• Nenhum resultado encontrado

) t. 4 Eliminação do ruído do sinal Introdução

N/A
N/A
Protected

Academic year: 2021

Share ") t. 4 Eliminação do ruído do sinal Introdução"

Copied!
18
0
0

Texto

(1)

4

Eliminação do ruído do sinal

4.1.

Introdução

Os métodos de eliminação de ruído no domínio da transformada de wavelets são conhecidos coletivamente como métodos de “de-noising” ou “encolhimento de wavelets” (wavelets shrinkage), (Morettin, 1999). O modelo (28) pode ser visto como um modelo de regressão no tempo e o método de eliminação de ruído pode ser visto como uma estimação não paramétrica de uma função, usando bases ortogonais. O alvo de regressão não paramétrica é estimar a função desconhecida

(

)

t

N f f f

f = 1, 2,... , com o menor erro quadrático médio (MSE=Mean Square

Error). Então para uma classe de funções, F , queremos estimar uma

função fˆ = fˆ

(

y1,y2,....yN

)

ta partir dos dados observados. O modelo estudado

terá a seguinte estrutura:

t t t

f

y

=

+

t=1,...n (28) ou vetorialmente,

+

= f

y

(29)

Onde,

y

té o sinal original, ft representa um sinal determinístico

desconhecido de interesse, enquanto que ∈t refere-se ao processo estocástico não

desejado, ~ i.i.d.N(0,σ2) t ∈ . O estimador discreto

(

)

t N y y y f

fˆ = ˆ 1, 2,.... será julgado pelo MSE:

( )

2 ˆ 1 , ˆ E f f N f f MSE = −

( ) ( )

[

]

− = − = 1 0 ˆ 1 N i i i t f t f E N (30)

Aplicando a transformada de wavelet

( )

W ao modelo (29), obtemos que a

relação:

(2)

∈ + =W f W y

W (31)

que resulta em,

k j k j k j

e

o

,

=

θ

,

+

σ

, (32)

A relação (32) nos diz, que os coeficientes da transformada wavelets, oj,k

de uma amostra com ruído, podem ser escritos como os coeficientes da

transformada wavelets sem ruído θj,k, adicionados de ruído branco

) 1 , 0 ( . . . ~ , iid N

ejk . O parâmetro

σ

é o fator de escala. Sendo a transformada

wavelet W, ortogonal, implicará que a transformada do ruído branco será também

outro ruído branco. Esta ortogonalidade também fará com que seja satisfeita a relação (33).

(

fˆ− f

)

=MSE

( )

θ −ˆ θ

MSE (33)

onde θ é o vetor que contém os coeficientes sem ruído, e f a função

mostrada em (29).

O procedimento de eliminação do ruído consiste nos três estágios seguintes.

a) Escolher a wavelet a usar e selecionar o nível até o qual desejamos fazer a

decomposição. Logo é calculado a transformada wavelet discreta de

N y y

y1, 2,... obtendo-se assim, Ncoeficientes, oj,k. Estes coeficientes como

anteriormente mencionado estão contaminados de ruído.

b) A eliminação dos coeficientes contaminados de ruído, que se encontram em cada nível de resolução e são os de freqüências mais altas (chamados coeficientes de detalhes), é feita a partir de um certo valor, conhecido como parâmetro de limiarização (ou limiar), e a utilização de uma regra de limiarização. Este processo é conhecido como encolhimento. (Morettin, 1999). c) O passo final tem como alvo a reconstrução da função original. Isto é feito

tomando a transformada inversa de wavelet discreta (TIWD) dos coeficientes

obtidos do estágio b). Desta forma, consegue-se uma estimativa da função original. Na Figura 23 mostra-se o procedimento descrito.

(3)

Dados TWD Encolhimento TIWD Dados sem rúido

a b c

Figura 23 − Procedimento de encolhimento (shrinkage)

No capítulo 3 cobrimos, de forma objetiva, todo o material referente a

transformada de wavelets. O objeto central deste capítulo se concentra em

entender como é o procedimento de “encolhimento” e como escolher adequadamente os parâmetros de limiarização (limiares) e regras de limiarização.

4.2.

Eliminação não linear de ruído via limiarização

Para a eliminação do ruído de um sinal são usados procedimentos ou métodos não lineares, os quais têm a habilidade de adaptar-se rapidamente às mudanças, típicas de sinais não estacionários. Estes métodos podem ser vistos

simplesmente como filtros1, cujas entradas são todos os coeficientes obtidos da

transformação de wavelets do sinal. As saídas destes chamados “filtros” terão dois

valores, serão zeros abaixo de um valor “η”, conhecido como parâmetro de

limiarização (ou limiar), ou caso contrário um certo valor que vai depender do tipo de regra utilizada.

