• Nenhum resultado encontrado

Irrigation with drainage solutions improves the growth and nutrients uptake in Juncus acutus

N/A
N/A
Protected

Academic year: 2021

Share "Irrigation with drainage solutions improves the growth and nutrients uptake in Juncus acutus"

Copied!
8
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Ecological

Engineering

j ou rn a l h o m epa g e :w w w . e l s e v i e r . c o m / l o c a t e / e c o l e n g

Irrigation

with

drainage

solutions

improves

the

growth

and

nutrients

uptake

in

Juncus

acutus

Pedro

García-Caparrós

a

,

Alfonso

Llanderal

a

,

Ahmed

El-Tarawy

b

,

Pedro

José

Correia

c

,

Maribela

Pestana

c

,

María

Teresa

Lao

a,∗

aHigherEngineeringSchool,DepartmentofAgronomyoftheUniversityofAlmeria,AgrifoodCampusofInternationalExcellenceCeiA3,Ctra.Sacramento

s/n,LaCa˜nadadeSanUrbano,04120,Almería,Spain

bDepartmentofAgriculture,KafrelsheikhUniversity,Egypt

cUniversidadedoAlgarve,MeditBio,FCT,Edifício8,CampusdeGambelas,8005-139Faro,Portugal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29January2016

Receivedinrevisedform17June2016

Accepted20June2016

Availableonline2July2016

Keywords: Biomass

Electricalconductivity

Leachate Macrophyte

Nutrientuseefficiency

Ornamentalcascadecropsystem

a

b

s

t

r

a

c

t

ThepotentialcontaminationofsurfaceandgroundwaterbythenurseriesintheMediterraneanarea obli-gatestheuseofnovelsystemssuchasthecascadecroppingsystem.Theaimofthisworkwastoevaluate theeffectsofdrainagewaterderivedfromanornamental(RuscusaculeatusL.andMaytenus senegalen-sis(Lam.)Exell.)cascadecropsystemonthegrowthandpollutingelementsuptake(NandP)against astandardnutrientsolutioninJuncusacutusL.plants.Theexperimentconsistedofthreetreatments:a standardnutrientsolution(T0J;EC=150mSm−1),1:2diluteddrainagewater(T1J;EC=245mSm−1)and

therawdrainagewater(T2J;EC=310mSm−1).Biomass,plantandsubstrateparametersandtotalNand

Puptakebyplantsweredeterminedatthebeginningandattheendoftheexperiment.Thisexperiment showedthattheirrigationwithdilutedandrawdrainagewater(T1JandT2J)withlowerconcentrations

ofNandPcomparedtothecontroltreatment(T0J)supposedanincreaseofbiomassandconsequently

theincreaseofNandPuptake,wheretheplantsirrigatedwithhigherEC(rawdrainagewater)showed thehighestbiomassandtotalNandPuptake.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Nowadays, the continuous growth of the ornamental plant industryovertheworldandinthesouthernofSpainhasbrought aboutmountingconcernoverthenutrients(NandP)leachedfrom thecontainersanditspotentialcontaminationofthesurfaceand groundwater(Lao,2005).Thedrainagesarenormallyrichin nutri-ents,buttheyarenotbalanced;moreover,thelevelsofNa+and

Cl−arehighforthesensitivecultures(Carrionetal.,2005).The nitrateisleached frommostofthemineralsoilsand container

Abbreviations: AG,aboveground;BG,belowground;DW,dry weight;EEA,

europeanenvironmentalagency;Tf,finalplants;FW,freshweight;HPLC,high

per-formanceliquidcromatography;Ti,initialplants;IFDM,integratedfarmdrainage

management;LSD,leastsignificantdifference;PAR,photosyntheticallyactive

radi-ation;RH,relativehumidity;SBC,serialbiologicalconcentration;ANOVA,standard

analysisofvariance.

∗ Correspondingauthor.

E-mailaddresses:pedrogar123@hotmail.com(P.García-Caparrós),

alfonsollanderal@hotmail.com(A.Llanderal),tarawy101@yahoo.com

(A.El-Tarawy),pcorreia@ualg.pt(P.J.Correia),fpestana@ualg.pt(M.Pestana),

mtlao@ual.es(M.T.Lao).

media(Handreckand Black,1984)and althoughthephosphate isconsideredratherimmobilewithinmanysoils,itismuchmore readilyleachedfromthecontainermediacomposedofpinebarkor spaghnumpeatmoss(YeagerandBarrett,1984).Bothnutrientsare ofparticularconcernbecauseoftheircapacitytoleadto eutrophi-cationinwaterways(Kimetal.,2003;Tayloretal.,2005).Therefore, takingintoaccountexistinglegislationsuchastheNitrates Direc-tive (91/676/EEC) and the Drinking Water Directive (98/83/EC) whichsetamaximumallowableconcentrationfornitrate(NO3−)of

50mgL−1andEuropeanEnvironmentalAgency(EEA)(2005)which establishedarangeofphosphorus(P)of25–50␮gL−1inwater,it wouldbeadvisabletoreducetheenvironmentalpollutionthrough systemscompatiblewiththeenvironment.

