• Nenhum resultado encontrado

Conjugacy in inverse semigroups

N/A
N/A
Protected

Academic year: 2022

Share "Conjugacy in inverse semigroups"

Copied!
32
0
0

Texto

(1)

Contents lists available atScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Conjugacy in inverse semigroups

João Araújoa,b,∗, Michael Kinyonc,b, Janusz Koniecznyd

a DepartamentodeMatemática,CentrodeMatemáticaeAplicaçoes(CMA), FaculdadedeCiênciaseTecnologia,UniversidadeNovadeLisboa,2829–516 Caparica,Portugal

b CEMAT-CIÊNCIASUniversidadedeLisboa,Portugal

cDepartmentofMathematics,UniversityofDenver,Denver,CO80208,USA

d DepartmentofMathematics,UniversityofMaryWashington,Fredericksburg, VA 22401,USA

a r t i c l e i n f o a bs t r a c t

Article history:

Received6October2018 Availableonline31May2019 CommunicatedbyVolodymyr Mazorchuk

MSC:

20M10 20M18 20M05 20M20

Keywords:

Inversesemigroups Conjugacy

Symmetricinversesemigroups Freeinversesemigroups McAllisterP-semigroups Factorizableinversemonoids Cliffordsemigroups Bicyclicmonoid

Stableinversesemigroups

InagroupG,elementsaandb areconjugate ifthereexists g Gsuch that g−1ag=b.Thisconjugacyrelation,which plays animportantroleingrouptheory,canbeextendedin anaturalwaytoinversesemigroups:forelementsaandbin an inversesemigroup S, ais conjugate to b,which wewill writeasaib,ifthereexistsgS1suchthatg−1ag=band gbg−1=a.Thepurposeofthispaperistostudytheconjugacy

iinseveralclassesofinversesemigroups:symmetricinverse semigroups, McAllister P-semigroups, factorizable inverse monoids, Clifford semigroups, the bicyclic monoid, stable inversesemigroups,andfreeinversesemigroups.

©2019PublishedbyElsevierInc.

* Correspondingauthor.

E-mailaddresses:jj.araujo@fct.unl.pt(J. Araújo),mkinyon@du.edu(M. Kinyon),jkoniecz@umw.edu (J. Konieczny).

https://doi.org/10.1016/j.jalgebra.2019.05.022 0021-8693/©2019PublishedbyElsevierInc.

(2)

1. Introduction

Theconjugacyrelation G inagroupGisdefinedas follows: fora,b∈G, a∼Gb if thereexists g∈Gsuchthatg−1ag=b andb=gag−1.

A semigroup S is said to be inverse if for every x S, there exists exactly one x−1∈S suchthatx=xx−1xandx−1=x−1xx−1.Thus onecanextendthedefinition ofgroupconjugacyverbatimtoinversesemigroups.(AsusualS1denotesthesemigroup S extendedbyanidentity elementwhennoneispresent.)

Definition 1.1.Let S be an inverse semigroup. Elements a,b S are said to be i-conjugate,denoted a∼ib, ifthere exists g∈ S1 suchthatg1ag =b and gbg1 =a.

Inshort,

a∼ib ⇐⇒ gS1 (g1ag=b and gbg1=a). (1.1) Wecalltherelationi i-conjugacy(“i” for“inverse”).

Atfirst glance,thisnotionofconjugacyforinversesemigroupsseemssimultaneously bothnaturaland naive:naturalbecauseitisan obviousway toextendG formallyto inversesemigroups,andnaivebecauseonemightnotinitiallyexpectaformalextension to exhibit much structure. But surprisingly, it turns out thatthis conjugacy coincides with onethat Mark Sapir considered the best notionfor inverse semigroups. The aim of this paper is to carry outan in depthstudy of i, and to show that its naturality goesfarbeyonditsdefinition;i is,infact,ashintedbySapir,ahighlystructuredand interestingnotionof conjugacy.

Ourfirstthreeresults(Section2)generalizetheknowntheoremsforpermutationson aset X to partialinjectivetransformationsonX.

(1) Elementsαand β of thesymmetric inversesemigroupI(X) are i-conjugateif and onlyiftheyhavethesamecycle-chain-raytype(Theorem2.10).

(2) IfX is afinite set with n elements,then I(X) has n

r=0p(r)p(n−r) i-conjugacy classes(Theorem2.16).

(3) IfX isaninfiniteset with|X|=ε, thenI(X) hasκ0 i-conjugacyclasses,where κ=0+|ε|(Theorem 2.18).

Thefollowingresults(Sections3,4,5and6)concernotherimportantclassesofinverse semigroups.

(4) If S = P(G,X,Y) is a McAlister P-semigroup, then for all (A,g),(B,h) S, (A,g)∼i(B,h) if and only if there exists (C,k) S such that (i) A = kB = C∧gC∧Aand (ii)g=khk1 (Theorem3.1).

(3)

(5) IfS is aninverse semigroup,then for alla,b ∈S, theset of all g ∈S1 such that g1ag = b and gbg1 = a is upward closed in the natural partial order on S1 (Theorem4.1).

(6) IfS isafactorizable inversemonoid,thentwo elementsarei-relatedifandonly iftheyareconjugateunderaunitelement.(Corollary4.2).

