• Nenhum resultado encontrado

Tabela Periódica Dimitri Ivanovich Mendeleev e Lothar Meyer (1869)

N/A
N/A
Protected

Academic year: 2021

Share "Tabela Periódica Dimitri Ivanovich Mendeleev e Lothar Meyer (1869)"

Copied!
33
0
0

Texto

(1)

Tabela Periódica

Dimitri Ivanovich Mendeleev e Lothar Meyer (1869)

• Ordenar os elementos de modo que reflitam as tendências nas propriedades químicas e físicas.

• A primeira tentativa (ordenou os elementos em ordem crescente de massa atômica.

(2)

Dimitri Ivanovich Mendeleev e Lothar Meyer (1869)

Faltaram alguns elementos nesse esquema. Exemplo: em

1871, Mendeleev observou que a posição mais adequada para o As seria abaixo do P, e não do Si, o que deixou um elemento faltando abaixo do Si.

Ele previu um número de propriedades para este elemento.

Em 1886 o Ge foi descoberto. As propriedades do Ge se equiparam bem a previsão de Mendeleev.

(3)

Em 1869, Mendeleev anotou as propriedades de cada um dos 63 elementos conhecidos na época. Ao tentar organizar esses cartões de maneiras diferentes percebeu que, com pouquíssimas exceções, as propriedades dos elementos se repetiam de maneira periódica quando os elementos eram colocados em ordem crescente de massas

atômicas.

Na mesma época, Lothar Meyer publicou trabalho semelhante para a classificação dos elementos químicos na tabela periódica, com diferença de considerar as propriedades físicas

(4)

Período Grupo

I II III IV V VI VII VIII

1 H

2 Li Be B C N O F

3 Na Mg Al Si P S Cl

4 K

Cu

Ca Zn

*

*

Ti *

V

As

Cr Sa

Mn Br

Fe Co Ni

5 Rb

Ag

Sr

Cd Y

In

Zr

Sn

Nb Sb

Mo Te

*

I

Ru Rh Pd

Tabela Periódica de Mendeleev (1871)

- ordem crescente de massa atômica;

- propriedades químicas semelhantes;

- Te e I ; "Ekas" nos espaços vazios.

(5)

Demonstrou em seus trabalhos que: “Quando os elementos químicos são agrupados em ordem crescente de número atômico (Z), observa-se a repetição periódica de várias de suas propriedades”.

Henry G. J. Moseley (1913)

(6)

A partir da descoberta dos plutônio (1940) e dos elementos transurânicos Glenn Seaborg, na década de 50, realizou uma alteração na Tabela Periódica colocando a série dos actinídeos abaixo da série dos lantanídeos.

(7)

Recomendação da União Internacional de Química Pura e Aplicada (IUPAC).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

H He

1 Hydrogen Helium

Li Be B C N O F Ne

2 Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon

Na Mg Al Si P S Cl Ar

3 Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

4 Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

5 Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

6 Cesium Barium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

Fr Ra ** Rf Db Sg Bh Hs Mt Uun Uuu Uub

7 Francium Radium UnnilquadiumUnnilpentium Unnilhexium Unnilseptium Unniloctium Unnilennium Ununnilium UnununiumUnunbium

* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium

** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium

(8)

A tabela periódica pode ser utilizada como um guia para as configurações eletrônicas.

• O número do período é o valor de n.

• Os grupos1A e 2A têm o orbital s ocupado.

• Os grupos 3A - 8A têm o orbital p ocupado.

• Os grupos 3B - 2B têm o orbital d ocupado.

• Os lantanídeos e os actinídeos têm o orbital f ocupado.

Configurações eletrônicas e a tabela periódica

(9)

Tabela periódica – Configuração eletrônica

(10)

Carga nuclear efetiva

- Muitas propriedades dos átomos são relativas à distância média dos elétrons mais externos ao núcleo e a carga nuclear efetiva (Zef) que esses elétrons sofrem.

(11)

Carga nuclear efetiva

- Os elétrons mais internos são muito mais eficientes em blindar os elétrons mais externos da carga total do núcleo,enquanto os elétrons em um mesmo nível não blindam uns aos outros de maneira muito eficaz.

(12)

Carga nuclear efetiva (Zef)

Carga Nuclear Efetiva (Zef): é a força de atração entre o núcleo e os elétrons externos.

Zef = Z – S Onde:

Z = número de prótons do núcleo; S = número de elétrons internos.

(13)

Carga nuclear efetiva

Como resultado, a carga nuclear efetiva sofrida pelos elétrons mais externos aumentam à medida que nos movemos da esquerda para à direita em um período.

Blindagem é o efeito causado pelos elétrons mais internos e os próximos ao elétron considerado.

Blindagem (Shield - S)

(14)

Raio Atômico

Raios atômicos para moléculas diatômicas (raios covalentes) e para metais (raios metálicos).