The Integrated Farm Drainage Management(IFDM) systems employsequentialreuseofwaterwiththebiomassproductionto helpcontrolsalinegroundwater,thereductionofthewastewater andchemicalsandimprovingthesustainabilityofaridland irri-gatedagriculture(Blunketal.,2005).Oneexampleofthesesystems canbeaSerialBiologicalConcentration(SBC)oracascadecropping systemwherethedrainagewatercollectedfrombeneathonecrop isusedtoirrigatethenextmoresalttolerantcropintheseries try-ingtoreducealmostentirelythedrainagevolumefromthelast http://dx.doi.org/10.1016/j.ecoleng.2016.06.090

(2)

Juncaceae (Balslev, 1996) widely distributed in salt marshes or poorly-drainedsoils(El-Shamyetal.,2012)andcanbefoundin theSpanishcoastalmarshcommunitiesandinseveralestuariesof theIberianPeninsula(SainzandRuiz,2006).Moreoverthisspecie hasawideecologicalrange,toleratingthesoilswithhighlevels ofsulphatesand chlorides(Fernández-Carvajal,1982). Cylindri-calleavesand stems(culms) witha sharppointontopemerge fromtherhizomeinbundlesandcanreach1minheight.During latespring/summer,thefloweringpaniclesoccursub-terminallyon stems.Theseeds(nuts)areprotectedwithintheinflorescenceand maystayontheplantfor6ormoremonthsbeforebeingdispersed bythewind(GreenwoodandMacFarlane,2009).

Althoughmuchhasbeenpublishedabouttheuseof macro-phytestoremove N andP in municipal, industrial,agricultural wastewatersand stormwaterrunoff (Vymazal,2007), verylittle isknownabouttheiruseasanornamentalcascadecropsystem undergreenhouseconditions.Therefore,inthepresentresearch, apotexperimentwithJ.acutusundergreenhouseconditionswas establishedinordertodeterminethepotentialtoremovenitrogen andphosphorusindilutedorrawdrainagefromanornamental cas-cadecroppingsystemincludingRuscusaculeatusL.andMaytenus senegalensis(Lam.)Excell.

2. Materialandmethods

2.1. Sitespecificationsandplantmaterial

Theexperiment wasconducted attheUniversity of Almería (36◦49N,2◦24W).

RootedcuttingofJ.acutusL.wereacquiredintrayswithplugsof 0.2Lfromacommercialnursery.Eachplantwastransplantedinto 1.5Lpolyethylenepotsfilledwithamixtureofsphagnum peat-mossand Perlite 80:20(v/v)and subjectedtonutrientsolution treatmentsfor8weeks(averagetimetoproducesaleablenursery cropsinpotsof1.5Lfollowingtheadvicesgivenbylocalgrowers). Thepotswereplacedonplastictraystocollectthedrainagesand coveredwithgalvanizedwiretoimpedethatthepotswerein con-tactwiththedrainages.Onthismeshofwireblack/white,smooth plasticsheetingwasplaced toavoid theevaporation; theblack sideofthefilmcouldavoidthemouldfungusandalgaegrowth andthewhitesidereflectsthesunandreducesthecondensation andheatbuild-up.Duringtheexperiment,plantsweregrownin agreenhouseof150m2.Themicroclimaticconditionsinsidethe

greenhousefortheexperimentalperiod,monitoredcontinuously withHOBOSHUTTLEsensors(modelH08-004-02,OnsetComputer Crop.,Bourne,MA)showedadailyaveragetemperatureof17.1◦C, relativehumidity(RH)of65.6%andphotosyntheticallyactive radi-ation(PAR)of71.6␮molm−2s−1.

2.2. Experimentaldesignandtreatments

Theexperiment consistedofthreetreatmentsusingdifferent

nutrientsolutions:T0J(150mSm−1;astandardnutrientsolutionor

control)reportedbyJiménezandCaballero(1990)foranadequate

growthofornamentalplantsunderMediterraneanconditionsand wasderivedfromtapwaterandH3PO4,HNO3andKNO3supplies),

T1J(245mSm−1;1:2diluteddrainagewater)andT2J(310mSm−1;

rawdrainagewater).Thenutrientsolutionsusedtoirrigatethe plantseverydaywerepreparedweekly.ThedrainagewaterofR. aculeatusirrigatedwiththestandardnutrientsolution(thesame asT0J)wascollectedweekly.Then,thisdrainagewaterwasusedto

elaborateweeklytwodifferentnutrientsolutions:T1M(1:2diluted

drainagewaterwithtapwater withthefollowing composition: 64,122.50,80.00,33.60and59.80mgL−1ofS,Cl,Ca,MgandNa; respectively,andECof90mSm−1)andT2M(rawdrainagewater)

toirrigatedailyeachtreatmentofM.senegalensis(Lam.)Excell.; respectively.Finally,theleachatescollectedweeklyfromthe irri-gationofM.senegalensis(T1MandT2M)wereusedtoirrigatedaily

eachtreatmentofJ.acutus;respectively(T1JandT2J)(Fig.1).The

experimentaldesignconsistedofthreetreatments(T0J,T1JandT2J),

fourblocksandfourplants(oneplantperpot)perblockgivinga totalof48plantswithaplantingdensityof10plantsm−2. 2.3. Nutrientsolutionsdeterminations

Foursamplesofnutrientsolutionpertreatmentwererandomly collectedweekly.