Estes filtros, são chamados de “regras de limiarização”. Inicialmente foram implementadas duas regras de limiarização, que são conhecidas por sua

simplicidade e desempenho, conhecidas como; limiar Duro (Hard Threshold) e

limiar Suave (Soft Threshold). Posteriormente, Donoho e Johnstone apresentaram

em seus trabalhos, outros tipos de regras de limiarização, que logo foram

incorporados na análise. Podemos mencionar dentre elas, “Firm” e “Garrote”.

(Gençay, 2002).

1 Este termo “filtros” não tem nada que ver com os filtros vistos no capítulo 3.

(4)

4.2.1

Limiar Duro (Hard Threshold)

O limiar duro é do tipo “mata” ou “preserva”, definido por:

( )

   > = contrário caso o se o o k k k H 0 , η δη (34) Onde: k

o : é o coeficiente da wavelet com ruído.

η : parâmetro (limiar)

É importante notar, que esta operação somente afeta os coeficientes que são menores ou iguais ao limiar, levando-os para zero.

k

o

( )

k H o η

δ

η

Figura 24 − Limiar Duro, para η=3

4.2.2

Limiar Suave (Soft thresholding)

A outra técnica de remoção de ruído dos coeficientes da wavelet é o limiar

suave, que é do tipo “mata” ou “encolhe” (que reduz o tamanho da quantidade η)

e esta é definido por:

(5)

( )

( )

(

)

   − ≤ = contrário caso o se o o sing ok k k k S 0 η η δη (35) onde,

( )

     < − = > + = 0 1 0 0 0 1 k k k k o se o se o se o sign

Pode-se observar que abaixo do limiar η os coeficientes são nulos, caso

contrário haverá uma eliminação de tamanho, pelo efeito da função “sing”, como é mostrado acima.

o

k

( )

k S

o

η

δ

η

Figura 25 − Limiar Suave, para η=3

4.2.3.

Outras regras de limiarização

Para melhorar o desempenho das regras Suave e Dura foram implementados outros métodos. Aqui são mostrados brevemente duas novas regras: Firm ou

Semisoft e garrote não-negativo (nonnegative garrote). 4.2.3.1

Firm ou Semisoft

Este tipo de regra foi introduzido por (Gao e Bruce, 1997), cuja relação matemática é:

(6)

( )

( )

(

)

       > ≤ < − − ≤ = 2 2 1 1 2 1 2 1 0 2 , 1 η η η η η η η η δη η k k k k k k k F o se o o se o o sign o se o

Este tipo de limiar está comprometido com os limiares Suave e Duro, da seguinte forma:

( )

k S

( )

k f o o 1 2 , 1 2 lim η η η η →∞δ =δ , (limiar Suave) e

( )

H

( )

k k F o o 1 2 , 1 1 2 lim η η η η η → δ =δ (limiar Duro)

É possível melhorar o desempelho das regras Duro e Suave, selecionando

adequadamente os pares η1 e η2. A flexibilidade de ter dois parâmetros permite a

esta regra, ter uniformemente pequenos riscos em relação à regra Duro.

Especificamente para um dado η, existe um par de limiares; η1 <η <η2, tal que:

( )

θ η

( )

θ

η

ηF RH

R 1, 2 < para todoθ . (Vidakovic, 1999, p.200; Gençay, 2002, p210).

4.2.3.2.

Garrote não-negativo

A outra regra é conhecida como garrote não-negativo (nonnegative garrote ou nn-garrote), foi introduzida subseqüentemente por Gao (1998). Sua relação matemática está dada por:

( )

     > − ≤ = η η η δη k k k k k nng o se o o o se o 2 0

Realmente estes novos métodos vão dar melhores estimativas do risco, mas o problema fundamental está relacionado à implementação e a prática de ambos. Para mais detalhes pode-se ver (Gençay, 2002; Vidakovic, 1999).

Para a aplicação destas regras precisamos conhecer o parâmetro de

limiarização η. Nosso problema agora será descobrir qual será este parâmetro

ótimo que irá fornecer a melhor série sem ruído.

(7)

Escolha dos parâmetros de limiarização (limiar)

Existem várias propostas dos pesquisadores para se calcular os parâmetros

de limiarização η. Apresentaremos aquelas que são as mais utilizadas na prática, e

que foram considerados no programa implementado. Podemos classificar estes parâmetros da seguinte forma: • Parâmetro global

¾ Universal ¾ Minimax

• Parâmetro não global ¾ SURE

• Parâmetro Híbrido ¾ SURE-hibrido • Outros

Os parâmetros globais η, são usados para a análise em todos os níveis. Por

outro lado temos o parâmetro não global que vai depender do nível j (para cada

escala há um limiar ηj). O parâmetro híbrido surge como conseqüência de

melhorar os resultados, sendo uma combinação de um parâmetro global e não global.