(15)

Raio Atômico (Å)

(16)

Ao longo de um grupo, o raio atômico aumenta com o número atômico, devido ao aumento do número de camadas (níveis) eletrônicas ocupadas e a carga dos elétrons das camadas internas repelem os elétrons mais externos.

Raio Atômico

(17)

Raio Atômico

Ao longo de um período, o raio atômico diminui com o número atômico, porque vai

aumentando a força atrativa núcleo-eletrosfera (próton-elétron) o que provoca a contração da nuvem eletrônica.

(18)

Variação do raio atômico na tabela periódica

(19)

Raio atômico / Raio iônico

O tamanho dos íons em relação ao átomo de origem depende da sua carga:

a) No caso de um cátion, sua carga positiva diminui as repulsões elétron-elétron, sendo o íon menor que o seu átomo de origem.

b) O contrário acontece com os ânions.

(20)

Átomo de origem e Cátions Átomo de origem e Ânions

(21)

Raio das partículas

1) Para partículas com a mesma carga nuclear a que tiver maior número de elétrons, apresenta maior raio, pois as repulsões inter-eletrônicas são mais fortes.

Átomo

Átomo Cátion

Ânion

(22)

Partículas que apresentam o mesmo número de elétrons (isoeletrônicas): Exemplos

9 F - 10 Ne 11 Na + 12 Mg 2+

A partícula que tiver maior carga nuclear (Z) apresenta menor raio, pois, as atrações núcleo- nuvem eletrônicas são mais fortes o que origina a contração da nuvem eletrônica.

(23)

Eletronegatividade

A eletronegatividade de um elemento é medida como a tendência relativa de um átomo de atrair os elétrons quando ele esta combinado quimicamente com outro elemento.

(24)

Eletronegatividade

- Quanto menor o raio atômico, maior será a atração do núcleo pelos elétrons do nível de energia mais externo, portanto, maior a eletronegatividade.

:

(25)

Aumenta

Diminui

Eletronegatividade

Eletronegatividade

(26)

É a quantidade de energia liberada quando um átomo isolado no seu estado fundamental (na fase gasosa) recebe 1 elétron.

Afinidade Eletrônica (AE)

X(g) + 1e  X -(g) + energia

Valores de afinidade eletrônica são negativos, isto significa que a energia é liberada quando o elétron é adicionado.

(27)

Valores de AE para elementos do grupo 7A (17)

Afinidade Eletrônica (AE)

(28)

Afinidade Eletrônica (AE)

(29)

Energia de Ionização

-É a mínima energia necessária para se retirar um elétron de um átomo ou íon gasoso isolado em seu estado fundamental.

- Em um átomo pode existir da primeira até a sétima energia de ionização, e esta é crescente no intervalo.

E + X (g)  X + (g) + e-

(30)

1) Ao longo do grupo a energia de ionização diminui, por existir maior número de elétrons internos, o que faz com que a atração efetiva entre o núcleo e um dos elétrons mais externos seja menor (raio atômico é maior).

2) Ao longo do período o aumento da carga nuclear experimentada pelos elétrons de valência produz uma diminuição do átomo tornando mais difícil a remoção do elétron (raio atômico menor).

Energia de Ionização (EI)

(31)

Valores da primeira EI dos elementos do segundo período:

Energia de Ionização (EI)

(32)

Três primeiros valores de EI (eV)

Energia de Ionização (EI)

(33)

Energia de Ionização (EI)

Referências

Documentos relacionados

(2010) o objetivo do treinamento em uma U.A.N é capacitar os empregados a executar com habilidade as tarefas do cargo, procurando desenvolver nestes o espirito de participação,

(Autor desconhecido).. Nos últimos 50 anos, vem progressivamente alcançando o status de pandemia global. Foram estudados 1581 casos pela metodologia de isolamento viral

está usando um socket, no caso chama-se a rotina socket() como cliente de um lado, e do lado do host com serviço, uma rotina de socket servidor..  Existem alguns tipos

Em anexo apresentam-se as listas dos equipamentos adquiridos em 2009, dos equipamentos abatidos, dos que se encontram temporariamente cedidos a outras entidades e dos que

Embora a faixa de velocidade de 50Hz, seja 90 - 1300rpm, 60hz 90 - 1600RPM, ela facilmente causa sobrecarga e o efeito de resfriamento do ventilador do motor piora esse a

As decisões são tomadas com base na intuição e na autoridade. Os experimentos são raros e conduzidos por especialistas. O foco se concentra no produto

O pacote de lixo é mantido preso ao corpo da larva pela ação de numerosas cerdas longas, lisas ou serrilhadas, com ponta reta ou em forma de gancho, existentes na superfície dorsal

A aula de língua estrangeira necessita, muito mais do que prover ao aluno expressões idiomáticas “curingas” que o permitirão aprender rapidamente a se comunicar em terras