(7) IfGisagroup,thenforanyHa,Kbinthecosetmonoid CM(G),Ha∼iKb ifand only if there exists g G such that g−1Hag = Kb and gKbg−1 = Ha (Corol- lary4.4).

(8) Elementsaand b inaCliffordsemigroup S are i-conjugateif andonly ifaand b aregroupconjugateinsomesubgroup ofS (Theorem5.7).

(9) IfS is aninverse semigroup,then S isa Cliffordsemigroupif and onlyif notwo differentidempotentsofS arei-conjugate(Theorem5.8).

(10) InthebicyclicmonoidB,i-conjugacycoincideswiththeminimalgroupcongruence (Theorem6.1).

(11) AninversesemigroupS isstableifandonlyifi-conjugacyandthenaturalpartial orderintersecttriviallyas relationsinS×S (Theorem6.3).

Thenextfourresults(Section7)concernfreeinversesemigroups.

(12) Elements and of the free inverse semigroup FI(X) are i-conjugate if and only if their birooted word trees (Twww) and (Tvvv) are equaland w(Π(αwv))=w(Π(βwv)) (Theorem7.9).

(13) Every i-conjugacyclassinFI(X) isfinite(Corollary7.7).

(14) Thenumberofelementsofi-conjugacyclassofwτ∈ FI(X) isequaltothenumber ofverticesofacertainwordsubtreeof(Twww) (Corollary7.11).

(15) The relationi inFI(X) isdecidable(Corollary 7.15).

We givenow aquickoverview ofthestate oftheart regardingnotionsof conjugacy forsemigroups.Asrecalledabove,theconjugacyrelationGinagroupGisdefinedby a∼Gb ⇐⇒ g∈G (g1ag=b and gbg1=a). (1.2) (Infact,G istraditionallydefinedlesssymmetrically,butthesymmetricform of(1.2) follows since g−1ag=b if and onlyif gbg−1 =a.) This definitiondoes notmake sense in generalsemigroups,so conjugacy hasbeen generalizedto semigroupsinavariety of ways.

For a monoid S with identity element 1, let U(S) denote its group of units. Unit conjugacy inS ismodeledonG ingroupsby

a∼ub ⇐⇒ g∈U(S)(g−1ag=b and gbg−1=a). (1.3) (Wewillwrite“”withvarioussubscripts forpossible definitionsofconjugacyinsemi- groups.Inthiscase,thesubscriptustandsfor“unit.”)See,forinstance,[14,15].However,

(4)

udoesnotmakesenseinasemigroupwithoutanidentityelement.Requiringg∈U(S1) inunit conjugacy does nothelp forarbitrary semigroups becauseU(S1)= {1}if S is notamonoid.

ConjugacyinagroupGcan,ofcourse,berewrittenwithoutusinginverses:a∼Gb∈G areconjugateifandonlyifthereexistsg∈Gsuchthatag=gb.Usingthisformulation, left conjugacy∼lhasbeendefinedforasemigroupS [24,33,34]:

a∼lb ⇐⇒ gS1 ag=gb. (1.4)

InageneralsemigroupS,therelationlisreflexiveandtransitive,butnotsymmetric.

Inaddition, ifS hasazero,then l isthe universalrelation S×S,so l is notuseful forsuchsemigroups.

The relation l, however, is an equivalence on any free semigroup. Lallement [16]

definedtwoelements ofafreesemigrouptobe conjugateiftheyarerelatedbyl,and thenshowedthatl isequalto thefollowing relationinafreesemigroupS:

a∼pb ⇐⇒ u,v∈S1 (a=uv and b=vu). (1.5) Ina generalsemigroup S, p = l and infact, therelation p is reflexiveand sym- metric,but notnecessarily transitive.Kudryavtseva and Mazorchuk[14,15] considered thetransitiveclosurep ofp asaconjugacyrelationinageneralsemigroup.(Seealso [9].)

Otto[24] studiedtherelationsl andp inthemonoidsS presented byfiniteThue systems, and then symmetrized l to give yet another definition of conjugacy insuch anS:

a∼ob ⇐⇒ g,hS1 (ag=gb and bh=ha). (1.6) Therelationo isanequivalence relationinanarbitrarysemigroupS,but,again,it is theuniversalrelationforany semigroupwith zero.

Thisdeficiencyofowasremediedin[2],wherethefollowingrelationwasdefinedon anarbitrarysemigroupS:

a∼cb ⇐⇒ gP1(a) hP1(b)(ag=gb and bh=ha), (1.7) where for a = 0, P(a) = {g S : m∈S1(ma = 0 (ma)g = 0)}, P(0) = {0}, and P1(a)=P(a)∪ {1}.(See[2,§2] for amotivation forthisdefinition.)Therelationc is anequivalenceonS,itdoesnotreducetoS×S ifS hasazero,and itisequaltoo if S doesnothaveazero.

In2018,thethirdauthor [13] definedaconjugacynonanysemigroupS by a∼nb ⇐⇒ g,hS1 (ag=gb, bh=ha, hag=b, and gbh=a). (1.8)

(5)

The relationn isan equivalencerelation onany semigroupand it doesnotreduceto S×SifShasazero.Infact,itisthesmallestofallconjugaciesdefineduptothispoint forgeneralsemigroups.

