• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número3"

Copied!
5
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Antigiardial

activity

of

flavonoids

from

leaves

of

Aphelandra

scabra

Gloria

Ivonne

Hernández-Bolio

a

,

Luis

Wiliunfo

Torres-Tapia

a

,

Rosa

Moo-Puc

b

,

Sergio

Rubén

Peraza-Sánchez

a,∗

aUnidaddeBiotecnología,CentrodeInvestigaciónCientíficadeYucatán,Col.ChuburnádeHidalgo,Mérida,Yucatán,Mexico

bUnidaddeInvestigaciónMédicaYucatán,UnidadMédicadeAltaespecialidad,CentroMédicoIgnacioGarcíaTéllez,InstitutoMexicanodelSeguroSocial,Col.Industrial,

Mérida,Yucatán,Mexico

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26January2015 Accepted30April2015 Availableonline18June2015

Keywords: Aphelandrascabra Acanthaceae Anti-giardialactivity Cirsimaritin Sorbifolin Flavonoids

a

b

s

t

r

a

c

t

Aphelandrascabra(Vahl)Sm.,Acanthaceae,isashrubwidelyusedbysomeMayancommunitiesas carmi-native,antidote,andremedyforsomeinfections.Bio-guidedisolationofthemethanolextractofleaves ledustothepurificationoftheanti-giardialmetabolitescirsimaritinandsorbifolin,alongwiththe inac-tivemetabolitescirsimarin,sorbifolin-6-O-␤-glucopyranoside,andsqualene.Cirsimaritindisplayedhigh activityintheanti-giardialbioassaywithanIC50=3.8␮M,beingconsideredasoutstandingwhen

com-paredtopreviousreportedmetabolites,whilesorbifolinshowedalowactivitywithanIC50=75.6␮M.

Additionally,bothcompoundsprovednottobecytotoxicinaninvitrobioassayagainstHEK-293,a nor-malcellline.Thisisthefirstinvestigationonanti-giardialpropertiesofA.scabraanditsphytochemistry aswell,thustheisolatedcompoundsareconsideredasnewfortheplantgenusandforthespecies.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Giardiasis caused by the flagellated protozoan Giardia lam-blia(G.intestinalis,G. duodenalis)isthemostcommonparasitic diseaseaffectinghumansworldwide(Vázquez-Tsujiand

Campos-Rivera,2009).Itcausesanestimated2.8×108casesperyear(Lane

andLloyd,2002).In Mexico,theNationalSystemfor

Epidemio-logicSurveillancereported20,599casesin2010(SINAVE,2010); whereasYucatanshowsanincidenceof15.2%(Mantilla-Morales

etal.,2002).

Symptomsof giardiasis includeabdominal crampsand pain, and diarrhea, which can lead to malabsorption and failure of children to thrive (Tejman-Yarden and Eckmann, 2011). A varietyofchemotherapeuticagentssuchas5-nitroimidazole com-pounds, quinacrine, furazolidone, paromomycin, benzimidazole compounds, and nitazoxanide have been used in the therapy for giardiasis. Nevertheless,mostdrugs used haveconsiderable adverseeffectsandinadditionGiardiaseemstohaveagreatability toresisttheseagents(Bussatietal.,2009).Thus,thediscoveryof new,effective,andsafeantigiardialagentsisimperativefromother sources(Peraza-Sanchezetal.,2005).

Aphelandrascabra(Vahl.)Sm.,Acanthaceae,aplantdistributed inthesoutheastofMexico,CentralandSouthAmerica(Floradigital:

∗ Correspondingauthor.

E-mail:speraza@cicy.mx(S.R.Peraza-Sánchez).

PeninsuladeYucatan,2010),isusedinMayanQ’eqchi’traditional

medicinetotreatseveralconditions,includingcirculatory,mental, andnervoussystemdisorders,poisoning,andinfections(Treyvaud etal., 2005).InHonduras,a beveragemadefrommashedroots and/orleavessoakedincoolwaterisusedasanantiflatulent(Lentz, 1993).Antimicrobialandleishmanicidalactivitiesofthemethanol extractfromthisplanthavebeenreported(Peraza-Sánchezetal.,

2007; Meurer-Grimesetal., 1996), therefore,a study was

con-ductedinordertoinvestigatetheanti-giardialpropertiesofthis species.

Inthisstudy,wereporttheisolationoffourknownflavonoids andatriterpenefromtheleavesofA.scabraandtheiranti-giardial activity.Itisworthmentioningthatthisisthefirstphytochemical investigationofA.scabra.