Each sample was composed by aliquots of 25mL, filtered through0.45-␮mmembranefiltersandfrozenuntilnutrient anal-yses wereconducted.Fromeach sample,electrical conductivity and pHvalues weredeterminedby conductivitymeter andpH meter(modelsMilwaukeeC66andpH52(MilwaukeeInstruments, USA),respectively);andtheconcentrationsofnutrientswere deter-minedbyHPLC(HighPerformanceLiquidChromatography;model Metrohm883Basic ICPlus,anionsion exchangecolumnmodel Metrosep A SUPP 4, cations ion exchange column model Met-rosepC4100,ICconductivitydetectorrange(0–15000␮Scm-1), MetrohmAG,Switzerland)asdescribedbyCsákyand Martínez-Grau (1998). The chemical composition of each treatment was presentedinTable1.TheincreaseofpHin1:2dilutedandraw drainagewater(T1JandT2J)comparedtothecontroltreatmentcan

becanberelatedwiththeeffectofsubstrateinleachatepH increas-ingtheirvalueasreportedMerhautetal.,2006.Inaddition,the1:2 dilutedandrawdrainagewater(T1JandT2J)showedlowerN(1.8

and1.5-times)andP(3.7and2.2-times)concentrationscompared tothecontroltreatment(T0J),buthigherNa(8.5and9.8-times)and

Cl(5.6and6.5-times)concentrationsandconsequentlyhigherEC comparedtothecontroltreatment(T0J).

(3)

Fig.1. Schematiclayoutoftheornamentalcascadecroppingsystem.

whereNSisthenutrientsolutionsuppliedineachtreatment,DisthedrainagecollectedineachtreatmentandTWisthetapwater.

2.4. Plantparametersandbiomass

Priortotheinitiationofthetreatmentsandattheendofthe experiment(8weeks),fourJuncusplantspertreatmentwere ran-domlyharvestedandthesubstrategentlywashedfromtheroots. Theplantsweredividedintobelowground(BG)andaboveground (AG)biomassandtherespectivefreshweights(FW)measured:the surfaceoftherootswasdriedwithblottingpaperpriorto weigh-ing.Belowgroundandabovegroundbiomasswerethenoven-dried at60◦Cuntilastableweightwasreachedinordertoprovidethe respectivedryweights(DW).Thetotalbiomasswascalculatedas thesumofBGandAG.Thefreshanddryweightswereexpressedin gm−2becauseweremultipliedbytheplantingdensity.Thewater contentinAG,BGandtotalplantwascalculatedasindicatedby Mateos-Naranjoetal.(2014)(FW-DW/FW)(−).

2.5. Substrateparameters

Priortotheinitiationofthetreatmentsandattheendofthe experiment (8weeks),four samplesofsubstrate per treatment wererandomlytaken,oven-driedfor48hat40◦Candthenpassed througha2-mmsieveandsubjectedtowatersuspensions(1:10). The substrate electrical conductivity (ECe)and pH were

deter-minedinthewatersuspensionbyconductivitymeterandpHmeter (modelsMilwaukeeC66andpH52(MilwaukeeInstruments,USA), respectively).Thenitrogenandphosphorusconcentrationswere determinedinsubstratewatersuspensionsbyHPLCasdescribed byCsákyandMartínez-Grau(1998).

2.6. Nutrientsuptakebyplants

Theoven-driedsamplestakenprior tothestartofthe treat-mentsandat theend oftheexperiment weregroundin amill anddividedintwosubsamples.Theanalysisofsolubleionicform (NO3−)inbelowandabovegroundbiomasswasdeterminedinone

subsamplefollowingwaterextractionbyHPLC(HighPerformance LiquidCromatography;modelMetrohm883BasicICPlus,anions ionexchangecolumnmodelMetrosepASUPP4,ICconductivity detectorrange(0–15000␮Scm−1),MetrohmAG,Switzerland)as describedbyCsákyandMartínez-Grau(1998).Theother subsam-plewasdigestedwithsulphuricacid(H2SO4,96%)inthepresence

ofhydrogenperoxide(H2O2,30%(w/v)andP-free)at300◦Cand

usedforthedetermination oforganicN.TheorganicN concen-trationwasquantifiedcolorimetrically(modelShimadzuUV-1201, Shimadzu,Japan)at630nm(Krom,1980)andthetotalP

concen-trationwasquantifiedcolorimetricallybythemolybdo-vanadate methodat430nm(Hogueetal.,1970).ThetotalNconcentration wascalculatedasthesumoftheorganicNandNO3−

concentra-tion.Thenutrientuptake(NU)inplantspriortothestartofthe treatmentsandattheendoftheexperimentwascalculatedbythe followingequation:

NU=(DWBG∗CBG+DWAG∗CAG)∗D (1)

Where:

DW: dry weight (g) of belowground (BG) or aboveground biomass(AG)

C:nutrientconcentration(mgnutrientg−1DW)inbelowground (BG)orabovegroundbiomass(AG)

D:Plantingdensity(numberofplantsm−2)

2.7. Relationsbetweentheplantparametersandthenutrientuse efficiency

Attheendofthetrial,therelationshipsbetweenthegrowth andnutrientparametersofJuncusplantsandtheECofnutrient solutions weretestedbyregression analysisandthebestfitted modelswereselectedbasedonthedeterminationcoefficient(R2).

Thenutrientsuseefficienciesforeachtreatmentwerecalculated asthedifferencebetweenplantdryweight(ing)peramountof nutrientsupplied(ing)duringtheexperimentalperiod.