Wepoint outthateachoftherelations(1.3)–(1.8) reduces togroupconjugacywhen S isagroup.However,assuming werequireconjugacyto beanequivalence relationon generalsemigroups,onlyp,o,c,andncanprovidepossibledefinitionsofconjugacy.

Wehave

n ⊆ ∼p ⊆ ∼o andn ⊆ ∼c ⊆ ∼o,

and,withrespecttoinclusion,pandcarenotcomparable[13,Prop. 2.3].Fordetailed comparisonandanalysis,invariousclassesofsemigroups,oftheconjugaciesp,o,c, and alsotrace(character) conjugacytr definedforepigroups,see[1].

A notionofconjugacyforinversesemigroupsequivalenttoouri hasappearedelse- where.Infact,partofourmotivationforthepresentstudywasaMathOverflowpost by Sapir[28], inwhichheclaimed thatthefollowingis thebestnotionof conjugacyin inversesemigroups:fora,binaninversesemigroupS,aisconjugatetob ifthereexists t∈S1 suchthat

t1at=b, a·tt1=tt1·a=a, and b·t1t=t1t·b=b. (1.9) Sapir notesthatthisnotionofconjugacyisimplicitintheworkofYamamura [32].Itis easyto showthatSapir’srelationcoincideswithi (Proposition1.3).

Oftheconjugaciesp,o,c,andndefinedforanarbitrarysemigroupS,onlyn

reduces to i ifS is an inversesemigroup [13, Thm. 2.6].Observe alsothat ifS is an inversemonoid,

u ⊆ ∼i. (1.10)

This inclusion is generally proper, but we will see that equality holds in factorizable inversemonoids(Corollary 4.2).

We conclude this introduction with three general results about i-conjugacy. In an inversesemigroupS,both ofthefollowingidentitieshold:forallx,y∈S,

(x1)1=x and (xy)1=y1x1. From these,thefollowing iseasytosee.

Lemma 1.2.The conjugacy∼i isan equivalence relationinany inversesemigroup.

Proof. LetSbeaninversesemigroup.Theni isreflexive(since1∈S1)andsymmetric (since(g1)1=gforeveryg∈S).Foralla,b,c∈S,g,h∈S1,ifg1ag=b,gbg1=a, h1bh=c, and hch1 =b,then (gh)1·a·gh=c and gh·c·(gh)1=a. Thusi is also transitive. 2

(6)

ForaninversesemigroupS,theequivalenceclassofa∈S withrespecttoi willbe calledthei-conjugacy classofaanddenotedby[a]i.

Thefollowingpropositionshows that(1.1) isequivalent toSapir’s formulation(1.9), andalsoshowsthespecificconnectionbetweentheconjugaciesiando.Foraninverse semigroupS,a,b∈S andg∈S1,weconsider thefollowingequations.

(i) g−1ag=b (ii) gbg−1=a (iii) ag=gb (iv) bg−1=g−1a

(v) a·gg−1=a (vi) gg−1·a=a (vii) b·g1g=b (viii) g1g·b=b

Proposition 1.3.Let S be an inverse semigroup. Fora,b∈S andg ∈S1, thefollowing setsof conditions areequivalent andeach setimplies allof(i)–(viii).

(a) {(i), (ii)}(that is,a∼ib);

(b) {(i), (v), (vi)}; (c) {(iii), (v), (viii)}; (d) {(ii), (vii), (viii)}; (e) {(iv), (vi), (vii)}.

Proof. (a) = (b): a·gg1 = gbg1gg1 = gbg1 = a and gg1·a = gg1gbg1 = gbg1=a.

(b) =(c):ag=gg1·ag=gband g1g·b=g1g·g1ag=g1ag=b.

(c) =(a):g1ag=g1g·b=b andgbg1=a·gg1=a.

The cycle of implications (a) = (d) = (e) = (a) follows from the cycle al- ready proven by exchanging the roles of a and b and replacing g with g−1 (since (g−1)−1=g). 2

Finally, we characterize one of the two extreme cases for i-conjugacy on an inverse semigroup S, namely where i is the universal relation S ×S. In Theorem 5.9 we willconsider the oppositeextreme,where i isthe identityrelation (equality).Similar discussionsforothernotionsofconjugacycanbe foundin[1].

Foran inversesemigroupS, we denote byE(S) thesemilattice ofidempotents of S [10,p. 146].

Theorem1.4. LetS beaninverse semigroup.Then∼i istheuniversalrelationS×S if andonly ifS isasingleton.

Proof. Suppose i is universal. For all e E(S) and g S, we have g1eg E(S), andsoeveryelementofSisanidempotent,thatis,Sisasemilattice.Nowfore,f ∈S, let g S be given such that g1eg = f and gf g1 = e. Since g1 = g, we have f =geg = egg= eg and so e =gf g =f gg =f g = (eg)g =eg =f. Therefore S has onlyoneelement.Theconverseis trivial. 2

(7)

2. Conjugacyinsymmetricinversesemigroups

For a nonempty set X (finite or infinite), denote by I(X) the symmetric inverse semigroup onX,thatis,thesemigroupof partialinjectivetransformations onX under composition. The semigroup I(X) is universalfor the class of inverse semigroups(see [25] and[10,Ch. 5])sinceeveryinversesemigroupcanbe embeddedinsomeI(X) [10, Thm. 5.1.7]. This is analogous to thefact thatevery groupcanbe embeddedin some symmetricgroupSym(X) ofpermutationsonasetX.ThesemigroupI(X) hasSym(X) asitsgroupofunitsandcontainsazero(theemptytransformation,whichwewilldenote by0).