Materialsandmethods

Generalexperimentalprocedures

MeltingpointsweredeterminedusingaMelt-TempII Appara-tus(LaboratoryDevices,USA).GC–MSdataweredeterminedonan Agilent6890Ngaschromatographcoupledtoa5975Bmass spec-trometer.1HNMR(400MHz)and13CNMR(100MHz)datawere obtainedona BrukerAvance400spectrometer.Chemicalshifts werereferredtoTMS(ı0).IRspectrawererecordedasKBrpellets onaNicoletProtegé460.UVspectrawereperformedonaGenesys 10 UVThermoSpectronic.Vacuumliquid chromatography(VLC)

http://dx.doi.org/10.1016/j.bjp.2015.04.004

(2)

Table1

Yieldandanti-giardialactivityofmethanolextractandfractionsofA.scabra.

Sample Yield[g(%)] IC50(␮g/ml)

MeOHextract(ASH-1) 435.0(14.41)a 11.74

±1.12c Hxfraction(ASH-2a) 21.5(4.94)b NAd DCMfraction(ASH-2b) 4.3(0.99)b 2.19±0.67 EtOAcfraction(ASH-2c) 4.6(1.05)b NA Aqueousfraction(ASH-2d) 62.0(14.25)b NA

Metronidazole 0.2±0.02

aYieldbasedoninitialweightofdriedmaterial.

b Yieldbasedonweightofmethanolextract.

c Standarddeviation.

d Notactive.

wasperformedundervacuumusingsilicagel60GF254(200–400 mesh,Sigma–Aldrich).Thinlayerchromatography(TLC)was car-riedoutonsilicagelF254 (Merck)andvisualizedunderUVlight andbysprayingwithphosphomolybdicacidreagentfollowedby heating.

Plantmaterial

Aphelandrascabra(Vahl.)Sm., Acanthaceae,leaveswere col-lectedfromits natural habitat,in thelocality of Piste, Yucatan (Mexico),inJuly2010.Avoucherspecimen(PSima-3019), identi-fiedbyaqualifiedtaxonomist,wasdepositedatCICY’sUNajilTikin Xiuherbarium.

Extractionandisolation

Grounddriedleaves(3018g)wereextractedwithmethanolfor 24handthensolventwasevaporatedundervacuum.Thisprocess wasrepeatedonceagain.Themethanolextract(ASH-1,435g)was partitionedwithhexane(Hx),dichloromethane(DCM)andethyl acetate(EtOAc),forthreetimeseachone.Solventwasevaporated undervacuum.Resultingfractionsincludingaqueousphase (ASH-2a–ASH-2d)wereplacedinseparatevialsandweighted(Table1). Thehexane fractionASH-2a (5g) was furtherfractionatedin a vacuumliquid chromatography(VLC)columnusingmixtures of Hx,acetone(An),EtOAc,andMeOHtoobtainfivefractions (ASH-3a–ASH-3e).FractionASH-3awaspurifiedbyachromatographic column(CC)usingHxtoaffordsqualene(1,22.5mg).TheDCM frac-tionASH-2b(4g)wasfurtherfractionatedbyVLCusingmixturesof Hx,Hx/An,andAn/MeOHtoobtainelevenfractions (ASH-4a–ASH-4k).CrystallizationwithMeOHoffractionsASH-4d–ASH-4iyielded cirsimaritin(2,465.6mg).TheEtOAcfractionASH-2c(3.8g)was fractionated by VLC using mixtures of same solvents used to fractionateDCMextractyieldingninefractions(ASH-6a–ASH-6i). CrystallizationwithMeOHoffractionASH-6hgavecirsimarin(3, 55.1mg);meanwhile,crystallizationwithMeOHoffractionASH-6c yieldedsorbifolin(4,11.3mg).FractionASH-6iwaspurifiedbyVLC usingmixturesofHx/DCM,DCM/An,andDCM/MeOHtoobtainten fractions(ASH-23a–ASH-23j).TheMeOHcrystallizationoffraction ASH-23fledtotheisolationofsorbifolin-6-O-␤-glucopyranoside (5,5.3mg).Puritiesoftheisolatedflavonoidswereverifiedthrough TLCanddeterminationoftheirmeltingpoints,whilepurityof com-pound1wasdeterminedbymeansofCG-EM.

Squalene(1):yellowoil;GC–MSRt=13.168min,m/z(%):410 ([M+H]+)(1),341(3),273(1),137(14),95(18),41(37),69(100, basepeak).