2.8. Statisticalanalysis

Theexperimentwasanalysedasacompletelyrandomizedblock design, and the values obtained for each plant and each vari-ablewereconsideredasindependentreplicates.TheAnalysesof Variance(ANOVA)andtheleastsignificantdifference(LSD)tests (P<0.05)wereusedtoassessthedifferencesbetweentreatments. AllstatisticalanalyseswereperformedusingStatgraphicsPlus Soft-ware(version5.1.).

3. Results

3.1. Plantparametersandbiomass

Throughouttheexperiment,therewerenomortalitiesofJuncus plantsortissuedamageattributedtothetestedtreatments.The irrigationwithdifferentnutrientsolutionsincreasedsignificantly theplantheight,numberofculmsandthefreshanddryweight ofbelowground,abovegroundandtotalplantinfinalplants(Tf)

(4)

± ± ± ± Total 0.67±0.05ns 0.68±0.03ns 0.68±0.03ns 0.69±0.04ns

Table3

EffectsofthetreatmentsonpH,electricalconductivity(ECe),andNandP

con-centrationsofthesubstrateattheendoftheexperiment(Tf).T0J –standard

nutrientsolution,T1J–1:2diluteddrainagewater,andT2J–rawdrainagewater.

Theinitialvalueswerealsopresented(Ti).Inarow,treatmentswiththesame let-tersarenotsignificantlydifferentatP<0.05(ANOVAandLSDtest).Dataarethe means±standarddeviationoffoursubstratesamplespertreatment.

Ti Tf T0J T1J T2J ECe(mSm−1)130±10c 126±12c 209±18b 362±29a pH(H2O) 7.0±0.36b 6.8±0.22b 7.9±0.13a 8.0±0.08a N(mgKg−1) 1014.2±96.20a805.2±56.80b491.0±64.12c501.3±87.60c P(mgKg−1) 90.80±6.35a 74.94±6.29b 51.93±7.06c 46.40±6.96c

comparedtotheinitialplants(Ti).Additionally,theirrigationwith

diluted(T1J)andrawdrainagewater(T2J)increasedsignificantly

theplantheight(1.1and1.2-times,respectively),thenumberof

culms(1.8and2.5-times,respectively)andthefreshanddryweight

oftotal plant(1.9and 2.6-times,respectively) comparedtothe

controltreatment(T0J).Nevertheless,therootlengthshowedthe

highestvalueinplantsirrigatedwiththecontroltreatment(T0J)

andthewater contentremainedwithoutsignificantdifferences

undertheirrigationwiththedifferentnutrientsolutions(Table2).

3.2. Substrateparameters

Attheendoftheexperiment,thepHvalueofthesubstrate sig-nificantlyincreasedindilutedandrawdrainagewatertreatments (T1JandT2J)comparedtothecontroltreatment(T2J)butwithout

statisticaldifferencesbetweenthem.Ascanbeexpected,theECe

ofthesubstrateirrigatedwithrawdrainagewater(T2J)showed

thehighest valuemainlyduetotheaccumulationofNaand Cl (datanotpresented).TheconcentrationofNandPinthesubstrate decreasedsignificantlyinallthetreatmentsattheendofthe exper-imentshowingthelowestvaluesindilutedandrawdrainagewater (T1JandT2J)(Table3).

3.3. Nutrientuptake

Theirrigationwithdifferentnutrientssolutionsincreased sig-nificantlythetotalNandPuptakeinbelowground,aboveground andtotalbiomassinplantsattheendoftheexperiment(T0J,T1J

andT2J)comparedtotheinitialplants(Ti).Moreover,theirrigation

withdiluted(T1J)andrawdrainagewater(T2J)increased

signif-icantlytheTNandTPuptakeinbelowground,abovegroundand totalbiomasscompared tothecontroltreatment(T0J),showing

Table4

Nutrientuseefficiencyofplantsirrigatedwithdifferenttreatmentsattheendof

theexperiment.T0J–standardnutrientsolution,T1J–1:2diluteddrainagewater,

andT2J–rawdrainagewater.Treatmentswiththesamelettersarenot

signifi-cantlydifferentatP<0.05(ANOVAandLSDtest).ns:notsignificant.Dataarethe

means±standarddeviationoffourplantspertreatment.

Nutrientuse efficiency T0J T1J T2J NUE 10.70±1.07c 99.81±9.19b 123.15±12.32a PUE 37.80±3.22c 890.84±86.54b 1164.48±91.82a ClUE 6.6±0.61a 4.65±0.41b 3.11±0.31c SUE 12.88±1.31b 35.69±3.56a 40.73±4.10a CaUE 10.30±1.04ns 9.44±0.91ns 11.06±1.01ns MgUE 24.45±2.39b 36.24±3.02a 40.26±4.02a KUE 6.96±0.71b 22.53±2.52a 25.15±2.62a NaUE 13.90±1.25a 8.96±0.81b 6.37±0.61c

theplantsirrigatedwithrawdrainagewaterthehighestTNand

TPuptake(Fig.2AandB).