In this section, we will describe i-conjugacy in I(X) and its ideals, and count the i-conjugacyclassesinI(X) forboth finiteandinfiniteX.

2.1. Cycle-chain-raydecomposition ofelements of I(X)

The cycle decomposition of a permutation can be extended to the cycle-chain-ray decompositionofapartialinjectivetransformation(see[12]).

We will write functions on the right and compose from left to right; that is, for f :A→B andg :B →C, we willwrite xf,rather thanf(x), andx(f g),ratherthan g(f(x)). Letα∈ I(X).We denote thedomain of αbydom(α) andthe image ofα by im(α).Theuniondom(α)im(α) willbecalledthespanofαanddenotedspan(α).We saythatαandβ inI(X) arecompletelydisjointifspan(α)span(β)=.Forx,y∈X, we writex→α y ifx∈dom(α) and=y.

Definition 2.1.Let M be a set of pairwise completely disjoint elements of I(X). The join of the elements of M, denoted

γ∈Mγ, is the element of I(X) whose domain is

γMdom(γ) andwhosevaluesaredefinedby x(γ∈M

γ) =0,

where γ0 is the (unique) element of M such that x dom(γ0). If M = , we define

γMγ to be 0 (the zeroinI(X)).If M={γ1,γ2,. . . ,γk}is finite,wemaywrite the

joinasγ1γ2 · · · γk.

Definition 2.2.Let . . . ,x−2,x−1,x0,x1,x2,. . . be pairwise distinct elements of X. The following elementsofI(X) willbe calledbasic partialinjectivetransformationsonX.

• A cycle of lengthk (k 1),written(x0x1. . . xk1),is an element δ ∈ I(X) with dom(δ)={x0,x1,. . . ,xk−1},xiδ=xi+1 forall0≤i< k−1,andxk−1δ=x0.

• A chain of length k (k 1), written [x0x1. . . xk], is an element θ ∈ I(X) with dom(θ)={x0,x1,. . . ,xk1}and xiθ=xi+1 forall0≤i≤k−1.

(8)

• A double ray, written . . . x−1x0x1. . ., is an element ω ∈ I(X) with dom(ω) = {. . . ,x−1,x0,x1,. . .}andxiω=xi+1 foralli.

• A right ray, written [x0x1x2. . ., is an element υ ∈ I(X) with dom(υ) = {x0,x1,x2,. . .}andxiυ=xi+1 foralli≥0.

• A left ray, written . . . x2x1x0], is an element λ ∈ I(X) with dom(λ) = {x1,x2,x3,. . .}andxiλ=xi1 foralli>0.

Byaraywewill meanadouble,right,or leftray.

Wenotethefollowing.

• Thespanofabasicpartialinjectivetransformationisexhibitedbythenotation.For example,thespanoftherightray[123. . .is{1,2,3,. . .}.

• The left bracket in “η = [x. . .” indicates that x ∈/ im(η); while the right bracket in“η =. . . x]” indicatesthatx∈/dom(η).For example, forthe chainθ = [1234], dom(θ)={1,2,3}andim(θ)={2,3,4}.

• A cycle (x0x1. . . xk−1) differs from the corresponding cycle in the symmetric group of permutations on X in that the former is undefined for every x (X \ {x0,x1,. . . ,xk−1}),whilethelatterfixeseverysuchx.

Thefollowingdecompositionwasprovedin[12,Prop. 2.4].

Proposition 2.3.Let α∈ I(X) with α= 0. Thenthere exist unique sets:Δα of cycles, Θα of chains, Ωα of double rays, Υα of right rays, and Λα of left rays such that the transformationsin ΔαΘαΩαΥαΛα are pairwisecompletelydisjointand

α=δ

Δα

δθ

Θα

θω

Ωα

ωυ

Υα

υλ

Λα

λ. (2.1)

Wewill call thejoin(2.1) the cycle-chain-ray decomposition of α. If η∈ΔαΘα ΩαΥαΛα,we willsaythatη is contained inα(orthatαcontains η).Ifα= 0, we setΔα= Θα= Ωα= Υα= Λα=.Wenotethefollowing.

• If α Sym(X), then α =

δΔαδ

ωΩαω (since Θα = Υα = Λα =), which

corresponds totheusualcycledecompositionofapermutation[29,1.3.4].

• Ifdom(α)=X,thenα=

δΔαδ

ωΩαω

υΥαυ(sinceΘα= Λα=),which

corresponds tothedecompositiongivenin[18].

• IfX isfinite,thenα=

δ∈Δαδ

θ∈Θαθ (sinceΩα= Υα= Λα=), whichisthe

decompositiongivenin[20,Thm. 3.2].

