• Nenhum resultado encontrado

Behavioral and neuroimaging responses induced by mental imagery of threatening scenarios

N/A
N/A
Protected

Academic year: 2021

Share "Behavioral and neuroimaging responses induced by mental imagery of threatening scenarios"

Copied!
12
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

Behavioral

and

neuroimaging

responses

induced

by

mental

imagery

of

threatening

scenarios

Rosana

Shuhama

a,∗

,

Carlo

Rondinoni

b

,

Draulio

Barros

de

Araujo

c

,

Gustavo

de

Freitas

Caetano

b

,

Antonio

Carlos

dos

Santos

b

,

Frederico

Guilherme

Graeff

d,e

,

Cristina

Marta

Del-Ben

a

aDepartmentofNeurosciencesandBehavior,RibeirãoPretoMedicalSchool,UniversityofSãoPaulo,RibeirãoPreto,SP,Brazil bImageSciencesandMedicalPhysicsCenterLaboratory,RibeirãoPretoMedicalSchool,UniversityofSãoPaulo,RibeirãoPreto,SP,Brazil cBrainInstitute,UniversityHospitalOnofreLopes,FederalUniversityofRioGrandedoNorte,Natal,RN,Brazil

dINeC—InstituteofNeuroscienceandBehavior,RibeirãoPreto,SP,Brazil

eNAP-NuPNE—NeurobiologyofEmotionsResearchCenter,UniversityofSãoPaulo,RibeirãoPreto,SP,Brazil

h

i

g

h

l

i

g

h

t

s

•ImaginaryofimminentthreatscenariosincreasedfMRIsignalofthedorsalmidbrain.

•ActivityinvmPFCwasreducedduringtheimaginationofimminentthreatscenarios.

•Activationpatternwasconsistentwithanimaldataandactualthreatsituations.

•Imminentandpotentialthreatsmodulatebrainstructuresrelatedtofearandanxiety.

•Mentalimageryisareliablemethodtostudytheneurobiologyofbehavioralprocesses.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received26April2016

Receivedinrevisedform26June2016 Accepted29June2016

Availableonline22July2016 Keywords:

Mentalimagery Threatsituation Defensivebehavior

Functionalmagneticresonanceimaging Neuroimaging

a

b

s

t

r

a

c

t

Functionalneuroimaging studieshaveshownthatactualsituationsof uncertainor distantthreats

increasetheactivityofforebrainregions,whereasproximalthreatsincreasetheactivityofthe

dor-salmidbrain.Thisexperimentaimedattestingthehypothesisthatbrainactivityelicitedbyimagined

scenariosofthreatswithtwodifferentmagnitudes,potentialandimminent,resemblesthatfoundin

responsetoactualthreats.First,wemeasuredsubjectiveresponsestoimaginedscenariosofpotential

andimminentthreatscomparedwithneutralandpleasantscenarios.Thesamescenarioswereusedasa

paradigminafunctionalmagneticresonanceimagingexperiment.Behavioralresultsshowthatthe

sce-nariosdrawagradientofhedonicvalenceandarousaldimensions.Bothpotentialandimminentthreat

scenariosincreasedsubjectiveanxiety;theimminentthreatscenarioalsoincreasedfeelingsof

discom-fortandbodilysymptoms.Thefunctionalmagneticresonanceimagingresultsrevealedmodulationsof

BOLDsignalintheventromedialprefrontalcortexbypotentialthreatandintheperiaqueductalgray

matterbyimminentthreat.Theseresultsagreewithpreviouslyreportedevidenceusingactualthreat

situations,indicatingthatmentalimageryisareliablemethodforstudyingthefunctionalneuroanatomy

ofrelevantbehavioralprocesses.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Studiesof nonhumananimal specieshaveprovided

substan-tialevidenceofspecificdefensivebehaviorsdependinguponthe

featuresof thethreateningsituation,which include magnitude,

∗ Correspondingauthorat:RiberãoPretoMedicalSchool.UniversityofSãoPaulo. E-mailaddress:roshuhama@gmail.com(R.Shuhama).