Cirsimaritin(2):yellowneedles;Rf(Hx/An;2:1,2×):0.37,m.p. 253.8–256.2◦C.UV(An:H2O;99:1)maxnm(logε):209(3.21),330

(3.39).IRmax(KBr)cm−1:3283,1655,1600,1570,1465,1445, 1356,1037,853.1HNMR (400MHz,DMSO-d

6)ı3.72(3H,s,

6-OCH3),3.90(3H,s,7-OCH3),6.81(1H,s,H-3),6.87(1H,s,H-8),6.92 (2H,d,J=8.8Hz,H-3′,H-5),7.93(2H,d,J=8.8Hz,H-2,H-6),12.91

(1H,s,5-OH).13CNMR(100MHz,DMSO-d

6)ı55.7(6-OCH3),59.7 (7-OCH3),101.4(C-8),103.0(C-3),104.6(C-10),114.7(C-3′),116.3 (C-5′),120.7(C-1),127.3(C-2),128.9(C-6),131.4(C-6),151.6

(C-9),152.2(C-5),158.1(C-7),160.8(C-4′),163.6(C-2),181.7(C-4).

Cirsimarin(3):whiteamorphouspowder;Rf (CH2Cl2/MeOH; 4.5:0.5,3×):0.50,m.p.175.8–176.3◦C.UV(MeOH)maxnm(logε):

213(4.89),277(4.72),323(4.75).IRmax(KBr)cm−1:3350,1660, 1600,1565,1460,1440,1356,1047,833.1HNMR(400MHz,

DMSO-d6)ı3.20–3.71 (6H,sugarH),3.74(3H,s, 6-OCH3),3.93(3H,s, 7-OCH3),4.65(1H,s,6′′-OH),5.05(1H,d,J=7.1Hz,H-1′′),5.12(1H, s,4′′-OH),5.20(1H,s,3′′-OH),5.45(1H,s,2′′-OH),6.97(1H,s,

H-3),6.98(1H,s, H-8),7.20 (2H,d, J=8.8Hz, H-3′,H-5),8.08(2H,

d,J=8.8Hz,H-2′,H-6),12.86(1H,s,5-OH).13CNMR(100MHz, DMSO-d6)ı55.6(7-OCH3),60.1(6-OCH3),60.7(C-6′′),69.7(C-4′′), 73.2(C-2′′),76.6(C-5′′),77.2(C-3′′),91.7(C-8),99.8(C-1′′),103.7

(C-3),105.2(C-10),116.6(C-3′,C-5),123.9(C-1),128.3(C-2,

C-6′),131.9(C-6),152.1(C-5),152.7(C-9),158.8(C-7),160.4(C-4),

163.4(C-2),182.4(C-4).

Sorbifolin(4):yellowsolid;Rf(Hx/An;3:2,2×):0.52,m.p.235◦C (d).UV(EtOH)maxnm(logε):206(4.55),281(4.24),338(4.38). IRmax(KBr)cm−1:3173,1665,1570,1500,1455,1361,1027,828. 1HNMR(400MHz,DMSO-d

6)ı3.91(3H,s,7-OCH3),6.81(1H,s, H-3),6.91(1H,s,H-8),6.93(2H,d,J=8.8Hz,H-3′,H-5),7.95(2H,

d,H-2′,H-6),8.74(6-OH),10.39(4-OH),12.64(5-OH).13CNMR (100MHz,DMSO-d6)ı56.3(7-OCH3),91.2(C-8),102.5(C-3),105.0 (C-10),116.0(C-3′,C-5),121.4(C-1),128.4(C-2,C-6),129.9(C-6),

146.2(C-5),149.7(C-9),154.4(C-7),161.2(C-4′),163.8(C-2),182.3

(C-4).

Sorbifolin-6-O-␤-glucopyranoside(5):whiteamorphous pow-der;Rf(CH2Cl2/MeOH;4:1):0.62,UV(An:H2O;62.5:1)maxnm (logε):209(3.16),329(3.04).IRmax(KBr)cm−1:3500–3100,1660, 1605,1565,1500,1460,1356,1047.1HNMR(400MHz,DMSO-d

6) ı3.58(1H,dd,J=4.0,11.1Hz,6b′′-OH),3.90(3H,s,7-OCH3),4.12

(1H,dd,J=5.0,10.4Hz,6a′′-OH),4.32(1H,t,J=5.5Hz,5′′-OH),4.94

(1H,d,J=5.2Hz,H-1′′),5.03(1H,d,J=4.8Hz,4′′-OH),5.05(1H,s,

3′′-OH),5.17(1H,d,J=3.3Hz,2′′-OH),6.86(1H,s,H-3),6.92(2H,

d,J=8.7Hz,H-3′,H-5),6.93(1H,s,H-8),7.97(2H,d,J=8.7Hz,

H-2′,H-6),10.43(1H,brs,4-OH),13.06(1H,brs,5-OH).13C NMR (100MHz,DMSO-d6)ı56.6(7-OCH3),60.9(C-6′′),69.9(C-4′′),74.2 (C-2′′),76.6(C-5′′),77.3(C-3′′),91.7(C-8),102.0(C-3),102.7(C-1′′),

104.9(C-10),116.0(C-3′,C-5),121.1(C-1),128.1(C-6),128.6(C-2,

C-6′),151.7(C-5),152.6(C-9),158.6(C-7),161.3(C-4),164.0(C-2),

182.3(C-4).