Forexample,ifX ={1,2,3,4,5,6,7,8,9},then α=

1 2 3 4 5 6 7 8 9

3 6 5 9 8 2

∈ I(X)

(9)

written incycle-chain decomposition (norays since X is finite) is α= (268)[13]

[459].The following β is an exampleof an element of I(Z) written incycle-chain-ray decomposition:

β = (2 4)[6 8 10] . . .−6 421 35. . . [1 5 9 13 . . . . . .15 11 7 3].

2.2. Characterizationof∼i in I(X)

WewillnowcharacterizeiinI(X) usingthecycle-chain-raydecompositionofpartial injectivetransformations.

Notation 2.4.We will fix an element ∈/ X. For α∈ I(X) and x X, we will write =ifandonlyifx∈/dom(α).Wewillalsoassumethatα=.Withthisnotation, it will make sense to write = or = (α,β ∈ I(X), x,y X) even when x∈/dom(α) or y /∈dom(β).

Lemma 2.5.Let α,β,τ ∈ I(X) and suppose τ−1ατ =β and τ βτ−1 =α.Then for all x,y∈X:

(1) span(α)dom(τ) andspan(β)im(τ);

(2) if x→α y thenxτ β yτ;

(3) if x∈/dom(α)andx∈dom(τ),then xτ /∈dom(β);

(4) if x∈/im(α)andx∈dom(τ),thenxτ /∈im(β).

Proof. By Proposition 1.3, α = τ(τ1α) and α = (ατ)τ1. Thus dom(α) dom(τ) and im(α)im(τ1)= dom(τ),andsospan(α)dom(τ).Bytheforegoingargument, span(β)dom(τ−1)= im(τ).Wehaveproved (1).

To prove(2), letx→α y. Since ατ =τ β (by Proposition1.3),(xτ)β = (xα)τ =. Since =by(1),itfollows that β .

To prove(3),letx∈/dom(α) and x∈dom(τ).Then (xτ)β = (xα)τ =τ =.Thus (xτ)β=,thatis, xτ /∈dom(β).

Toprove(4),letx∈/im(α) andx∈dom(τ).Supposetothecontrarythat im(β).

Then = forsomez∈X. ByProposition1.3,βτ−1=τ−1α. Thusx= (xτ)τ−1= (zβ)τ−1= (zτ−1)α,andsox∈im(α),whichisacontradiction.Hencexτ /∈im(β). 2 Definition 2.6.Let . . . ,x−1,x0,x1,. . . be pairwise distinct elements of X. Let δ = (x0. . . xk−1), θ = [x0x1. . . xk], ω = . . . x−1x0x1. . ., υ = [x0x1x2. . ., and λ = . . . x2x1x0]. Foranyη∈ {δ,θ,ω,υ,λ}andanyτ ∈ I(X) suchthatspan(η)dom(τ), we defineητ tobe η inwhich eachxi hasbeen replacedwithxiτ. Sinceτ is injective, ητisacycleoflengthk[chainoflengthk,double ray,rightray,leftray]ifη isacycle of lengthk [chainof lengthk,doubleray,rightray,leftray]. Forexample,

(10)

δτ = (x0τ x1τ . . . xk−1τ) andλτ=. . . x2τ x1τ x0τ].

Notation2.7.For0=α∈ I(X),letΔαbe thesetofcyclesandΘαbethesetofchains thatoccur inthe cycle-chain-raydecomposition of α(see (2.1)).For k≥1, wedenote byΔkα theset of cyclesinΔα oflengthk,and byΘkα theset ofchainsinΘαof length k.Ifα= 0, wesetΔkα= Θkα=.

Forafunctionf :A→B andA0⊆A,A0f ={af :a∈A0}denotestheimageofA0 underf.

Proposition 2.8.Let α,β,τ ∈ I(X) be such that τ−1ατ =β and τ βτ−1 =α.Then for every k≥1,Δkατ= Δkβ,Θkατ = Θkβ,Ωατ= Ωβ,Υατ = Υβ,andΛατ= Λβ. Proof. Let k 1. Let δ = (x0x1. . . xk−1) Δkα. Then δτ = (x0τ x1τ . . . xk−1τ).

We havex0 α x1 → · · ·α α xk−1 α x0, and so x0τ β x1τ → · · ·β β xk−1τ β x0τ by Lemma2.5.ThusδτΔkβ.WehaveprovedthatΔkατΔkβ.Letσ= (y0y1. . . yk1) Δkβ. Bythe foregoing argument, σ(τ−1) = (y0τ−1y1τ−1. . . yk1τ−1) Δkα. Further, (σ(τ−1) = (y0τ−1τ y1τ−1τ . . . yk−1τ−1τ) = (y0y1. . . yk−1) = σ. It follows that Δkατ= Δkβ.

Let θ = [x0x1. . . xk] Θkα. Then θτ = [x0τ x1τ . . . xkτ]. We have x0

α x1

α

· · · α xk, and so x0τ β x1τ → · · ·β β xkτ by Lemma 2.5. Also by Lemma 2.5, x0τ /∈ im(β) (since x0 ∈/ im(α)) and xkτ /∈ dom(β) (since xk ∈/ dom(α)). Thus θτ Θkβ. We have proved that Θkατ Θkβ. Let η = (y0y1. . . yk−1) Θkβ. By the foregoing argument, η(τ1) = [y0τ1y1τ1. . . ykτ1] Θkα. Further, (η(τ1) = [y0τ−1τ y1τ−1τ . . . ykτ−1τ]= [y0y1. . . yk]=η.It followsthatΘkατ= Θkβ.