distanceandambiguityofthethreat,aswellastheavailabilityof

escapeorhidingplaces[1].Riskassessmentisanadaptive

defen-siveresponsewhenthethreathasahighlevelofambiguityand/or

isatasafedistance.Flightisanadaptivestrategywhenthethreat

isproximal,unambiguous,ofhighmagnitudeandanescaperoute

isavailable.Otherwise,whenthereisnoavailablerouteorhiding

place,defensivethreatandattackaretheadaptiveresponsesmost

oftenperformed[2–4].

http://dx.doi.org/10.1016/j.bbr.2016.06.059

(2)

R.Shuhamaetal./BehaviouralBrainResearch313(2016)358–369 359

Aimingtoverifythecorrelationbetweenanimaland human

defensivestrategies,Blanchardetal.[4]proposedasetofimagery

scenariosthatvaryalongthementionedthreateningdimensions.

These scenarios were tested in Hawaiian [4] and Brazilian [5]

healthy volunteers, and the results pointed to a resemblance

betweennonhumanandhumandefensiverepertoires[6].Perkins

andCorr[7]usedthesamescenariosetandfoundanassociation

betweenpsychoticism,asonecharacteristicofpersonality,andthe

evaluationofdefensivemagnitudewhich,initsturns,influenced

thedefensivechoicesandorientationtodirectionawayfromthreat

source.Animalstudieshavealsoprovidedevidenceforneural

sub-stratesofdefensivereactions[8].Riskassessmentbehaviorsare

relatedtoincreasedactivityinforebrainareas[9,10].Themidbrain

periaqueductalgraymatter(PAG),whereasalsoinvolvedin

medi-atingrisk assessment behavior [11,12], iscommonly associated

withurgentresponses,suchasflightandfight[9,10].

Aseriesofwell-designedfunctionalmagneticresonance

imag-ing(fMRI)studiesfoundaparallelbetweennonhumanandhuman

defensiveneuralprocessing.Inshort,theyhaveshownthatdistant

orpotentialthreatsareassociatedwithactivityinthe

ventrome-dialprefrontalcortex(vmPFC),butasthethreatbecomesnearer

and intense, brain activity shifts to the PAG [13–15]. In these

experiments,actualthreatsituationswereused.Onestudyuseda

predator-preyvideogame,controlledbytheexperimentalsubject

[13],andtheothersimulatedatarantulamovingbackandforth

fromoneofthesubject’sbarefoot[15].

Knowledgeabouttheneurobiologyofdefensivebehaviorscan

be relevant for the understanding of mental disorders, mainly

anxietydisorders.However,modelingthreatsituationsinhuman

subjectsisnotonlyexpensiveandpossiblypainstaking,butalso

hasethicalandpracticallimitations.Theseshortcomingscouldbe

surmountedifmentalimageryproveseffectiveinchangingbrain

activityinmeaningfulways.Becausereportedevidencehasshown

thatmentalimagerycanreproducesubjectiveresponsesandbrain

activitythatareexpectedinrealsituations[16,17],weaimedat

testingthehypothesisthatbrainactivityelicitedbyimagined

sce-nariosofdistalandimminentthreatswouldresemblethatfound

inresponsetoactualthreats.

Inthepresentstudy,wefirstmeasuredsubjectiveresponsesto

imaginedscenariosofpotentialandimminentthreats,compared

withneutralandpleasantones,inordertoestimatetheabilityof

thescenarios togeneratedifferentthreatdimensions.Thesame

scenarioswerethenusedasaparadigminanfMRIexperiment.

Wepredictedthattheimaginationofanaversivescenariofeatured

bypotentialthreatwouldelicit activityin forebrainareas,such

asvmPFCandamygdala, whereastheimaginationofascenario

ofproximalthreatwouldengagemidbrainareas,particularlythe

PAG.

2. Behavioralexperiment

2.1. Materialandmethods

2.1.1. Participants

Twentyhealthy volunteers(17 women,age=28.5±4.1)

par-ticipatedinthisstudy.Theparticipantswererecruitedbyposter

advertisements,electronicmessagesandpersonalcontact.

