo) ;

N é o valor médio de NSPT ao longo do fuste da estaca.

Se N 2, adota-se N= 3.

(147)

Fundações

Indireta ou profunda - Estacas

Cálculo da carga admissível sobre estacas pelo método empírico de Décourt e

Quaresma

(148)

Fundações

Indireta ou profunda - Estacas

Cálculo da carga admissível sobre estacas pelo método empírico de Aoki e

Velloso

(149)

Fundações

Indireta ou profunda - Estacas

Cálculo da carga admissível sobre estacas pelo método empírico de Aoki e

Velloso

(150)

Fundações

Indireta ou profunda - Estacas

Cálculo da carga admissível sobre estacas pelo método empírico de Aoki e

Velloso

(151)

Fundações

Indireta ou profunda - Estacas

Cálculo da carga admissível sobre estacas

OBRA:

PROF. SPT MAT. PROF. SPT MAT. PROF. SPT MAT.

(m) P.P.C.V. D. - Q. A. - V. A.H.T. U.R.A. ERNANI (m) P.P.C.V. D. - Q. A. - V. A.H.T. U.R.A. ERNANI (m) P.P.C.V. D. - Q. A. - V. A.H.T. U.R.A. ERNANI

1 6 ARGS 0 0,00 0,00 0,00 0,00 0,00 1 6 ARGS 8,47 13,08 16,92 11,54 9,62 9,30 1 6 ARGS 3,39 3,27 8,46 2,88 0,00 4,65

2 4 ARGS 7,06 13,19 2,58 5,28 5,67 5,41 2 4 ARGS 8,47 18,31 11,28 11,54 9,62 11,96 2 4 ARGS 6,21 14,72 6,93 6,40 7,09 8,68

3 4 ARGS 11,77 17,58 4,30 8,79 9,46 9,01 3 4 ARGS 12,14 19,62 11,28 14,10 13,78 16,57 3 4 ARGS 9,57 18,43 7,79 9,39 11,62 12,79

4 7 ARGS 16,48 22,47 6,02 12,31 13,24 12,62 4 7 ARGS 14,97 22,23 19,75 22,44 16,99 21,19 4 7 ARGS 12,58 22,84 12,88 13,82 15,11 16,90

5 6 ARGS 24,72 30,22 9,03 18,46 19,86 18,92 5 6 ARGS 18,64 28,77 16,92 21,16 21,16 31,69 5 6 ARGS 17,34 30,44 12,98 17,60 20,51 25,30

6 9 ARGA 31,78 36,93 11,61 23,74 25,54 24,33 6 9 ARGA 22,88 31,39 40,39 33,40 25,96 45,52 6 9 ARGA 21,86 36,25 26,00 24,18 25,75 34,93

7 9 ARGA 42,37 46,16 15,30 31,65 34,05 32,44 7 9 ARGA 36,77 50,47 40,39 38,34 40,39 66,24 7 9 ARGA 31,66 48,12 27,84 30,68 37,22 49,34

8 14 SAR 52,97 55,26 18,99 39,56 42,56 40,55 8 14 SAR 59,82 81,01 98,73 61,93 64,43 90,70 8 14 SAR 45,11 62,76 58,86 41,86 53,20 65,63

9 22 SAR 73,89 65,28 27,26 51,87 55,80 54,40 9 22 SAR 86,71 126,93 155,14 97,06 92,96 116,83 9 22 SAR 64,24 81,95 91,20 58,85 69,75 85,62 10 30 SAR 106,77 82,79 40,27 71,22 76,61 76,16 10 30 SAR 113,14 167,32 211,56 136,74 121,00 144,16 10 30 SAR 87,97 105,52 125,91 81,66 95,76 110,16 11 35 SAR 151,61 105,90 58,00 97,59 104,98 105,83 11 35 SAR 136,92 200,02 246,82 175,40 146,17 169,53 11 35 SAR 115,41 131,47 152,41 108,91 125,58 137,68 12 39 SAR 203,92 132,36 78,68 128,36 138,09 140,45 12 39 SAR 157,82 238,48 275,02 209,25 168,28 194,89 12 39 SAR 144,70 161,44 176,85 137,89 153,19 167,67 13 57 SAR 262,22 161,44 101,73 162,65 174,97 179,03 13 57 SAR 174,26 267,33 282,08 229,76 185,59 214,38 13 57 SAR 174,59 191,02 191,90 165,88 180,28 196,70