Theproofsoftheremainingequalitiesaresimilar. 2 Definition2.9.Letα∈ I(X).Thesequence

|Δ1α|,|Δ2α|,|Δ3α|, . . .;|Θ1α|,|Θ2α|,|Θ3α|, . . .;|Ωα|,|Υα|,|Λα|

(indexedbytheelementsoftheordinal2ω+ 3)willbecalledthecycle-chain-raytype of α. Thisnotiongeneralizesthecycletypeofapermutation[5,p. 126].

Thecycle-chain-raytypeofαiscompletelydeterminedbytheformofthecycle-chain- raydecompositionofα.Theform isobtainedfrom thedecompositionbyomittingeach occurrenceofthesymbol“”andreplacingeachelementofX bysomegenericsymbol, say“.”Forexample,α= (268)[13][459] hastheform( ∗ ∗)[∗∗][ ∗ ∗], and

β= (2 4)[6 8 10] . . .−642 135. . . [1 5 9 13. . . . . .15 11 7 3]

hastheform (∗∗)[ ∗ ∗]. . .∗ ∗ ∗. . .[∗∗ ∗. . .. . .∗ ∗∗].

(11)

It is wellknownthattwo elements ofthesymmetric groupSym(X) areconjugate if andonlyiftheyhavethesamecycletype[5,Prop. 11,p. 126].Thefollowingdescription of thei-conjugacyinthesymmetricinversesemigroupI(X) generalizesthisresult.

Theorem 2.10.Elements αand β of I(X) are i-conjugate if and only if they have the same cycle-chain-ray type.

Proof. Letα,β ∈ I(X).Supposeα∼iβ,thatis,thereisτ∈ I(X) suchthatτ1ατ =β and τ βτ−1=α.Thenαandβ havethesametypebyProposition2.8andthefactthat τ restrictedtoanyset from{Δkα:k≥1}∪ {Θkα:k≥1}∪ {Ωα,Υα,Λα}isinjective.

Conversely, suppose α and β have the same cycle-chain-ray type. Then for every k 1,there arebijections fk : Δkα Δkβ, gk : Θkα Θkβ,h: Ωα Ωβ, i: Υα Υβ, and j : Λα Λβ. For all δ Δkα, θ Θkα, ω Ωα, υ Υα, and λ Λα, we define τ on span(δ)span(θ)span(ω)span(υ)span(λ) in such a way that δτ = δfk, θτ=θgk,ωτ=ωh,υτ=υi,andλτ=λj.Notethatthisdefinesaninjectiveτwith dom(τ)= span(α) andim(τ)= span(β).

Let x∈ X. We will prove thatx(τ−1ατ) =xβ. If x∈/ span(β) thenx∈/ dom(τ−1) (since dom(τ−1) = im(τ) = span(β)), and so x(τ−1ατ) = (ατ) = and = . Suppose x∈ (im(β)\dom(β)). Then there is ξ = . . . x] that is either a chain or left ray contained inβ. Bythe definitionof τ, there is η =. . . z] that is eithera chainor left ray contained inα with = x. Then x(τ1ατ) = z(ατ) =τ = and = . Finally,supposex∈dom(β).Thenthereisξ=. . . xy . . .thatisabasicpartialinjective transformation contained inβ.By thedefinition ofτ, there isη =. . . z w . . . thatis a basic partial injective transformation contained in αwith = x and = y. Then x(τ1ατ)=z(ατ)= =yand =y.

Wehaveprovedthatτ−1ατ =β.Bythe sameargument,appliedtoτ−1,β,αinstead of τ,α,β,wehaveτ βτ−1=α.Henceα∼iβ. 2

Theorem 2.10also followsfrom [13, Cor. 5.2] andthefactthati = n ininverse semigroups (see Section1).However, the proof in[13] is notdirect sinceit relies on a characterization ofn insubsemigroups ofthe semigroupP(X) of allpartial transfor- mationsonX.

Suppose X is finite with |X| = n and let α ∈ I(X). Then α contains no rays, no cycles of lengthgreater thann, andno chainsof lengthgreaterthan n−1.Therefore, thecycle-chain-raytypeofαcanbewrittenas

|Δ1α|,|Δ2α|, . . . ,|Δnα|;|Θ1α|,|Θ2α|, . . . ,|Θnα1|. (2.2) Wewillreferto(2.2) asthecycle-chaintypeofα.ByTheorem2.10,forallα,β∈ I(X), α∼iβ ⇐⇒ |Δ1α|, . . . ,|Δnα|;|Θ1α|, . . . ,|Θnα1|=|Δ1β|, . . . ,|Δnβ|;|Θ1β|, . . . ,|Θnβ1|. (2.3)

(12)

Supposeα∈ I(X) hasafinitedomain.Thenαdoesnotcontainanyrays.Therefore, wewill referto thecycle-chain-raytypeofαasthecycle-chaintypeof αeven whenX isinfinite.