Dentro dos limiares globais tem-se o limiar universal e o Minimax. O limiar Minimax faz um bom trabalho pegando os saltos abruptos e picos agudos do sinal original. Por outro lado o limiar universal proporciona estimativas mais suaves. O limiar universal usado na prática traz bons resultados, especialmente para amostras grandes, devido ao fato de que é um estimador assintótico. O limiar do tipo não global é usualmente conhecido como SURE (Stein’s Unbiased Risk

Estimate), e foi introduzido por (Donoho e Johnstone., 1995). A chave deste

estimador é minimizar o estimador não-viesado do risco de (Stein, 1981). A desvantagem deste estimador segundo Donoho e Johnstone, é que este procedimento não funciona bem se muitos coeficientes de um dado nível são nulos (ou muito pequenos). Como conseqüência disto surge o limiar híbrido “SURE-hibrido”, que consiste em usar um limiar universal nos níveis onde tem-se esse problema, e o limiar SURE para os outros níveis. Um teste de “esparsidade”

(8)

pode ser usado, considerando a variância do nível j, para saber se é possível usar ou não o limiar SURE em dito nível. É mostrado a seguir as relações matemáticas para calcular cada limiar.

Além deste limiares, outros procedimentos foram empregados para conseguir melhorar os resultados. Entre eles são mencionados aqueles que usam o teste de hipóteses, os quais testam se certos coeficientes são significantes ou não. Outras regras similares surgiram empregando métodos que envolvem princípios bayesianos, desde o ponto de vista da decisão na seleção de um limiar adequado. Os métodos de cross-validation, tem como principal idéia escolher a melhor estimativa do parâmetro que dá o melhor estimador para prever o novo dado observado. Mais destes parâmetros adicionais de limiarização são encontrados em, (Ogden, 1996, p.148-165; Gençay, 2002, p. 218-224; Morettin, 1992, p.196).

As relações matemáticas dos limiares são mostrados a seguir.

4.3.1. Universal

Este limiar não depende da escala, e foi introduzido por (Donoho e Johnson., 1998). N U j U ˆ 2log ∈ = =η σ η (36) U

η pode ser incorporado as regras Suave e Duro. O valor de σˆ é calculado

a partir dos dados. (Percival e Walden, 2000 p449-450).

4.3.2. Minimax

Dohono e Johnson (1994) propõem um limiar global ótimo chamado Minimax. Este parâmetro é obtido pela minimização de um limite superior teórico

do risco assintótico. O objetivo é estimar f da equação (29) com o menor erro

médio quadrático. Para uma classe de funções dada, f ∈ F, queremos fˆ que

atinja o risco Minimax:

(9)

( )

F R

( )

f f R f f , ˆ sup inf ˆ = , (37) onde,

( )

ˆ, 1 E fˆ f 2 N f f R  −      = e

− = = − 1 0 2 2 ˆ N t t f f f .

Com respeito a f , só sabemos que pertence a F. O valor do limiar Minimax pode ser aproximado numericamente.

4.3.3.

Estimador não viesado do risco de (SURE)

Donoho e Johnstone (1995) desenvolveram uma técnica de selecionar um limiar, pela minimização do estimador não-viesado do risco de Stein (SURE =

Estimation Stein’s Unbiased Risk Estimate), em cada nível de resolução. Se no

nível j tivermos N coeficientes, define-se o limiar de SURE por:j

( )

η

ηsure argmin0 η 2log(N ) j,

j = ≤ ≤ j SURE y (38) onde,

( )

yjSURE = ηj −2.#

{

}

(

)

= ∧ + ≤ j k k k j y y k η η η 1 2 , : =ηj −2.#

{

η

}

(

η

)

η , min : 2 1 2 , k k k j y y k j

= + ≤

Esta relação, tem um critério semelhante ao AIC de Akaike, onde a última soma do lado direito é a função a ser minimizada, e o segundo termo é duas vezes o número de parâmetros (coeficientes) utilizados na reconstrução.

4.3.4.