RESULTADOS - PONTA RESULTADOS - CARGA ADMISSIVEL

70 SONDAGEM SPT-01

ATRITO LATERAL (Qlu) - (t) RESISTÊNCIA DE PONTA (Qpu) - (t) CARGA ADMISSÍVEL (Qadm) - (t) TRABALHO:

LIMITE DA SONDAGEM (m) 13,4 RESULTADOS - ATRITO LATERAL

PROGRAMA CÁLCULO DE ESTACAS (cm)

COTA DE CÁLCULO (m) 0,00

ESTACA TIPO HÉLICE CONTÍNUA

(152)

Fundações

Indireta ou profunda - Estacas

Principais Diâmetros Comerciais (Usuais) – Fonte: Fundações Teoria e Prática – PINI*

Estacas Hélice Contínua (cm) – 27.5, 30, 35, 40, 42.5, 50, 60, 70, 80, 90 e 100;

Estacas Raiz (cm) – 10, 12, 15, 16, 20, 25, 31 e 41;

Estacas Franki (cm) – 30, 35, 40, 45, 52 e 60 (diâmetro do fuste);

Estacas Strauss (cm) – 25, 32, 38, 45, 55 e 62;

Estacas a Trado (cm) – 25, 30, 35, 40, 45 e 50;

Estacas de Madeira (cm) – 20, 25, 30, 35 e 40;

Estacas de Aço CSN (principais) – H6”x6”, I8”x4”, I10”x4

5/8

”, I12”x5

1/4

” (não circular);

Estacas Trilhos – TR25, TR32, TR37, TR45, TR50 e TR57 (não circular);

Estacas Pré-moldadas de concreto (cm) – 20, 23, 26, 33, 38, 42, 50, 60 e 70;

Estacas Pressoancoragem (cm) – 7.5, 9, 11.5, 15 e 20

* As dimensões variam entre as regiões do país e entre as próprias empresas executoras, de acordo com os equipamentos disponibilizados. Consultar fabricantes/executores torna-se necessário para especificações técnicas.

(153)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural das estacas e tubulões – Pilar em base elástica

Após determinação da capacidade de carga geotécnica que o elemento estrutural

pode

receber;

a

partir

de

métodos

semi-empíricos

como

Aoki/Velloso

e

Décourt/Quaresma vistos anteriormente, deve-se direcionar as atenções para o

dimensionamento estrutural da estaca. Para isso emprega-se conceitos de

“pilar em

base

elástica”, onde os coeficientes de balastro - também chamado de coeficiente de

recalque do solo - são requeridos. Depois aplica-se a fórmula geral de tensões

(resistência dos materiais) e os métodos de dimensionamento peculiares de cada tipo

de material empregado (madeira, concreto ou aço).

(154)

Fundações

Indireta ou profunda - Estacas

Pilar em base elástica

Comprimento Elástico (comportamento linear inicial):

onde:

E é o módulo de elasticidade secante do concreto ou do aço (ex: 0,85*5600*fck ou 210000 – MPa); I é o momento de inércia (circular  πd4/64);

b é a largura de contato (circular d) ;

Cr é o coeficiente de balastro médio das camadas dentro do comprimento elástico (calculo iterativo). 4

4

bCr

EI

L

E

Coeficientes de Recalque dos Solos Cr = NSPTx 3000 (kN/m³) argilas

Cr = NSPTx 4000 (kN/m³) siltes

Cr = NSPTx 5000 (kN/m³) areias

k = Cr x A

infl

onde:

Ainfl é a área de influência da mola a ser considerada (= L x b);