3.4. Correlationmodelsbetweengrowth-nutrientparameters andEC

The different parameters observed in J. acutus plants were relatedtotheECofthenutrientsolutionattheendofthetrial.The bestfittedmodels(thosewiththelargestR2value)were

polynomi-alsmodels.Alltheparametersstudiedshowedahighcorrelation withtheincreasingofECinnutrientsolution.The plantheight andnumberofculmsreachedamaximumvalueto310mSm−1, whereastherootlengthshowedthelowestvalueatthisEC(Fig.3A). Intermsofbiomass,thetotalFWandDWshowedahighraisewith increasingEC(Fig.3B)andthetotalNandPuptakewereenhanced whenECwasgraduallyraised(Fig.3CandD).

Ascanbeexpected,theNUEandPUEratiosincreased signif-icantlyin plantsirrigated withdilutedand raw drainagewater (T1JandT2J)comparedtothecontroltreatment(T0J),whereasthe

ClUEandNaUEratiosshowedanoppositetrendwithNUEandPUE ratiosdecliningsignificantlyin dilutedand raw drainagewater treatments(T1JandT2J)comparedtothecontroltreatment(T0J).

Ontheotherhand,theSUE,MgUEandKUEratiosincreasedwith drainagewatertreatments(diluted(T1J)andraw(T2J))compared

tothecontroltreatment(T0J)butwithoutstatisticaldifferences

betweenthem,and theCaUEratioremainedwithoutstatistical differencesunder theirrigationwithdifferentnutrientsolution treatments(Table4).

(5)

Fig.2. Totalnitrogen(TN)(A)andtotalphosphorus(TP)uptake(B)(expressedingm−2)inbelowground(BG),aboveground(AG)andtotalbiomass(BG+AG)attheinitial

(Ti)andattheendoftheexperiment(Tf):T0J–standardnutrientsolution,T1J–1:2diluteddrainagewater,andT2J–rawdrainagewater.Treatmentswiththesameletters

arenotsignificantlydifferentatP<0.05(ANOVAandLSDtest).Dataarethemeans±standarddeviationoffourplantspertreatment.

4. Discussion

Theresearchonbiologicalresourcesusedastoolsformanaging thenurserypollutioncanbeoneofthefundamentalguidelines for thedesign and developmentof effective methodologies for theenvironmentalphytoremediation.Hence,thelocationofnative species with a high capacity for the nitrogen and phosphorus uptakeandforthegrowthintheleachatescanbeofparamount importancefortheremediationofthedrainagepollutionfromthe containergrownplants(Broschat,1995).

Ourexperimentalresultsdemonstratethattheincreaseofplant heightandnumberofculmsandconsequentlytheincreaseoffresh anddryweightofbelowground,abovegroundandtotalbiomassin plantsirrigatedwithdiluted(T1J)andrawdrainagewater

treat-ments(T2J)comparedtothecontroltreatment(T0J).Thisincrease

canberelated withtheslight increaseof ECin each treatment duetotheaccumulationofNa+ andClinthenutrientsolution

bythereuseofdrainageintheornamentalcascadecropping sys-tem, where the plants irrigated withraw drainage water (T2J)

showedthehighestvalueforalltheparameterspreviously com-mented.The increaseof theplantheightand numberof culms relatedwiththeECincreaseinthenutrientsolutionagreesvery wellwithTwilleyandBarko(1990)whoreportedanincreaseof plantheightinothermacrophytesplantsasMyriophyllumspicatum andPotamogetonperfoliatusirrigatedwithincreasingsalinity lev-elsnearto1875mSm−1.Neverthelessotherresearchersreported areductionoftheplantheightandnumberofculmsunder increas-ingsalinityinspecieswithinJuncaceaesuchasJ.acutusgrownat 1560mSm−1 (Greenwoodand MacFarlane,2009)and J.kraussii grownat10000mSm−1(Lymberyetal.,2006).

In our experiment, there was no clear trend between the rootlengthandirrigationwithdifferentnutrientsolutions.Plants irrigated with a standard nutrient solution (T0J) (lowest level

ofsalinity)showedthehighest rootlength,althoughtheirroot biomasswaslowerthantheothertreatments.Thisincreaseofroot lengthcanberelatedwithanormalstrategyshowedinhalophytes tomaintaintherootandrhizomesurvivalthroughdivertingthe energyfromabovegroundtobelowgroundunderlowerlevelsof salinity(Craine,2005).DifferentresultswerereportedbyRozema andBlom(1977)whonotedthattherootlengthofJ.gerardiiplants increasedaftersixweeksinplantsirrigatedwith1:2diluted

sea-watercomparedtothecontroltreatment(irrigationwithdistilled water).

Thefreshanddryweightincreaseduetotheslightincreasing ofECobtainedinourexperimentinJ.acutusplantsdifferedfrom theresultsreportedinotherexperimentswithspecieswithin Jun-caceaesuchasJ.acutusandJ.kraussii(GreenwoodandMacFarlane, 2009)andJ.acutusandJ.maritimus(Boscaiuetal.,2012)wherethe belowground,abovegroundandtotalbiomassinplantsdecreased withincreasingEC.

Theirrigationwithdifferentnutrientsolutionshad noeffect onthewatercontentinJ.acutusplants.Severalstudiesshoweda reductioninthewatercontentinJ.roemarianusirrigatedwith arti-ficialseawater(4700mSm−1)(Touchetteetal.,2009),whileothers researchersreportedtheincrease of watercontentas a feature frequentlyperformedinmanyhalophytes(Crawford,1989), rep-resentingaveryefficientwayofmitigationoftheadverseosmotic andtoxiceffectsofionsthroughthedilution.

