• Nenhum resultado encontrado

A VHDL library for MTM/BST communication

N/A
N/A
Protected

Academic year: 2021

Share "A VHDL library for MTM/BST communication"

Copied!
24
0
0

Texto

(1)

A VHDL Library for MTM/BST

Communication

  Gustavo R. Alves, 1,2   José M. M. Ferreira 1,3   José A. R. Tavares, 1   Manuel G. Gericota, 1,2 1 INESC Porto - Portugal 2

Instituto Politécnico do Porto Porto - Portugal

3

Universidade do Porto Porto - Portugal

(2)

Motivation

  To build a library of VHDL models for an 1149.1

board-level test controller , including a P1149.5 interface layer, with the aim of enabling the

development of an MTM/BST system-level test strategy

(3)

Requirements

  The system-level test specification should be an

open ended specification allowing user-defined functionality

  Reusability of proven models •  board-level test controller

•  board-level ATPG tool

  Flexible implementation accommodating

(4)

Outline of the presentation

  The IEEE 1149.1 and P1149.5 Standards   The test protocol

  The board-level test controller   The VHDL library

  Future directions   Conclusions

(5)

The P1149.5 Module Test and

Maintenance (MTM) - Bus

•  The IEEE P1149.5 MTM - Bus defines a serial backplane bus, linking a

Master-module and up to 250 Slave-modules. The MTM Bus is formed by 5 dedicated signals: MTM Clock (MCLK), MTM Control (MCTL), MTM

Master Data (MMD), MTM Slave Data (MSD) and the optional MTM Pause Request (MPR)

(6)

The P1149.5 Module Test and

Maintenance (MTM) - Bus

•  Message exchanging between the M-module and S-modules is

based on a packet transfer protocol. Packets are delimited by Bus Pause conditions and messages are delimited by Bus Idle conditions

MESSAGE MESSAGE MESSAGE

Bus in Idle State Bus in Idle State PACKET COUNT HEADER M DATA 1 S DATA 1 ACKNOWLEDGE MASTER SLAVE Bus in Pause State Bus in Pause State ... ...

(7)

The P1149.5 Module Test and

Maintenance (MTM) - Bus

•  State transitions of the Master Link Layer State Machine (LLSM) and of the

Slaves LLSMs are controlled by MCTL and MMD. The MSD line may also be used to signal an interrupt to the Master during a Pause or Idle Bus

condition. The MPR line may be used by the Slave to extend the Bus Pause condition

HEADER PACKET MASTER DATA PACKET

SLAVE DATA PACKET

MCLK MCTL

MMD MSD

IDLE BUS

(8)

Boundary Scan Test:

The IEEE 1149.1 Std.

•  The IEEE 1149.1 Std. defines a standard boundary scan architecture

and test access port

Inst. Reg.: Instruction Register BP Reg.: Bypass Register

Dec.: Instruction decoder

BS Reg.: Boundary Scan Register

TAP Cont.: Test Access Port Controller

TDI /TRST TMS TCK BP Reg. Dec. TAP Cont. Inst. Reg. BST Reg. mux mux TDO

(9)

Boundary Scan Test:

The IEEE 1149.1 Std.

•  Keywords: Board-level, structural, digital

Board-level test controller

BST MTM

System-

(10)

The test protocol

•  The Board-level test program for a given S-module is transmitted

through the MTM - Bus:

–  A Header containing the Slave address and the RUN_PROC

command

–  A PACKET COUNT packet indicating the length of the test program –  A set of DATA PACKETS containing the test program

•  Fault detection will set an error flag in the board-level test controller

and generate an interrupt to the MTM - Bus Master

HEADER PACKET COUNT DATA PACKET

SELTAP 0 TRST

(11)

The board-level test controller

  The board-level test controller contains: •  The MTM interface layer

•  The BST controller

•  The MTM2BST Linker Block

MTM MTM 2

BST

BST

(12)

The board-level test controller

  The MTM interface layer is sub-divided into the

following blocks:

•  Sender and Receiver blocks •  Address Compare block •  Slave Link Layer Controller •  Slave Status Registers

•  Instruction decode and execution control unit

The MTM interface layer

(13)

The board-level test controller

•  The sender and receiver blocks are responsible for the serial exchange

of data through the MSD/MMD lines (16-bit packets with odd parity)

Receiver block diagram Sender block diagram

MMD

Block P

Receiver Register (16..0)

Shift Register (15..0)

Parity Checker Parity Error MMD Receiver Clock Enable MSD Block P Send Register (16..0) Shift Register (15..0) Parity Generator Control MSD Sense MSD

The MTM interface layer

(14)

The board-level test controller

•  The address compare block decodes the Header address field

ADDRESS Compare Slave Selected Multicast Selected Amnesia Selected Invalid Address Selected Address Parity Checker 8 8 Parity Bit Slave Address (7..0) Broadcast Selected

Block diagram of the address compare block

(15)