Estimador híbrido SURE

Uma modificação da aproximação SURE é aplicar em alguns níveis o limiar Universal aos coeficientes obtidos da transformada wavelets. A medida de

esparsidade, 2

j

S , em um determinado nível de coeficientes é simplesmente a soma

de quadrados dos coeficientes da transformada wavelets nesse nível,

(10)

= t k j j W S 2 , 2 (39) Um teste de esparsidade pode ser usado, no nível j , para verificar, se nesse nível será usado o limiar SURE ou Universal. A relação do teste está dado por:

(

)

j j j N N S 2 / 3 2 2 1+ log (40)

O nível j é considerado esparso quando é satisfeita a relação (40), neste caso, tem que ser usado o limiar Universal, caso contrário será utilizado o limiar selecionado por SURE.

4.4.

Exemplo de aplicação do procedimento de eliminação de ruído

Várias regras de limiarização e procedimentos para selecionar um limiar foram mostradas neste capítulo. Nesta parte mostram-se os resultados gráficos de uma aplicação do procedimento de eliminação do ruído para um sinal, que é dado em (41). Neste exemplo se mostra o desempenho das wavelets usando os diferentes limiares estudados. Este exemplo foi tirado do livro de (Gençay, 2002, cap.1 sec.1.3).

Seja o sinal definido pela função:

( )

t =25t+5exp

(

500(t0.5)2

)

s t = 0, 1, ..., N-1 (41)

Agrega-se um ruído gaussiano ~ i.i.d. N(0,σ2)

t

∈ à função (41). Para todos os

casos foram usadas as regras de limiarização Suave. A Figura 26 mostra os resultados de eliminação de ruído para diferentes parâmetros de limiarização. Pode-se observar que quando é usado o limiar universal, tem-se uma boa aproximação da função original. Por outro lado, o Minimax e o SURE captaram melhor o pico da função original, e os picos que correspondem ao ruído. Como já foi dito estes limiares têm essa tendência. O limiar SURE híbrido captura em alguns casos os picos e em outros, não, dependendo da esparsidade dos

(11)

obtém-se uma aproximação mais exata da função original. 6 4 2 0 -2 -4 -6 0.0 0.2 0.4 0.6 0.8 1.0 b) 6 4 2 0 -2 -4 -6 0.0 0.2 0.4 0.6 0.8 1.0 a) 6 4 2 0 -2 -4 -6 0.0 0.2 0.4 0.6 0.8 1.0 c) 6 4 2 0 -2 -4 -6 0.0 0.2 0.4 0.6 0.8 1.0 d) 6 4 2 0 -2 -4 -6 0.0 0.2 0.4 0.6 0.8 1.0 e) 6 4 2 0 -2 -4 -6 0.0 0.2 0.4 0.8 0.6 1.0 f ) Universal Minimax

SURE SURE - híbrido

Sinal simulado Sinal com ruído

Figura 26 − Eliminação de ruído usando diferentes parâmetros de limiarização. (Gençay, 2002).

(12)

4.5.

Implementação do programa em Matlab

Foi implementado o programa de eliminação de ruído para um sinal unidimensional, utilizando funções do Matlab. O programa, mostra-se flexível para possíveis mudanças e inserções de novas funções. Este programa é visto como um programa de tratamento de dados, que servirá de complemento aos programas de previsão já existentes.

São mostrados algumas opções utilizadas no programa referentes aos limiares e regras de limiarização.

Para a seleção dos parâmetros de limiarização tem-se usado as seguintes funções:

Opção: tptr Tipos de limiares

‘rigrure’ Utiliza o principio de SURE

‘sqtwolog’ Utiliza o limiar Universal

‘heursure’ Utiliza o limiar híbrido SURE

‘minimaxi’ Usa o principio de Minimax.

Tabela 1 − Funções do programa em Matlab que representam os limiares

As regras de limiarização implementadas são:

Opção: sorh Regras de limiarização

‘s’ Limiar Suave

‘h’ Limiar Duro

Tabela 2 − Funções do programa em Matlab que representam as regras de limiarização

Na seguinte seção são reproduzidos os resultados do exemplo anterior, visto na seção 4.4, utilizando o programa implementado.

(13)

Eliminação do ruído de uma série simulada usando o programa implementado em Matlab

A Figura 27 mostra o gráfico do sinal descrito pela equação (41).

Figura 27 − Sinal determinístico original.

A este sinal é adicionado de um ruído ~ i.i.d.N(0,σ2)

t

∈ para σ =1.2, como

se mostra na Figura 28.