(155)

Fundações

Indireta ou profunda - Estacas

Pilar em base elástica

Ftool

(156)

Fundações

Indireta ou profunda - Estacas

Pilar em base elástica

Ftool

(157)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

(158)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

(159)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

(160)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

(161)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

(162)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

Programa computacional – Flexão Normal Composta

http://www.pcalc.com.br/

(163)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

Programa computacional – Flexão Normal Composta

http://www.pcalc.com.br/

(164)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

Esforços Cortantes

Para o dimensionamento dos fustes ao cisalhamento devemos seguir as

prescrições da NBR 6118/2014. Como as seções transversais dos tubulões e

estacas são circulares ou anelares, recorremos às orientações do CEB, que nos

indica como

“transformar” esses tipos de seções em “seções retangulares”. Após

estas

indicações

a

marcha

de

cálculo

segue

normalmente

como

o

dimensionamento de uma viga fictícia de largura b

e

, de altura útil d

e

e com uma

(165)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

Esforços Cortantes

(166)

Fundações

Indireta ou profunda - Estacas

Dimensionamento Estrutural

Esforços Cortantes

2º Caso

– Seções anelares

Essas seções podem ser substituídas por seções caixões como na figura e somente a armadura do quadrante inferior deverá ser tomada para o cálculo de Ase.

(167)

Fundações

Indireta ou profunda - Estacas

Análise Estrutural

Equação Geral

(168)

Fundações

Indireta ou profunda - Estacas

Blocos de Coroamento

(169)

Fundações

Indireta ou profunda - Estacas

Blocos de Coroamento

(170)

Fundações

Indireta ou profunda - Estacas

Blocos de Coroamento

Os blocos de 3, 4, 5 ou mais estacas obedecem ao mesmo método utilizado na apresentação anterior – teoria das bielas – e podem ser adotados, utilizando-se geometria própria.

(171)

Fundações

Indireta ou profunda - Estacas

Controle na Execução das Fundações

Prova de Carga Estática

É obrigatória a execução de prova de carga estática em obras que tiverem um número de estacas superior ao valor especificado na coluna B da tabela à seguir, sempre no início da obra. Quando este número for superior ao apresentado, deve ser executado um número de provas de carga igual a no mínimo 1% da quantidade total de estacas, arredondando-se sempre para mais. É necessária a execução de prova de carga, qualquer que seja o número de estacas na obra, se elas foram empregadas para tensões médias, em termos de valores admissíveis, superiores aos indicados na coluna A desta mesma tabela à seguir.

Prova de Carga Dinâmica

Para comprovação do desempenho, as provas de carga estática podem ser substituídas por ensaios dinâmicos na proporção de 5 ensaios dinâmicos para cada prova de carga estática em obras que tenham um número de estacas entre os valores da coluna B e duas vezes este valor. Acima deste número de estacas será obrigatória pelo menos um prova de carga estática.

(172)

Fundações

Indireta ou profunda - Estacas

Controle na Execução das Fundações

Tipo de estaca

A

Tensão (admissível) máxima abaixo da qual não serão obrigatórias provas de carga, desde que o número de estacas da obra seja inferior à coluna (B), em MPa

B

Número total de estacas da obra a partir do qual serão obrigatórias provas de carga

Pré-moldada 7,0 100

Madeira - 100

0,5 fyk 100

Hélice e hélice de deslocamento (monitoradas)

5,0 100

Estacas escavadas com ou sem fluido ≥ 70 cm 5,0 75 Raiz 15,5 75 Microestaca 15,5 75 Trado segmentado 5,0 50 Franki 7,0 100

Escavadas sem fluido < 70 cm 4,0 100

(173)

Fundações

Indireta ou profunda - Estacas

Controle na Execução das Fundações

Prova de Carga Estática

A prova de carga consiste, basicamente, em aplicar esforços estáticos à estaca e registrar os deslocamentos correspondentes. Os esforços aplicados podem ser axiais, de tração ou de compressão e transversais.