The board-level test controller

•  The Slave Link Layer State Machine is responsible for keeping the

S-Module synchronised with the Bus activity. It includes five main groups of states: –  Power-up –  Idle –  Transfer –  Pause –  Error

The MTM interface layer

ERROR State POWERUP States IDLE States XFER N States PAUSE State

(16)

The board-level test controller

•  The Slave Status Registers store information about the system activity

and errors that may have occurred. All these registers can be read by the Master

SLAVE STATUS

REGISTER General Status Condition of MTM - Slave. The BSE andEVO bits, when set, require an interrupt. BUS ERROR

REGISTER Reports several Bus error conditions. The logical OR ofsome bits drives the BSE bit of the Slave Status Register. MODULE STATUS

REGISTER

Module Specific Status that may set the EVO bit -(recommended; presently not implemented). USER-DEFINED

STATUS REGISTER

Additional Status registers that may set the EVO bit of the Slave Status Register.

(17)

The board-level test controller

•  The instruction decode and execution control unit links all MTM blocks

The MTM interface layer

Command Register Packet Counter

Finite State Machine

To/From other

(18)

The board-level test controller

  The BST controller is a fourth generation dedicated

processor core able to control two board-level scan chains

  It’s instruction set maps the low-level operations

required to control the board-level BST infrastructure

(19)

The board-level test controller

Block diagram of the BST controller

In str uct io n de cod e an d c on tro l 16 a nd 2 4-bi t co un te rs Sc an o ut TA P se le ct or S can in S tatus an d s ync control outputs error TDI TDO D[ 0..7] Sync inputs error end of test sync outputs SelTAP TAP outputs (TAP 0, TAP 1) TAP inputs (TAP 0, TAP 1) DeserEn status inputs ErrFlag [0..15]

The BST controller

(20)

The board-level test controller

Command class Operation description Command name

Apply a ‘0’ pulse to TRST line TRST

control of Apply a test clock pulse while

helding TMS at a given value ‘X’ TMS0, TMS1

BST Shift out vector, no

comparation NSHF

infrastructure Shift out vector, comparing withexpected values NSHFCP

Apply N test clock pulses, while

helding TMS at ‘0’ NTCK

Select active TAP SELTAP0, SELTAP1

control of the Set synchronism output to agiven value ‘X’ SSA0, SSA1, SSB0, SSB1 synchronism protocol Wait for synchronism input to be

at a given value ‘X’ WSA0, WSA1, WSB0, WSB1

control of Load internal counter (16 or 24bits long) with N LD C16,NLD C24,N internal resources Select internal error flag ( 15..0) SERFLAG N

Stop test program execution HALT

The BST controller

(21)

The board-level test controller

FSM Controller 16 bit packet 8 bit instruction/data MTM Interface Layer BST controller DATA MEMORY

The MTM2BST Linker Block

(22)

The VHDL library

  The VHDL library contains a set of functional models

leading to a modular architecture based on the three main blocks described:

•  The MTM interface layer •  The BST controller

•  The MTM2BST Linker block

  This library allows customised solutions

  The VHDL models were successfully simulated using

the MINT software from the Swedish Institute for Microelectronics

(23)

Future directions

  Synthesis

  Local test program memory

  MTM/BST system-level test strategy   Diagnostic resolution

(24)

Conclusion

  The work presented described a library of VHDL

models developed to enable a MTM/BST system-level strategy

  Reusability and flexibility are two key attributes of

the proposed implementation

  Approval of the P1149.5 by the IEEE Standards

Board will create the required conditions to fully exploit a MTM/BST (test) infrastructure

Referências

Documentos relacionados

É demonstrada também que uma maior eficiência do sistema (Primeira e Segunda Leis da Termodinâmica) pode ser obtida a partir da configuração proposta pelo “Ciclo Real Simples”,

Quando compararam os atletas por género encontram diferenças estatisticamente significativas em relação à orientação motivacional, no entanto verificaram que quanto mais

Quanto a percepção dos sujeitos em relação as forças mais solicitadas durante a prática das modalidades os dados mostraram que os praticantes de Surfe entendem que o

Anti-seismic passive control is an on-going research field and many innovative materials or control solutions have been proposed and develop to produce passive devices such as Shape

Na primeira camada (identificada pelo número 1) estão localizadas as tabelas necessárias para armazenar as interações geradas pelo usuário através de uma

Por isso, a previsão de que a definição sobre a distribuição do ônus da prova deve ser feita na fase de saneamento e organização, que antecede à fase

Estes serviços, recorda, “são fundamentais para dar as respostas que os utentes e os doentes necessitam”, considera, salientando que, “quanto aos enfermeiros, será necessário

Vieira, Vanessa; Calhelha, Ricardo C.; Reis, Filipa S.; Barros, Lillian; Sousa, Maria João; Queiroz, Maria João R.P.; Martins, Anabela; Ferreira, Isabel C.F.R2. Microencapsulação de