Parasiteandcultureconditions

Inthisstudy,G.lambliaIMSS:0696:1isolate,obtainedfroman individualwithsymptomaticgiardiasis,wasused(Cedillo-Rivera et al., 2003). Trophozoites were cultured in TYI-S-33 modified medium,supplementedwith10%calfserum,andsubculturedtwice aweek;fortheassay,trophozoitesweretestedintheirlogphase ofgrowth(Cedillo-Riveraetal.,1991).

Growthinhibitionassay

InvitrosusceptibilityofG.lambliawasdeterminedaspreviously described (Cedillo-Rivera and Mu ˜noz, 1992). Stock solutions of extracts,fractionsandpurecompoundswerepreparedwithDMSO (5mg/ml),followingserialtwo-folddilutionsin1.5mlvolumesof culturemediuminmicrocentrifugetubestoaffordconcentrations of5,10,20,and50␮g/ml.ThetubeswereinoculatedwithG.lamblia

(3)

weredetachedbychillingand50␮lofeachculturetubewas sub-culturedinto1.5mloffreshculturemediumandincubatedfor48h at37◦C.Thefinalnumberofparasiteswasdeterminedbycounting

inahaemocytometer,andthepercentageoftrophozoitesgrowth inhibitionwascalculatedbycomparisonwithcontrols.The50% inhibitoryconcentration(IC50)wasdefinedastheconcentrationof theextract,fractionorpurecompoundthatinhibitedgrowthby 50%ascalculatedbyprobitanalysisusingtheGraphpadPrism6.0 software.Eachexperimentwasdoneinduplicateandwasrepeated atleastthreetimes.

Cytotoxicassayofactivecompounds

Activecompoundswerealsotestedinacytotoxicbioassayin ordertodiscardthat theanti-giardialactivitywasdue totoxic effects.Cytotoxicityassaywasperformedaccordingtothe estab-lishedmethodofRahmanetal.(2001),where1.5×104viablecells fromHEK-293celllinewereseededina96-wellplate(Costar)and incubatedfor24–48h.Whencellsreached>80%confluence,the mediumwasreplacedandcellswereincubatedwithcompounds atsuccessiveconcentrations(0.97,1.95,3.90,7.81,15.62,31.25, 62.5,125,250,500␮g/ml)anddissolvedinDMSOatamaximum concentrationof0.05%.After72hofincubation,10␮lof 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromidesolution (MTT,Sigma)solution(5mg/ml)wasaddedtoeachwelland incu-batedat37◦Cfor4h.Themediumwasremovedandtheformazan,

aproductgeneratedbytheactivityofdehydrogenasesincells,was dissolvedinacidifiedisopropanol(0.4NHCl).Theamountof MTT-formazanisdirectlyproportionaltothenumberoflivingcellsand wasdeterminedbymeasuringtheopticaldensity(OD)at590nm usingaBio-assayreader(BioRad,USA).Cellsincubatedonlywith 0.05%ofDMSOwereusedasanegativecontrol.Alldeterminations wereperformedintriplicate.TheCC50valueswerecalculatedusing theGraphpadPrism6.0software.

Resultsanddiscussion

ThemethanolextractionoftheA.scabraleavesyielded435gof thecrudeextractASH-1(14.41%,w/w).Liquid–liquidpartitionof thisextractgavefractionsASH-2a–ASH-2d(Table1).These frac-tionstogetherwiththeextractASH-1wereallevaluatedagainst

G.lamblia.Fromthetestedfractions,onlytheASH-1extractand ASH-2bfractionwereactivewithanIC50=11.74and2.19␮g/ml, respectively(Table1)andconsideredhigh,accordingtothe crite-riaestablishedbyAmaraletal.(2006).Tocontinuethebio-assay guidedstudy,aVLCoftheASH-2bfractionwascarriedtoobtain eleven subfractions which were also tested against G. lamblia

(Table2).Theactivesubfractionsshowedacommonmetabolite

Table2

Anti-giardialactivityofVLCsubfractionsoftheDCMfractionofthemethanolextract ofA.scabra.