(174)

Fundações

Indireta ou profunda - Estacas

Controle na Execução das Fundações

Prova de Carga Dinâmica

Ensaio que objetiva principalmente determinar a capacidade de ruptura da interação estaca-solo, para carregamentos estáticos axiais. Ele difere das tradicionais provas de carga estáticas pelo fato do carregamento ser aplicado dinamicamente, por meio de golpes de um sistema de percussão adequado.

(175)

Fundações

Indireta ou profunda - Estacas

Controle na Execução das Fundações

Ensaio de Integridade PIT (Pile Integrity Test)

É um ensaio que tem por objetivo determinar a variação da qualidade do concreto, dano ou falha estrutural, ao longo da profundidade de estacas de fundação e fornecer sua localização. Permite ainda determinar e confirmar o comprimento dos elementos estruturais.

Não é exigido pela NBR 6122/2010, nem é normalizado no Brasil. Única referência citada pela norma brasileira seria para o caso de estacas escavadas, executadas com lama bentonítica. Ela sugere que todas as estacas da obra com essas características devem ser submetidas ao ensaio de integridade.

(176)

Fundações

Indireta ou profunda - Estacas

Controle na Execução das Fundações – Estacas Pré-moldadas

Nega

Medida da penetração permanente de uma estaca, causada pela aplicação de um golpe de martelo ou pilão, sempre relacionada com a energia de cravação. Dada a sua grandeza, em geral, é medida para uma série de 10 golpes. A nega é apenas um indicador de impenetrabilidade do elemento estrutural no solo. Sendo assim, sua melhor utilização consiste no controle de qualidade e homogeneidade do estaqueamento e não na avaliação da capacidade de carga das estacas

Repique

Parcela elástica (“quic”) do deslocamento máximo de uma estaca decorrente da aplicação de um golpe do martelo ou pilão

(177)

Fundações

Indireta ou profunda - Estacas

(178)

Fundações

Indireta ou profunda - Estacas

Fórmula dinâmica para estimativa da Nega – Fórmula de Brix

Existem ainda formulações similares à de Brix (como a de Hilley e a dos holandeses), cuja aplicação também é direta, mas não farão parte do estudo, já que o autor sugere a utilização da equação acima.

2

2

5

trabalho Pilão Estaca

Estaca Pilão

P

P

P

h

P

P

s

onde s é nega;

PPilão é o peso do pilão ou martelo de cravação; PEstaca é o peso do elemento de fundação; h é a altura de queda do pilão ou martelo e

(179)

AGRADECIMENTOS

Referências

Documentos relacionados

A espectrofotometria é uma técnica quantitativa e qualitativa, a qual se A espectrofotometria é uma técnica quantitativa e qualitativa, a qual se baseia no fato de que uma

A Psicologia, por sua vez, seguiu sua trajetória também modificando sua visão de homem e fugindo do paradigma da ciência clássica. Ampliou sua atuação para além da

8.1. A licitante deverá cadastrar na “ficha técnica obrigatória” a sua proposta inicial de preço, conforme modelo do ANEXO III, observando o subitem 9.4 deste Edital. As

Os principais objetivos do trabalho são: (1) propor uma metodologia para encontrar características e grupos de canais otimizados para cada indivíduo, a fim de garantir

São Paulo: Companhia das Letras, 1991 [Exemplares disponíveis: Não informado.].. 8 - HOLLANDA, Sérgio

De seguida, vamos adaptar a nossa demonstrac¸ ˜ao da f ´ormula de M ¨untz, partindo de outras transformadas aritm ´eticas diferentes da transformada de M ¨obius, para dedu-

A cor “verde” reflecte a luz ultravioleta, porém como as minhocas castanhas são mais parecidas com as minhocas verdadeiras, não se confundem com a vegetação, sendo

marcada pelo início do uso da tecnologia de radiodifusão, 1923. Mesmo que ainda fosse um veículo elitista, cinco anos depois foi criada a primeira radioescola, marco final