By(1.1),αand β inI(X) are i-conjugateifand only ifthere exists τ ∈ I(X) such thatτ−1ατ =β and τ βτ−1 =α. If X is finite, we can replace τ with a permutation onX.

Proposition2.11.LetX beafiniteset,andletα,β ∈ I(X).Thenthefollowingconditions areequivalent:

(i) αandβ are i-conjugate;

(ii) αandβ have thesamecycle-chaintype;

(iii) thereexistsσ∈Sym(X)suchthat σ−1ασ=β.

Proof. Conditions (i)and (ii)are equivalentby Theorem 2.10, and (iii)clearly implies (i).It remainsto show that(i)implies(iii). Suppose (i)holds, thatis,τ1ατ =β and τ βτ−1=αforsomeτ ∈ I(X).ByProposition2.8,τ mapsspan(α) onto span(β).Thus

|span(α)|=|span(β)|,andso,sinceX isfinite,|X\span(α)|=|X\span(β)|.Wefixa bijectionf :X\span(α)→X\span(β) anddefine σ:X →X by

=

ifx∈span(α), xf ifx∈(X\span(α)).

Clearly, σ Sym(X). Let x X. If x ∈/ span(β), then −1 ∈/ span(α), and so x(σ−1ασ)=σ==xβ. Supposex∈(im(β)\dom(β)).Then −1 =−1 (bythe definitionof σ) and −1 ∈/ dom(α) (by Lemma 2.5). Thus, x(σ−1ασ) =x(τ−1ασ)= σ = = xβ. Suppose x∈ dom(β). Then 1 =1 and 1 dom(α). Hence, (xτ1im(α),andso((xτ1)α)τ = ((xτ1)α)σ.Therefore,x(σ1ασ)=x(τ1ατ)= xβ.

Wehaveprovedthatx(σ−1ασ)= forallx∈X,andso (i)implies(iii). 2 Theequivalence of (ii) and (iii) is stated in[4, p. 120]. Proposition2.11 isnot true foraninfinitesetX.LetX={1,2,3,. . .}andconsiderα= [234. . .andβ= [123. . . inI(X). Then α and β are i-conjugate by Theorem 2.10. Note that1 ∈/ dom(α) and dom(β)=X.Thus,byLemma2.5(3),ifτ ∈ I(X) issuchthatτ−1ατ =βandτ βτ−1= α, then1∈/dom(τ).Consequently,(iii)isnotsatisfied.

2.3. Conjugacy intheidealsof I(X)

Wehavealreadydealtwithi-conjugacyinI(X) (Theorem2.10).Here,wewilldescribe i-conjugacy in an arbitrary proper (that is, different from I(X)) ideal of I(X). For α ∈ I(X), the rank of α is the cardinality of im(α). Since α is injective, we have

(13)

rank(α)=|im(α)|=|dom(α)|.Foracardinalrwith 0< r≤ |X|,letJr={α∈ I(X): rank(α)< r}.Then theset {Jr: 0< r≤ |X|}consistsof allproperidealsofI(X) [19].

Theorem 2.12.Let Jr be a proper ideal of I(X), where r is finite, and let α,β Jr. Then α andβ are i-conjugate in Jr if andonly if theyhave the same cycle-chaintype and |span(α)|< r.

Proof. Suppose α∼i β in Jr. Then α∼iβ in I(X), and so α and β have the same cycle-chain type by Theorem 2.10. Let τ Jr such that τ1ατ = β and τ βτ1 = α.

Then, byLemma2.5, span(α)dom(τ),andso|span(α)|≤ |dom(τ)|= rank(τ)< r.

Conversely,suppose thatαand β havethe samecycle-chaintypeand|span(α)|< r.

Then α∼iβ inI(X) by Theorem 2.10. Inthe proof of Theorem 2.10, weconstructed τ ∈ I(X) such that dom(τ)= span(α), τ−1ατ =β, and τ βτ−1 =α. Since rank(τ) =

|dom(τ)|=|span(α)|< r,wehaveτ∈Jr,andsoα∼iβ inJr. 2 Wenote thatforallα,β ∈Jr,wherer isfinite,

|span(α)|= rank(α) + the number of chains inα,

and that if α and β have the same cycle-chain type, then rank(α) = rank(β) and

|span(α)|=|span(β)|.

As an example, let X = {1,. . . ,8} and consider α = (12)[34][567] and β = (59)[16][387] in I(X). Then α,β J6 but they are not i-conjugate in J6 since

|span(α)|= 7>6.Note,however,thatα∼iβ inJ8.

If r isinfinite, then theconjugacy i inJr is therestriction of i inI(X), thatis, forallα,β∈Jr,α∼iβ inJr ifandonlyifα∼iβ inI(X).

Theorem 2.13. LetJr be a proper idealof I(X), where r isinfinite, and let α,β ∈Jr. Then α and β are i-conjugate in Jr if and only if they have the same cycle-chain-ray type.