Individ-ualshadatleast12yearsofschooling,withnohistoryofpsychiatric

andneurologicalcondition.Participantswerenotincludedifthey

usedanypsychoactivesubstancesand/ormedicationwithintwo

weeksbeforetheexperiment (exceptcontraceptives). Thelocal

ResearchEthicsCommitteeofRibeirãoPretoMedicalSchool,

Uni-versityofSãoPaulo,RibeirãoPreto,SãoPaulo,Brazil,approvedthe

studyandwritteninformedconsentwasobtainedfromall

partici-pants.

2.1.2. Mentalimageryparadigm

Thementalimageryparadigmwascomposedoffourscenarios,

twoofthemextractedfromtheDefensiveBehaviorQuestionnaire

[4].Onescenariorepresentedanimminentthreat(scenario

Eleva-tor)andanotherpotentialthreat(scenarioNoise).Thesescenarios

havebeenchosenbecause,inpreviousstudies[4,5],theformer

wasevaluatedasthehighestmagnitudeof threatandthe

low-estpossibilityofescapeandoffindinga hidingplace;thelatter

wasratedasthemostambiguousscenario.Themostfrequently

recordedresponsetotheElevatorscenariowasdefensiveattack

andtoNoise,checkingout.Theothertwoscenariosrepresentedan

intendedneutralscenario(Meeting)andapleasantscenario(Beach),

situationsconstructedtothestudyinordertocontrastwiththe

threatscenarios.

a)Meeting(neutralscenario):“Itisnightandyouarealoneathome

watchingTV.Thephoneringsandwhenyouanswerthephoneitis

aco-workerconfirmingthemeetingthenextmorning”.

b)Noise(potentialthreatscenario):“Lateatnight,itisdarkandyou

aresleepingaloneinyourbed.Yousuddenlywakeupfeelingthat

youheardasuspiciousnoise”.

c)Elevator(imminentthreatscenario):“Lateatnight,you’realone

inanelevator.Whenitstopsandthedoorsopen,aroughlooking

strangergetsinfasttoattackyou,blockingyourexit”.

d)Beach (pleasant scenario):“You arealone andslowly walking

alongabeach.Itistheendofthedayand,onthehorizon,youcan

seethesunset.Somechildreninviteyoutocompletetheirgroup

thatisplayingvolleyball”.

Astandardsetofinstructionswasprovidedtoallparticipants

asfollows:“Youwill hearthescript ofasituationthatwecango

through.Listentoitcarefullyandfocusonit.Imagineyourselftaking

partinthesituation,asifitwerereal.Imaginethemostlikelyfeelings

andreactionsyouwouldhavetoit,themorespontaneousresponses.

Onceyouareimaginingthedepictedscene,stirafingerofyourright

hand.Remainfocusedandimaginingyourselfinthescenariountilyou

receiveinstructionstostop.”

Toelicit emotional arousal,a professionalactor recordedan

audiodescribingeachscriptaloud,givingemotionaltonetoeach

situation.

2.1.3. Hedonicvalenceandarousalandqualityofthemental

imagery

Assessmentsofthehedonicvalenceandthearousalcausedby

each scenario were madewith Likert-typescalesbased on the

conceptthatunderliestheworkofLangandcoworkers[18].The

anchorsofthevalencescalevariedfrom1(unpleasant)to9

(pleas-ant),andofthearousalscalefrom1(calm)to9(excited).

Anestimativeofqualityofthegeneratedmentalimageswas

assessedthroughaLikert-typescale,anchoredfrom1to9,as

previ-ouslyproposed[19].Sevenqualitieswereevaluated:(a)theeasein

formingthementalimagery(1=veryeasy,9=verydifficult);(b)the

amountofdetailsincludedinthementalimagerytask(1=highly

detailed,9=withoutanydetail);(c)theclarityintheimage

dis-played(1=verysharp,9=veryvague);(d)theeaseofmaintenance

oftheimageryduringtheperiodproposed(1=veryeasy,9=very

difficult);(e) thechanges in thedetail amountduring thetask

(1=nothingatall,9=dramaticchange);(f)howmuchofthe

infor-mationprovidedbythescriptwasusedintheimaginationofthe

situationdescribedineachscenario(1=allthescript,9=justasmall

portionofthescript),and(g)thesizeofthementalimageryset

(3)

2.1.4. Subjectivemoodmeasures

Subjectivestateswereassessedbytwoeasytounderstandand

quicktoadministerscales,theVisualAnalogueMoodScale(VAMS)

[20,21]andtheBodilySymptomsScale(BSS)[22].