Sample IC50(␮g/ml)

ASH-4a NAa

ASH-4b NA

ASH-4c NA

ASH-4d 2.5

ASH-4e –b

ASH-4f 1.9

ASH-4g 1.1

ASH-4h 1.2

ASH-4i NA

ASH-4j NA

ASH-4k NA

Metronidazole 0.2±0.02

aNotactive.

bNottested.

whenobservedinTLCplates.Recrystallizationofthe abovemen-tionedfractionsledtothepurificationofacompoundasyellow needles. Such metabolite was identified as cirsimaritin (2) by comparisonofitsspectroscopicdatawiththosereportedinthe literature(Linetal.,2006).Thismetabolitehasbeenpreviously isolated from the species Cirsium rhinoceros (Yim et al., 2003),

Stizolophusbalsamita(Suleimenovetal.,2008),andHelychrisum vis-cosum(Geissmanetal.,1967)belongingtotheAsteraceaefamily;

Teucriumramosissimum(BenSghaieretal.,2011),Dracocephalum multicaule (Oganesyan, 2009), andOcimum sanctumfrom Lami-aceae(Kelmet al.,2000); Microteadebilis(Phytolaccaceae) (Bai etal.,2011);andRuelliatuberosa,aspeciesofAcanthaceae,same family as the genusAphelandra (Lin et al., 2006).According to theliterature,thismoleculepossessesawiderangeofbiological activities,suchasantioxidant(BenSghaieretal.,2011),cytotoxic against KBand GBC-SD cell lines(Lin et al., 2006; Quan etal., 2010),antiproliferativeagainstCOLO-205cells(Baietal.,2011), andantiprotozoalagainstLeishmaniadonovani,Trypanosomabrucei rhodesienseandT.cruzi(Tasdemiretal.,2006).Thephytochemical studyofASH-2afractionledustoobtainthetriterpenesqualene (1),whichwasidentifiedbycomparisonofitsfragmentation pat-ternwiththoseintheNISTlibraryprovidedbytheGC-MS.Studyof ASH-2cfractionallowedtheisolationoftheflavonesorbifolin(4) andtwoglycosylatedflavones:cirsimarin(3)andsorbifolin-6-O-ˇ -glucopyranoside(5),whichwereidentifiedbycomparisonoftheir spectroscopicdatawiththosereportedintheliterature(Fernandes

etal.,2008;Linetal.,2006;Yimetal.,2003).Sorbifolinhasbeen

iso-latedfromthespeciesAstragalusannularis(El-Hawietetal.,2010) andPterogynenitensfromFabaceaefamily(Fernandesetal.,2008);

Heterothecasubaxilaris(Morimotoetal.,2009)andPulicaria

uligi-nosa(Eshbakovaetal.,1996)fromAsteraceae;andR.tuberosafrom

Acanthaceae(Linetal.,2006).Regardingitsbiologicalactivities, thisflavonoidhasbeentestedinantimicrobial,antioxidant,and myeloperoxidasebioassays,resultinginmoderatetonullactivity

(El-Hawietetal.,2010;Fernandesetal.,2008).Meanwhile,isolation

ofcirsimarinhasbeenreportedfromspeciessuchasR.tuberosa, Cir-siumlineare,C.rhinoceros,TeucriumarduiniandM.debilis(Vukovic

etal.,2011;Baietal.,2011;Jeongetal.,2008;Linetal.,2006;Yim

etal.,2003).Intheotherhand,sorbifolin-6-O-ˇ-glucopyranoside has been isolated from Pterogyne nitens (Fernandes et al.,

2008).

2 R1 = CH3; R2 = H

3 R1 = CH3; R2 = Glc

4 R1 = R2 = H

5 R1 = Glc, R2 = H

OH O

1

O H3CO

R1O

OR2

Compounds2,3,and4weretestedintheanti-giardial bioas-sayand theresultsaredescribed in Table3. Amongthetested compounds, 2 displayed high activity with an IC50=3.8␮M, beingconsideredasoutstanding,whencomparedwithprevious reported secondary metabolites, suchas usambarensine, which showedan IC50=8.99␮M(Wright etal., 1994), (−)-epicatechin

withandIC50=5.82␮M(Calzadaetal.,2005),andtingenone

hav-inganIC50=0.74␮M(Mena-Rejonetal.,2007),while4showedan

(4)

Table3

Anti-giardial,cytotoxicactivityandselectiveindex(SI)ofpuresecondary metabo-litesofA.scabraandmetronidazoleaspositivecontrol.

Sample Anti-giardial

activityIC50(␮M)

Hek293cell lineCC50(␮M)

SI

Cirsimaritin(2) 3.8 378.68±3.44b 310

Cirsimarin(3) NAa NA

Sorbifolin(4) 75.6 478.56±6.78 21

Metronidazole 1.2 89.70±1.25 448

aNA:notactive.

b Standarddeviation.