Ascanbeexpected,theincreaseofbiomassinJ.acutusplants ledtoincreasethetotalNandPuptakeshowingacloser relation-ship(R2=0.89and0.93,respectively),thereforethehighestvalues

oftotalNandPuptakewerefoundinplantsirrigatedwiththeraw drainagewater(T2J),althoughthenitrateandphosphate

concen-trationswerelowerthaninthecontroltreatment(T0J).Although

theseresultscanbeunexpected,agreeingverywellwiththe find-ingsreportedbyShaverandMelillo(1984)whodemonstratedfor wetlandplantspeciesthat theefficiencyofNandPuptakeand theefficiencyoftheiruse(biomassproducedperunitofNandP acquired)tendstoincreaseasavailablenutrientsinputsdecrease. Attheend ofthetrial,theNstandingstocksvaluesin total biomassobtainedinourexperimentrangedfrom3to9gNm−2 beinglowerthanthevaluesreportedinotherexperimentswith macrophytessuchasPhragmitesaustralis(20–27gNm−2)( Maltais-Landryetal.,2009)andTyphalatifolia(29–51gNm−2)(Maddison etal.,2009).ConcerningtotheabovegroundNstandingstock val-ues, therangesreportedbyotherresearcherswerehigherthan therangeobtainedinourexperiment(2–6gNm−2).Tanner(1996) noted N standingstocks values in other macrophytes, suchas PhragmitesaustralisandGlyceriaof32and95gNm−2;respectively. Ennabilietal.(1998)reportedabovegroundNstandingstocks val-uesof11gNm−2 inJ.acutusgrowninwetlandsofMoroccoand Vymazal(2007)inareviewaboutnutrientsremovalsof

(6)

macro-Fig.3.Relationshipbetweenthegrowthparameters(A),biomassparameters(B),totalnitrogenuptake–TN(C),totalphosphorusuptake–TP(D)andelectricalconductivity

(7)

phytesinvarioustypesofconstructedwetlandsreportedrangesof 0.6–72gNm−2 (Johnston,1991),22–88gNm−2 (Vymazal,1995), 2–64gNm−2 (Vymazaletal.,1999)or2–29gNm−2 (Mitschand Gosselink, 2000). Similarly, to the previous results, the range of belowground N standing stocks values in our experiment (1–3gNm−2) was lower compared to the ranges reported by other researchers in other macrophytes suchas Typhalatifolia (12–19gNm−2)(Maddisonetal.,2009)andCalamograstis angusti-folia(12–28gNm−2)(SunandLiu,2007).

ThePuptake islowerthantheN uptakecapacity of macro-phytes(Vymazal,2007)beinginaccordancewithourresults,sothe abovegroundPstandingstockvalueswere4.5-timeslowerthan theaboveground Nstandingstockvaluesin thetreatmentwith thehighesttotalNandPuptake(rawdrainagewater(T2J)).The

Pstandingstocksvaluesintotalbiomassobtainedinour exper-imentrangedfrom1.0to2.8gPm−2 andwereinside fromthe rangesproposedbyotherresearchersinothermacrophytessuchas Phragmitesaustralis(2.0–2.6gPm−2)(HaberlandPerfler,1990)and Phalarisarundinacea (0.5–1.5gPm−2)(Vymazal,1999)grownin horizontalsub-surfaceflowbeds.ConcerningtotheabovegroundP standingstockvalues,therangenotedinourexperiment(0.6–1.4g Pm−2)agreesverywellwiththevaluereportedbyEnnabilietal. (1998)inJ.acutus(0.6gPm−2)andJ.maritimus(0.6gPm−2),but waslowercomparedtotherangesofabovegroundPstandingstock valuesreportedbyVymazal(2007)inareviewaboutPremovalof macrophytesinconstructedwetlands:0.1–6.8gPm−2(Johnston, 1991),0.1–11gPm−2(Vymazal,1995),0.01–19gPm−2(Vymazal etal.,1999)or3–15gPm−2(BrixandSchierup,1989).The below-groundPstandingstockrangeinourexperiment(0.6–1.4gPm−2) waslowercomparedtotherangereportedbyKaoetal.(2003)in othermacrophytessuchasJ.effusus(0.1–2.0gPm−2)andPhalaris arundinacea(0.1–1.2gPm−2).

Thechemicalanalysisofthesubstrateattheendofthetrial indicatedthattheNandPdepletioninthesubstrateofplants irri-gatedwithdilutedandrawdrainagewater(T1JandT2J)couldbe

relatedwiththehigheruptakeofNandPinthosetreatmentsas itwasexplainedabovetherebyincreasingtheNUEandPUEaswe reportedinourresults.

Accordingwithourresults,theirrigationwithdilutedandraw drainagewater(T1JandT2J)withlowerconcentrationsofNand

Pcomparedtothecontroltreatment(T0J)supposedanincreaseof

biomassandconsequentlytheincreaseofNandPuptake,wherethe plantsirrigatedwithhigherEC(rawdrainagewater)showedthe highestbiomassandtotalNandPuptakeandthusthehigh salin-itytolerantmacrophytesaregoodcandidatesinphytoremediation, becauseNaandClwereaccumulatedinthenutrientsolution.

References

Balslev,H.,1996.Juncaceae.FlneotrópicaMonogr68,1-167.