The VAMS is composed of 16 items, each item featured

by opposite adjectives, separated by a 100mm line. The

volunteer is asked to draw a dash on the line to

repre-sent his/her current feeling. The scale is composed of four

factors: (a) anxiety (3 items: calm–excited, relaxed–tense;

tranquil–troubled); (b) sedation (2 items: alert–drowsy;

attentive–dreamy); (c) cognitive impairment (7 items: clear

headed–muzzy; energetic–lethargic; gregarious–withdrawn;

proficient–incompetent; quick witted–mentally slow;

strong–feeble, well-coordinated–clumsy), and (d) discomfort

(4 items: amicable–antagonistic; contented–discontented;

happy–sad;interested–bored)[22,23].

TheBSSiscomposedof21itemsthatdescribesomatic

symp-tomsrelated to anxiety: fatigue,weakness,lethargy, headache,

muscletension,tremor,hunger,thirst,coordinationdifficulty,

per-spiration,palpitation,dyspnea,agitation,urinaryurgency,nausea,

drymouth,blurredvision,dizziness,defecationurgency,dysuria

and paresthesia.There aresix possibleresponsesto each item,

whichvaryfrom0(nosymptom)to5(extremelymarked

symp-toms)[22].

2.1.5. Experimentaldesign

For setting habituation, participants wereasked to sit

com-fortablyandrelaxfor15min.Theyweretoldthattheywouldbe

listeningtodifferentscenariovignettes,andthattheyshould

imag-ine(eyesclosed)asiftheywerethemaincharacterofthedescribed

situations.

Eachscenariowasplayedtwice(iPodNano®,AppleInc.),ina

pseudorandomorder.Thescriptslastedfrom12to19s(listening

phase),whichwasfollowedby30sofmentalimagery(imagery

phase).Thevolunteersignaledwiththerighthandthathe/shewas

picturingthescene.Restingintervalsoffiveminuteswereprovided

afterimaginingeachscenario.

VAMSandBSSwerescoredbytheparticipantsbeforethe

lis-teningphaseandattheendoftheimageryphaseforeachscenario.

Thequalityofthegeneratedmentalimage,andthehedonicvalence

andarousalwereassessedimmediatelyaftertheimageryphase.

2.1.6. Dataanalysis

DatawereanalyzedwiththeStatisticalPackageforSocial

Sci-ences(SPSS,version17.0forWindows).Qualityofmentalimagery,

hedonicvalenceandarousal,subjectivemeasures(VAMSandBSS)

weresubmittedtorepeatedmeasuresANOVAwith

Greenhouse-Geissercorrection.Posthoccomparisonswereperformedwiththe

Bonferronicorrection.Scenario(four)andtime(two:before

listen-ingandafterimageryphase)constitutedthewithinfactors.Paired

Student’st-testswereusedforposthoccomparisonswhenthe

sce-nariovs.timeinteractionwassignificant.Valuesofp<0.05were

consideredstatisticallysignificant.

2.2. Results

2.2.1. Hedonicvalenceandarousalandqualityofthemental

imagery

AsseeninFig.1A,thereweresignificantdifferencesregarding

thevalenceattributedtoeachscenario[F(3,50)=62.35,p<0.001].

Pleasantscenariowasperceivedasthemostappetitive(vs.

neu-tral,p<0.001;vs.potentialthreatp<0.001;vs.imminentthreat

p<0.001).Imminentthreatwasdescribedasmoreaversivethan

neutralscenario(p<0.001),andtherewasatrendtosignificant

differencefrompotentialthreat(p=0.059).Neutralscenariowas

significantlymoreappetitivethanpotentialthreat(p=0.007).

Arousalcausedbythementalimagery(Fig.1B)wasalso

signifi-cantlydifferentamongthescenarios[F(2,42)=19.49,p<0.001].Post

hocanalysesshowedthatthesedifferencesstemfrompleasant

sce-nario,whichwasratedbytheparticipantsasthelessexciting,near

theexperienceoffeelingcalm(vs.imminentthreat,p<0.001;vs.

neutralscenario,p=0.028;vs.potentialthreat,p<0.001).