Compound1showedanIC50=241.28␮Minapreviousstudy

(Calzada,2005);therefore,itwasnottestedinthepresentwork,

whilecompound 5 waspurified sparingly,thus it couldnotbe testedagainstG.lamblia.

Noteworthyisthefindingthatbothactiveflavonoidshada typi-calflavonestructure(2,3andC-4ketofunctions)andgroupssuch as4′,5-OH.Noactivitywasobservedincompound3,where4-OH

issubstitutedbyglucose,despitethefactthatitsaglicone2wasthe mostactiveinthepresentstudy.Thattendencyallowssuggesting thatinhibitionisconsiderablyreducedbythepresenceofthesugar, inaccordancewithCalzadaandAlanís(2007).

Thebioactivecompoundswerealsotestedinacytotoxic bioas-sayin order todiscardthat the anti-giardialeffect wasdue to cytotoxicity.Inthis bioassay,bothmetabolitesprovedtobenot cytotoxic(Table3).In particular, cirsimaritinshoweda high SI indicatingitselevatedselectivitytoG.lambliacells.Theseresults areinaccordancewithNijveldtetal.(2001),whoconcludedthat flavonoids arenot toxic or less toxic to normal cells, and thus confirmingthepotentialoftheseflavonestobeusedassafe anti-giardialagents,althoughmoreanalysesarenecessarytoestablish ifthesecompoundscanbeusedinhumans.

Inconclusion,wesuggestthatcirsimaritinandsorbifolinarethe metabolitesresponsiblefortheanti-giardialactivityexhibitedby themethanolextractofA.scabraleaves,beingthepresentstudythe firstreportonthephytochemistryofthisspecies,thustheisolated compoundsareconsideredasnewforthegenusandthespecies.

Authors’contribution

GIHBcontributedinrunningthelaboratorywork,analysisof thedata, structure elucidation of the isolated compounds, and draftedthepaper.LWTTcontributedtochromatographicand spec-trophotometricanalysis. RMP supervised biological studies and analysisoftheresults.SRPSdesignedthestudy,supervisedthe lab-oratorywork,andcontributedtocriticalreadingofthemanuscript. Alltheauthorshavereadthefinalmanuscriptandapprovedthe submission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

ThisresearchwassupportedbytheNationalCouncilofScience andTechnologyofMexico(Conacyt,projectNo.105346).Weare gratefultoPaulinoSima-Polancoforcollectionandidentification ofplantmaterial.

References

Amaral,F.M.M.,Ribeiro,M.N.S.,Barbosa-Filho,J.M.,Reis,A.S.,Nascimento,F.R.F., Macedo,R.O.,2006.Plantsandchemicalconstituentswithgiardicidalactivity. Rev.Bras.Farmacogn.16,696–720.

Bai,N.,He,K.,Roller,M.,Lai,C.,Shao,X.,Pan,M.,Bily,A.,Ho,C.,2011.Flavonoid gly-cosidesfromMicroteadebilisandtheircytotoxicandanti-inflammatoryeffects. Fitoterapia82,168–172.

Ben Sghaier, M.,Skandrani, I.,Nasr, N., Dijoux-Franca,M.,Chekir-Ghedira, L., Ghedira,K.,2011.FlavonoidsandsesquiterpenesfromTeucriumramosissimum promoteantiproliferationofhumancancercellsandenhanceantioxidant activ-ity:astructure–activityrelationshipstudy.Environ.Toxicol.Pharmacol.32, 336–348.

Bussati,H.G.N.O.,Santos,J.F.G.,Gomes,M.A.,2009.Theoldandnewtherapeutic approachestothetreatmentofgiardiasis:wherearewe?Biol.TargetsTher.3, 273–278.

Calzada,F.,2005.AdditionalantiprotozoalconstituentsfromCupheapinetorum,a plantusedinMayantraditionalmedicinetotreatdiarrhoea.Phytother.Res.19, 725–727.

Calzada,F.,Cervantes-Martínez,J.A.,Yépez-Mulia,L.,2005.Invitroantiprotozoal activityfromtherootsofGeraniummexicanumanditsconstituentson Enta-moebahistolyticaandGiardialamblia.J.Ethnopharmacol.98,191–193. Calzada,F.,Alanís,A.D.,2007.Additionalantiprotozoalflavonolglycosidesofthe

aerialpartsofHelianthemumglomeratum.Phytother.Res.21,78–80. Cedillo-Rivera,R.,Enciso-Moreno,J.,Martínez-Palomo,A.,Ortega-Pierres,G.,1991.