Blunk,S.L.,Jenkins,B.M.,Aldas,R.E.,Zhang,R.H.,Pan,Z.L.,Yu,C.W.,Sakr,N.R.,

Zheng,Y.,2005.Fuelpropertiesandcharacteristicsofsalinebiomass.ASAE

annualinternationalmeeting.BohnertH.J.,Nelson,D.E.,Jensen,R.G.,1995. Adaptationstoenvironmentalstresses.PlantCell7,1099–1111.

Boscaiu,M.,Lull,C.,Llinares,J.,Vicente,O.,Boira,H.,2012.Prolineasabiochemical

markerinrelationtotheecologyoftwohalophyticJuncusspecies.J.PlantEcol. 6,177–186.

Brix,H.,Schierup,H.H.,1989.Theuseofmacrophytesinwaterpollutioncontrol.

Ambio18,100–107.

Brix,H.,1991.Domacrophytesplayaroleinconstructedtreatmentwetlands?

WaterSci.Technol.35,11–17.

Broschat,T.K.,1995.Nitrate,phosphateandpotassiumleachingfromcontainer

grownplantsfertilizedbyseveralmethods.HortSci30,74–77.

Brown,J.J.,Glenn,E.P.,Fitzsimmons,K.M.,Smith,S.E.,1999.Halophytesforthe

treatmentofsalineaquacultureeffluent.Aquaculture175,255–268.

Carrion,C.,Abad,M.,Maquieira,A.,Puchades,R.,Fornes,F.,Noguera,V.,2005.

Leachingofcompostsfromagriculturalwastestopreparenurserypotting media.ActaHort.697,117–124.

Craine,J.M.,2005.ReconcilingplantstrategytheoriesofGrimeandTilman.J.Ecol.

93,1041–1052.

Crawford,R.M.M.,1989.StudiesinPlantSurvival.BlackwellScientificPublications,

Oxford,London,Edinburgh,Boston,PaloAlto,Melbourne.

Csáky,A.G.,Martínez-Grau,M.A.,1998.TécnicasExperimentalesenSíntesis

Orgánica.Ed.Síntesis.Madrid,pp.255.

EEA(EuropeanEnvironmentalAgency),2005.Theintegrationofenvironmentinto

EUagriculturepolicytheIRENAindicator-basedassessmentreport.European

EnvironmentalAgency,Copenhagen.

El-Shamy,A.I.,Abdel-Razek,A.F.,Nassar,M.I.,2012.Phytochemicalreviewof

JuncusL.genus(Fam.Juncaceae).Arab.J.Chem.,http://dx.doi.org/10.1016/j.

arabjc.2012.07.007.

Ennabili,A.,Ater,M.,Radoux,M.,1998.BiomassproductionandNPKretentionin

macrophytesfromwetlandsoftheTingitanPeninsula.Aquat.Bot.62,45–56.

Fernández-Carvajal,M.C.,1982.RevisióndelgéneroJuncusL.enlaPenínsula

IbéricaIII.AnalesdelJardínBotánicodeMadrid,Madrid.

Greenwood,M.E.,MacFarlane,G.R.,2009.Effectsofsalinityoncompetitive

interactionsbetweentwoJuncusspecies.Aquat.Bot.90,23–29.

Haberl,R.,Perfler,R.,1990.‘Sevenyearsofresearchworkandexperiencewith

wastewatertreatmentbyareedbedsystem’.In:Cooper,P.F.,Findlater,B.C. (Eds.),ConstructedWetlandsinWaterPollutionControl.PergamonPress Oxford,UK,pp.205–214.

Handreck,K.A.,Black,N.D.,1984.GrowingMediaforOrnamentalPlantsandTurf.

NewSouthWalesUniv.Press,Kensingtion,Australia.

Hogue,E.,Wilcow,G.E.,Cantliffe,D.J.,1970.EffectofsoilPonphosphatefractionin

tomatoleaves.J.Am.Soc.Hort.Sci.95,174–176.

Incrocci,L.,Pardossi,A.,Malorgio,F.,Maggini,R.,Campiotti,C.A.,2003.Cascade

croppingsystemforgreenhousesoillessculture.ActaHort.609,297–301.

JiménezR.M.,Caballero,M.R.,1990.ElcultivoindustrialdeplantasenmacetaEd.

HorticulturaS.L.,664pp.

Johnston,C.A.,1991.Sedimentsandnutrientretentionbyfreshwaterwetlands:

effectsonsurfacewaterquality.Crit.Rev.Environ.Control21,491–565.

Kao,J.T.,Titus,J.E.,Zhu,W.X.,2003.Differentialnitrogenandphosphorusretention

byfivewetlandplantspecies.Wetlands23,979–987.

Kim,H.,Seagren,E.A.,Davis,A.P.,2003.Engineeredbioretentionforremovalof

nitratefromstormwaterrunoff.WaterEnviron.Res.75,355–367.

Krom,M.D.,1980.Spectrophotometricdeterminationofammonia:studyofa

modifiedBerthelotreactionusingsalicylateanddicholoroisocyanurate. Analyst105,305–316.

Lambers,H.,2003.Drylandsalinity:akeyenvironmentalissueinsouthern

Australia.PlantSoil257,5–7.

Lao,M.T.,2005.Leachingingreenhousecultivation.WFLPublisher.Crops:Quality,

GrowthandBiotechnology,406-431.