Figura 28 − Sinal original com ruído

Para a análise foi considerado duas famílias de wavelets ortogonais: Daubechies e symlet usando-se a regra Limiar Duro, para ambos casos, sendo o

(14)

nível de decomposição igual a 10. Para o caso das wavelets de Daubechies fez-se o procedimento de eliminação de ruído para oito tipos de wavelets utilizando os diferentes limiares estudados. Como a função original é conhecida e esta determinada pela equação (41), é possível encontrar a melhor estimativa da função original, mediante a avaliação da estatística do erro médio quadrático (EMQ) que resulte no menor valor. A Tabela 3 mostra os valores de EMQ para todas as alternativas analisadas, observa-se que para as wavelets Db6 encontrou-se os menores valores de EMQ. Segundo os desenhos do exemplo da Figura 26, confirma-se que o limiar SURE híbrido proporciona a melhor reconstrução da função após a eliminação do ruído.

Wavelets da família Daubechies

Parâmetros de limiarização Db2 Db3 Db4 Db5 Db6 Db7 Db8 Db9 Universal 0.0382 0.0546 0.0381 0.0280 0.0393 0.0455 0.0524 0.0734 Minimax 0.1853 0.1824 0.2082 0.2917 0.2439 0.1891 0.2244 0.2263 SURE 0.1218 0.1591 0.3222 0.5288 0.4714 0.2213 0.2150 0.2116 SURE híbrido 0.0427 0.0413 0.0435 0.0791 0.0676 0.0273 0.0334 0.0315

Tabela 3 − Erro Médio Quadrático para as wavelets de Daubechies

Abaixo são mostrados os resultados gráficos para as wavelet de Daubechies “Db6”, para os quatro limiares analisados.

Figura 29 − Resultados usando o limiar Universal

(15)

Figura 30 − Resultados usando o limiar Minimax

Figura 31 − Resultados usando o limiar SURE

Figura 32 − Resultados usando o limiar SURE híbrido.

(16)

Da mesma forma fez-se a análise para as wavelets symlets. Os resultados são mostrados na Tabela 4. Vê-se desta tabela que para a wavelet sym7 obteve-se os melhores resultados do EMQ, sendo o menor de todos quando é usado o limiar SURE híbrido.

Wavelets da família symlet

Limiar

sym2 sym3 sym4 sym5 sym6 sym7 sym8

Universal 0.0382 0.0546 0.0312 0.0613 0.0720 0.0346 0.0375

Minimax 0.1853 0.1824 0.2638 0.2337 0.2187 0.1710 0.2601

SURE 0.1218 0.1591 0.5463 0.3659 0.3345 0.1542 0.4232

SURE híbrido 0.0427 0.0413 0.0558 0.0480 0.0526 0.0323 0.0497

Tabela 4 − Error Médio Quadrático para as wavelets symlet

Em seguida são mostrados os resultados para a wavelet sym7, para os quatro limiares.

Figura 33 − Resultados usando o limiar Universal.

(17)

Figura 34 − Resultados usando o limiar Minimax.

Figura 35 − Resultados usando o limiar SURE.

Figura 36 − Resultados usando o limiar SURE híbrido.

(18)

Portanto, olhando os resultados do EMQ das tabelas Tabela 3 e Tabela 4, para as wavelets Daubechies (Db7) e symlet (sym7), respectivamente, observa-se que convém usar a wavelet Daubechies (Db7) com limiar SURE híbrido, que tem o menor erro médio quadrático (EMQ=0.0273), já que ela nos proporcionará uma melhor representação da função original, uma vez eliminado o ruído. Note-se que a seleção da melhor wavelet foi feita ao final da análise.

Referências

Documentos relacionados

No primeiro, destacam-se as percepções que as cuidadoras possuem sobre o hospital psiquiátrico e os cuidados com seus familiares durante o internamento; no segundo, evidencia-se

Pretendo, a partir de agora, me focar detalhadamente nas Investigações Filosóficas e realizar uma leitura pormenorizada das §§65-88, com o fim de apresentar e

Esta realidade exige uma abordagem baseada mais numa engenharia de segu- rança do que na regulamentação prescritiva existente para estes CUA [7], pelo que as medidas de segurança

As análises serão aplicadas em chapas de aços de alta resistência (22MnB5) de 1 mm de espessura e não esperados são a realização de um mapeamento do processo

Os principais objectivos definidos foram a observação e realização dos procedimentos nas diferentes vertentes de atividade do cirurgião, aplicação correta da terminologia cirúrgica,

Os instrutores tiveram oportunidade de interagir com os vídeos, e a apreciação que recolhemos foi sobretudo sobre a percepção da utilidade que estes atribuem aos vídeos, bem como

psicológicos, sociais e ambientais. Assim podemos observar que é de extrema importância a QV e a PS andarem juntas, pois não adianta ter uma meta de promoção de saúde se

O m´etodo proposto nesse trabalho tem como objetivo realizar o monitoramento no n´ıvel de risco de cada membro de uma OV, cujo valor ser´a quantificado em termos de desempenho para