Qualitiesofthescenarioswerewellevaluatedsuggestingthat

thesettingsofthescenarioswereappropriate.AsseeninTable1,

significantdifferenceswerefoundin oneof thesevenassessed

qualitiesofthementalimageryofthescenarios.Allscenarioswere

perceivedaseasilyimagined,detailedandeasilymaintainedalong

withtheexperimentalprocedures.Thereweresomechangesinthe

detailsacrosstime,butthemajorityoftheinformationprovidedby

thescriptwasusedinthementalimageryofthescenarios,which

wereimaginedinmediumsize.Onlytheclarityofthemental

repre-sentationsdifferedsignificantlyamongthescenarios[F(2,45)=4.84,

p=0.009].Theimaginationofthepleasantscenariowasreportedto

besharperthanthescenariowiththepotentialthreat(p=0.025),

andtheimminentthreatwasimaginedmoreclearlythanneutral

situation(p=0.016)andpotentialthreat(p=0.010).

2.2.2. Subjectivemoodmeasures

Fig.1C shows that thescenarios changed subjective anxiety

[F(2,37)=3.77,p=0.03],andthatthesechangesweredependenton

timeandscenario[timevs.scenarioF(1,28)=10.04,p=0.01].Post

hoct-testsshowedadecreaseinanxiety,measuredbyVAMS,after

mentalimageryofthescenariopleasant(p<0.01),andanincrease

afterimminent(p<0.02)andpotentialthreats(p=0.01).

The remaining VAMSfactors are shown in Table 2. Overall,

participantsreportedhigher cognitiveimpairmentsbeforethan

afterimaginingeveryscenario[timeF(1,16)=7.86,p=0.013].

Sce-nariosaffectedfeelingsofdiscomfortdifferently[timevs.scenario

F(2,34)=3.83, p=0.029]. Post hoc t-tests showed that imagining

imminentthreatcausedanincreaseinthefeelingsofdiscomfort

(p=0.031).Therewerenosignificantdifferencesamongthe

scenar-iosregardingthesedationfactor[timeF(1,17)=2.73,p=0.12;time

vs.scenarioF(2,31)=0.10,p=0.89].

Participants alsoscoredin BSSdifferently [time vs.scenario

F(2,35)=3.51, p=0.04]. Imminent threat wasassociated withan

increaseinreportedsomaticsymptomsaftertheimageryphase

(p=0.02;Fig.1D).

3. Neuroimagingexperiment

3.1. Materialsandmethods

3.1.1. Participants

Thirty-six volunteers were initially screened for the study.

Tenwere excludeddue to useofillicit substances [2], medical

conditions [1],useof psychotropic medication[1], useof fixed

orthodonticappliances[1] and impedimentsfor schedulingthe

scanning[5].

Thescanningsessionwasscheduledfor26participants.Five

participantsdidnotattendonthescheduleddateandtwowere

notabletofinishthescanningduetoclaustrophobicreactions.

Nineteen[19]healthyparticipants(12women,26.1±4.3years

old)tookpartinthefMRIexperiment.Theyhad aminimumof

13yearsofformalschoolingand reportednouseofmedication

otherthancontraceptives.Afterexclusionduetoexcessivehead

movements,analysiswasconductedwith16participants.

3.1.2. Experimentaldesign

During image acquisition, participants were asked to stay

awake, still, and as comfortable as possible, with eyes closed

throughouttheexperiment.E-Prime1.1software[24]wasused

(4)

R.Shuhamaetal./BehaviouralBrainResearch313(2016)358–369 361

Fig.1. Subjectiveassessmentofscenarios.Columnsrepresentmeanandbars,standarderrorofthemeanof:(A)Valence(1=unpleasant;9=pleasant).*Pleasantscenario>all.# Imminent<neutralscenario.&Neutral>potentialthreat;(B)Arousal(1=calm;9=excited).*Pleasantscenario<all;(C)SubjectiveanxietyfactoroftheVAMSbefore(empty columns)andafter(filledcolumns)thementalimagerytask.*Before /=aftertoimminent,potentialthreatsandpleasantscenario;(D)Bodilysymptomsbefore(empty columns)andafter(filledcolumns)mentalimagerytask.*Before<aftertoimminentthreat.Falsepositiveprobabilitysetto0.05.