Lymbery,A.J.,Doupé,R.G.,Bennett,T.,Starcevich,M.R.,2006.Efficacyofa

subsurface-flowwetlandusingtheestuarinesedgeJuncuskraussiitotreat effluentfrominlandsalineaquaculture.Aquacult.Eng.34,1–7.

Maddison,M.,Soosaar,K.,Lõhmus,K.,Mander,U.,2009.Cattailpopulationin

wastewatertreatmentwetlandsinEstonia:biomassproduction,retentionof nutrients,andheavymetalsinphytomass.J.Environ.Sci.HealthPartA40, 1157–1166.

Maltais-Landry,G.,Maranger,R.,Brisson,J.,Chazarenc,F.,2009.Nitrogen

transformationsandretentioninplantedandartificiallyaeratedconstructed wetlands.WaterRes.43,535–545.

Mateos-Naranjo,E.,Castellanos,E.M.,Pérez-Martín,A.,2014.Zinctoleranceand

accumulationinthehalophyticspeciesJuncusacutus.Env.Exp.Bot.100, 114–121.

Merhaut,D.J.,Blythe,E.K.,Newman,J.P.,Albano,J.P.,2006.Nutrientreleasefrom

controlled-releasefertilizersinacidsubstrateinagreenhouseenvironment:I. Leachateelectricalconductivity,pH,andnitrogen,phosphorusandpotassium concentrations.HortSci41,780–787.

Mitsch,W.J.,Gosselink,J.G.,2000.Wetlands.VanNostrandReinholdCompany,

NewYork(920pp).

Mufarrege,M.M.,DiLuca,G.A.,Hadad,H.R.,Maine,M.A.,2011.Adaptabilityof

TyphadomingensistohighpHandsalinity.Ecotox20,457–465.

Read,J.,Wevill,T.,Fletcher,T.,Deletic,A.,2008.Variationamongplantspeciesin

pollutantremovalfromstormwaterinbiofiltrationsystems.WaterRes.42, 893–902.

Rozema,J.,Blom,B.,1977.Effectsofsalinityandinundationonthegrowthof

AgrostisstoloniferaandJuncusgerardii.J.Ecol.65,213–222.

Sainz,A.,Ruiz,F.,2006.InfluenceoftheverypollutedinputsoftheTinto-Odiel

systemontheadjacentlittoralsedimentsofsouthwesternSpain:astatistical approach.Chemosphere62,1612–1622.

Shaver,G.R.,Melillo,J.M.,1984.Nutrientbudgetsofmarshplants:efficiency

conceptsandrelationtoavailability.Ecology65,1491–1510.

Sun,Z.,Liu,J.,2007.Nitrogencyclingofatmosphere-plant-soilsysteminthe

typicalCalamagrostisangustifoliawetlandintheSanjiangPlain,Northeast China.J.Environ.Sci.19,986–995.

Tanner,C.C.,1996.PlantsforconstructedwetlandtreatmentsystemsA

comparisonofthegrowthandnutrientuptakeofeightemergentspecies.Ecol. Eng.7,59–83.

Taylor,G.D.,Fletcher,T.D.,Wong,T.H.F.,Breen,P.F.,Duncan,H.P.,2005.Nitrogen

compositioninurbanrunoff−implicationsforstormwatermanagement. WaterRes.39,1982–1989.

Touchette,B.W.,Smith,G.A.,Rhodes,K.L.,Poole,M.,2009.Toleranceand

avoidance:twocontrastingphysiologicalresponsestosaltstressinmature marshhalophytesJuncusroemerianusScheeleandSpartinaalternifloraLoisel.J. Exp.Mar.Bio.Ecol.380,106–112.

(8)

Imagem

Fig. 1. Schematic layout of the ornamental cascade cropping system.
Fig. 2. Total nitrogen (TN) (A) and total phosphorus (TP) uptake (B) (expressed in g m −2 ) in belowground (BG), aboveground (AG) and total biomass (BG + AG) at the initial (Ti) and at the end of the experiment (Tf): T 0J – standard nutrient solution, T 1J
Fig. 3. Relationship between the growth parameters (A), biomass parameters (B), total nitrogen uptake – TN (C), total phosphorus uptake – TP (D) and electrical conductivity (EC) of the nutrient solution (mS m −1 ) at the end of the experiment.

Referências

Documentos relacionados

FIGURA 5 - FLUTUAÇÃO POPULACIONAL DE Hypothenemus eruditus, Sampsonius dampfi e Xyleborus affinis (SCOLYTINAE, CURCULIONIDAE) COLETADOS COM ARMADILHAS ETANÓLICAS (25%)

Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1- β-

À indicação de um modo de presença do falo, outro elemento vem ser acrescido: a ameaça de castração: “Não pode deixar de se apresentar à representação o fio que une ameaça

In this present work, an analysis of human RNA-seq data was done, aiming to compare the genetic and miRNA profiles of a control group, macrophages polarized towards the M1 and M2a

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

The false checks observed in 45.1 % of the stu- died chubs may be due to the small scale growth rates observed from August to October, which can be related with the Jack

financeiras, como ainda por se não ter chegado a concluo entendimento quanto à demolição a Igreja de S. Bento da Ave-Maria, os trabalhos haviam entrado numa fase

Vitamin C caused a significant de- crease in uric acid, ALT, CL- factors and RVF index and a significant increase in K+ and Na+ under heat stress condition ( p&lt; 0.05) compared