IsolationandaxenizationofGiardialambliaisolatesfromsymptomaticand asymptomaticpatientsinMexico.Arch.Med.Res.22,79–85.

Cedillo-Rivera,R.,Mu ˜noz,O.,1992.In-vitrosusceptibilityofGiardialambliato alben-dazole,mebendazoleandotherchemotherapeuticagents.J.Med.Microbiol.37, 221–224.

Cedillo-Rivera, R.,Darby,J.M., Enciso-Moreno, J.A.,Ortega-Pierres,G., Ey, P.L., 2003.GenetichomogeneityofaxenicisolatesofGiardiaintestinalisderived fromacuteandchronicallyinfectedindividualsinMexico.Parasitol.Res.90, 119–123.

El-Hawiet,A.M.,Toaima,S.M.,Assad,A.M.,Radwan,M.M.,El-Sebakhy,N.A.,2010. ChemicalconstituentsfromAstragalusannularisForssk.andA.trimestrisL., Fabaceae.Rev.Bras.Farmacogn.20,860–865.

Eshbakova,K.A.,Sagitdinova,G.V.,Malikov,V.M.,Melibaev,S.,1996.Flavone sorb-ifolinfromPulicariauliginosa.Chem.Nat.Compd.32,82.

Fernandes, D.C.,Regasini,L.O.,Vellosa, J.C.R.,Pauletti,P.M.,Castro-Gamboa,I., Bolzani,V.S.,Oliveira,O.M.M.,Silva,D.H.S.,2008.Myeloperoxidaseinhibitory andradicalscavengingactivitiesofflavonesfromPterogynenitens.Chem.Pharm. Bull.56,723–726.

Flora digital: Península de Yucatán, 2010. Aphelandra scabra. Herbario CICY, Unidad de Recursos Naturales, pp. 2011, http://www.cicy.mx/sitios/flora% 20digital/fichavirtual.php?especie=2294(accessedDecember).

Geissman,T.A.,Mukherjee,R.,Sim,Y.,1967.ConstituentsofHelichrysumviscosum var.bracteatumDC.Phytochemistry6,1575–1581.

Jeong,D.M., Jung, H.A.,Choi, J.S., 2008. Comparativeantioxidantactivity and HPLC profiles of some selected Korean thistles. Arch. Pharm. Res. 31, 28–33.

Kelm, M.A., Nair, M.G., Strasburg, G.M., DeWitt, D.L., 2000. Antioxidant and cyclooxygenaseinhibitoryphenoliccompoundsfromOcimumsanctumLinn. Phytomedicine7,7–13.

Lane,S.,Lloyd,D.,2002.Currenttrendsinresearchintothewaterborneparasite Giardia.Crit.Rev.Microbiol.28,123–147.

Lentz,D.L.,1993.MedicinalandothereconomicplantsofthePayaofHonduras. Econ.Bot.47,358–370.

Lin,C.,Huang,Y.,Cheng,L.,Sheu,S.,Chen,C.,2006.BioactiveflavonoidsfromRuellia tuberosa.J.Chin.Med.17,103–109.

Mantilla-Morales,G.,Collí-Misset,J.,Pozo-Román,F.,Rivas-Hernández,A.,2002. Saneamientoysalud:impactodelasenfermedadesdiarreicasagudasenla penínsuladeYucatán.In:MemoriasdelXXVIIICongresodeIngenieríaSanitaria yAmbiental,http://http://www.bvsde.paho.org/bvsaidis/mexico26/ix-018.pdf (accessed19.02.13).

Mena-Rejon,G.J.,Perez-Espadas,A.R.,Moo-Puc,R.E.,Cedillo-Rivera,R.,Bazzocchi, I.L.,Jiménez-Díaz,I.A.,Quijano,L.,2007.Antigiardialactivityoftriterpenoids fromrootbarkofHippocrateaexcelsa.J.Nat.Prod.70,863–865.

Meurer-Grimes,B.,McBeth,D.L.,Hallihan,B.,Delph,S.,1996.Antimicrobialactivity inmedicinalplantsoftheScrophulariaceaeandAcanthaceae.Pharm.Biol.34, 243–248.

Morimoto,M.,Cantrell,C.L.,Libous-Bailey,L.,Duke,S.O.,2009.Phytotoxicityof constituentsofglandulartrichomesandtheleafsurfaceofcamphorweed, Het-erothecasubaxillaris.Phytochemistry70,69–74.

Nijveldt,R.J.,vanNood,E.,vanHoorn,D.E.C.,Boelens,P.G.,vanNorren,K.,van Leeuwen,P.A.M.,2001.Flavonoids:areviewofprobablemechanismsofaction andpotentialapplications.Am.J.Clin.Nutr.74,418–425.