Proof. Ifα∼iβ inJr,thenα∼iβinI(X),andsoαandβ havethesamecycle-chain-ray typebyTheorem2.10.Conversely,supposethatαandβ havethe samecycle-chain-ray type.Thenα∼iβinI(X) byTheorem2.10.IntheproofofTheorem2.10,weconstructed τ ∈ I(X) such thatdom(τ)= span(α), τ−1ατ =β, and τ βτ−1 =α. Since span(α)= dom(α)im(α),wehave|span(α)|≤ |dom(α)|+|im(α)|= rank(α)+rank(α)< r+r=r (sincer is infinite). Thus rank(τ) =|dom(τ)| =|span(α)|< r. Henceτ Jr, and so α∼iβ inJr. 2

2.4. Numberof conjugacyclassesinI(X)

Wewillnowcount thei-conjugacyclassesinI(X).Ofcourse,wewillhavetodistin- guish betweenthefiniteandinfiniteX.

(14)

Letnbeapositiveinteger.Recall thatapartition ofnisasequencen1,n2,. . . ,ns of positive integers such that n1 n2 . . . ns and n1 +n2+· · ·+ns = n. We denote by p(n) the number of partitions of n and define p(0) to be 1. For example, n= 4 hasfivepartitions:1,1,1,1,1,1,2,1,3,2,2,and 4; sop(4)= 5.Denote byQ(n) thesetofsequences(i1,k1),. . . ,(iu,ku)ofpairsofpositiveintegerssuchthat k1 < k2 < . . . < ku and i1k1+i2k2+· · ·+iuku = n. There is an obvious one-to-one correspondencebetweenthesetofpartitionsofnandthesetQ(n),so|Q(n)|=p(n).For example,thepartition1,1,2,2,2,2,5of15 correspondsto(2,1),(4,2),(1,5)∈Q(15).

WedefineQ(0) tobe (0,0).

Notation2.14.LetX beafinitesetwith|X|=n.Theneveryα∈ I(X) canbeexpressed uniquely as a join α = σαηα, where σα is either 0 or a join of cycles, and ηα is either 0 or a join of chains. In other words, σα =

δ∈Δαδ and ηα =

θ∈Θαθ. For

example,ifα= (268)[13][459],thenσα= (268) andηα= [13][459].Notethat

|span(σα)|=n

k=1k|Δkα|and|span(ηα)|=n1

k=1(k+ 1)|Θkα|.

Let C = {[α]i : α ∈ I(X)} be the set of i-conjugacy classes of I(X). For r {0,1,. . . ,n},denotebyCr thefollowing subsetofC:

Cr={[α]i ∈C:|span(σα)|=r}. (2.4) ByTheorem2.10,eachCris welldefined(ifα∼iβ then|span(σα)|=|span(σβ)|)and C0,C1,. . . ,Cn arepairwisedisjoint.

Lemma 2.15.LetX be a finite set with n elements, let r∈ {0,1,. . . ,n}, and letCr be thesetdefined by(2.4).Then|Cr|=p(r)p(n−r).

Proof. Let[α]i Cr. LetK={k∈ {1,. . . ,n}: Δkα=∅}.WriteK={k1,k2,. . . ,ku} withk1 < k2 < . . . < ku (u= 0 if K=).Forp∈ {1,. . . ,u},letip=|Δkαp|. By(2.3), the sequence (i1,k1),. . . ,(iu,ku) (which we define to be (0,0) if K = ) does not dependonthechoiceofarepresentativein[α]i and

i1k1+· · ·+iuku= n

k=1

k|Δkα|=|span(σα)|=r. (2.5)

Let L = {l ∈ {1,. . . ,n} : l 2 andΘlα1 = or l = 1 and X \span(α) = ∅}. (The reasonwe includel when Θl−1α =is thatthere arel pointsinthe spanof eachchain [x0x1. . . xl−1] fromΘlα1;andweinclude1 whenX\span(α)=becauseX\span(α) consists of single points.) Write L = {l1,l2,. . . ,lv} with l1 < l2 < . . . < lv (v = 0 if L=).Forq∈ {1,. . . ,v}, letjq=|Θlαq1|(iflq2) andjq=|X\span(α)|(iflq= 1).

By(2.3),thesequence(j1,l1),. . . ,(jv,lv)(whichwedefinetobe(0,0)ifL=)does notdependonthechoiceofarepresentative in[α]i and

Referências

Documentos relacionados

Há a considerar: (i) a produção de conteúdos metodologicamente orientados, onde situações contextualizadas de língua alvo (input) geram oportunidades de comunicação e

The surgeon must check the entire intestinal tract for foreign material that could cause an intestinal obstruction, whenever a gastric foreign body is removed

Depois do término do mestrado, não dei continuidade ao estudo, mas gostaria muito de fazê-lo, pois alguns entrevistados naquela época diziam acreditar que as calçadas

as crises ocorrem em períodos que duram de sete dias a um ano, separados por períodos livres de dor de pelo menos três meses e cefaleia em salvas crónica quando as crises

Médias e desvio padrão dos critérios da competência A1 “Desenvolve uma prática profissional com responsabilidade” e resultados do teste t student para amostras independentes

Tras haber presentado los principales resultados obtenidos en la información derivada de las distintas entrevistas, llegamos a las siguientes conclusiones: a) los

The second step is an assignment problem of N robots to N target positions along the chosen line, and an optimal solution is proposed to minimize formation time, assuming