Oganesyan,G.B.,2009.MinorflavonolsfromDracocephalummulticaule.Chem.Nat. Compd.45,242–243.

Peraza-Sanchez,S.R.,Poot-Kantun,S.,Torres-Tapia,L.W.,May-Pat,F.,Sima-Polanco, P.,Cedillo-Rivera,R.,2005.ScreeningofnativeplantsfromYucatanfor anti-Giardialambliaactivity.Pharm.Biol.43,594–598.

Peraza-Sánchez,S.R.,Cen-Pacheco,F.,Noh-Chimal,A.,May-Pat,F.,Simá-Polanco,P., Dumonteil,E.,García-Miss,M.R.,Mut-Martín,M.,2007.Leishmanicidal evalu-ationofextractsfromnativeplantsoftheYucatanpeninsula.Fitoterapia78, 315–318.

(5)

Rahman,A.,Choudhary,M.I.,Thomsen,W.J.,2001.BioassayTechniquesforDrug Development.TaylorandFrancisGroup,Netherlands,pp.32–34.

SINAVE (Sistema Nacional de Vigilancia Epidemiológica), 2010. Boletín Epi-demiológico: Semana 1, vol. 28, http://www.dgepi.salud.gob.mx/boletin/ 2010/2010/sem52.pdf(accessed07.01.13).

Suleimenov,E.M.,Raldugin,V.A.,Adekenov,S.M.,2008.CirsimaritinfromStizolophus balsamita.Chem.Nat.Compd.44,398.

Tasdemir,D., Kaiser,M., Brun, R.,Yardley, V., Schmidt, T.J.,Tosun, F.,Rüedi, P.,2006.Antitrypanosomalandantileishmanialactivitiesofflavonoidsand theiranalogues:invitro,invivo,structure–activityrelationship,and quantita-tivestructure–activityrelationshipstudies.Antimicrob.AgentsChemother.50, 1352–1364.

Tejman-Yarden,N.,Eckmann,L.,2011.Newapproachestothetreatmentof giardia-sis.Curr.Opin.Infect.Dis.24,451–456.

Treyvaud-Amiguet,V.,Arnason,J.T.,Maquin,P.,Cal,V.,Sánchez-Vindas,P.,Poveda, L.,2005.AconsensusethnobotanyoftheQ’eqchi’mayaofsouthernBelize.Econ. Bot.59,29–42.

Vázquez-Tsuji,O.,Campos-Rivera,T.,2009.Giardiasis.Laparasitosismásfrecuente anivelmundial.Rev.delCentrodeInv.(Méx)8,75–90.

Vukovic,N.,Sukdolak,S.,Solujic,S.,Mihailovic,V.,Mladenovic,M.,Stojanovic,J., Stankovic,M.S.,2011.Chemicalcompositionandantimicrobialactivityof Teu-criumarduiniessentialoilandcirsimarinfromMontenegro.J.Med.PlantsRes. 5,1244–1250.

Wright,C.W.,Allen,D.,Cai,Y.,Chen,Z.,Phillipson,J.D.,Kirby,G.C.,Warhurst,D.C., Tits,M.,Angenot,L.,1994.SelectiveantiprotozoalactivityofsomeStrychnos alkaloids.Phytother.Res.8,149–152.

Referências

Documentos relacionados

Em suma, a obra de Bosse consiste numa pormenorizada explicação de todas as fases do processo das várias técnicas da gravura, revelando-se um distinto manual de consulta para os

This result clearly showed that the cellular uptake of DMAB-coated nanoparticles was much higher than that of PVA-coated nanoparticles, which confirmed that DMAB

Mas tal fragmentação não pode ser pretexto para fantasias infundadas, como também não pode justificar o abandono a que, indivíduos e instituições, temos votado muito daquilo

Infantil era uma das funções essenciais da família, facilitam o abandono progressivo da responsabilidade do Ministério da Educação pela Educação Pré-Escolar,

Assim, as diferenças significativas encontradas nas variaveis VOP_cd, pPAS, pPAD, cPAS, cPAD, PP entre o repouso e a medida retirada imediatamente após a aplicação do

Os resultados dos testes realizados, no âmbito do caso de estudo, permitem retirar as seguintes conclusões, relativamente, à usabilidade e eficácia da solução construída para o

Molecular docking was performed in order to have deep insight on the inhibitory effect of the synthetic compounds, elucidating a correlation between the biological activity

Comet assay was performed in order to ascertain the importance of the silenced genes in BER pathway, HeLa cell line were exposed to different chemotherapeutic agents for 60