Table1

Subjectivequalitiesattributedbyhealthyvolunteerstomentalimageryscenariosrelatedtoaneutralcontent,apotentialthreat,animminentthreatandapleasantsituation.

Imagequalities Scenarios p

Neutral Potential Imminent Pleasant

Easiness 2.45(0.34) 2.50(0.32) 3.25(0.40) 2.30(0.36) 0.163 Details 3.45(0.40) 3.10(0.31) 4.05(0.37) 3.25(0.26) 0.112 Clarity 2.75(0.34) 2.45(0.25) 3.85(0.41) 3.25(0.35) 0.009 Maintenance 3.00(0.41) 3.05(0.36) 3.35(0.41) 2.65(0.37) 0.448 Changes 3.50(0.46) 3.35(0.37) 4.25(0.42) 3.80(0.46) 0.306 Informationuse 2.55(0.37) 2.40(0.43) 2.65(0.42) 2.40(0.41) 0.864 ImagerySize 7.25(0.42) 6.95(0.36) 7.05(0.41) 7.10(0.40) 0.718

Easiness:1=veryeasy,9=verydifficult;Details:1=highlydetailed,9=withoutanydetail;Clarity:1=verysharp,9=veryvague;Maintenance:1=veryeasy,9=verydifficult; Changes:1=nothingatall;9=dramaticchange;Informationuse:1=allthescript;9=justasmallportionofthescript,Imagerysize:1=verysmall;9=verylarge.Datarepresent mean(standarderrorofthemean).Boldcharacterssignalstatisticallysignificantdifferences.

Table2

ScoresofVAMSsubjectivefactorsofhealthyvolunteersinresponsetomentalimageryscenarios.

VAMSfactors Scenarios p

Neutral Potential Imminent Pleasant

Cognitiveimpairment Before 49.73(0.91) 46.29(1.25) 46.21(1.27) 45.70(1.26) 0.182

After 45.77(1.97) 42.51(1.77) 41.48(1.81) 47.08(1.57)

Discomfort Before 45.21(1.79) 45.22(1.91) 45.09(1.75) 45.32(1.81) 0.029

After 45.26(1.85) 46.00(1.89) 47.23(1.76) 43.59(2.14)

Sedation Before 45.96(1.43) 46.28(1.68) 46.55(1.51) 46.49(1.58) 0.901

After 46.17(1.55) 46.56(1.54) 45.21(1.69) 45.98(1.65)

(5)

describedinthebehavioral experiment.Eachscenariowas pre-sentedfor 15s(listeningphase), followedby amental imagery phase(30s).Inablockdesignparadigm,thescenarioswere pre-sentedinthefollowingorder:neutral(Meeting)–potential(Noise) –imminent(Elevator)– pleasant(Beach). Thissequenceof pre-sentationofthescenarioswasrepeatedthreetimes.Betweenthe presentationofeachscenariotherewasanintervalconsistingof a30-sofmonotonicauditorystimuli,whenletterswerespoken atrandomorder.Thisrestingblockwasalsosetatthebeginning andattheendofthefunctionalrun.TheentirefMRItasksession lastedapproximately20min.Attheendofscanning,wedebriefed thevolunteeraboutimageryexperienceandhedonicvalenceand arousalrating ofeach scenarioas additionalmeasures.We did notincludesubjectivemeasuresduringthefMRIsessioninorder toavoidincreasingthetimeexpendbytheparticipantinsidethe scanner,whichcouldresultinfatigueandinattentivenessonthe task.

3.2. Neuroimagingdataacquisition

Structuraland functionalimageswere acquiredina 3T MRI scanner(Philips, Achieva, The Netherlands), withan 8-channel headcoil.Ahigh-resolutionT1weightedgradientecho3Dsequence wasacquiredwiththefollowing parameters:180sagittal1mm slices,256×256matrix,TR=5.7ms,TE=2.6ms.ThefMRI acquisi-tionusedanEPIsequencewithsoft-toneparameter,whichallowed forcontinuousacquisitionand12dBnoiseattenuation:32axial slices(4mm),80×80 matrix, 240×240mm,TR/TE 2000/30ms, 80◦flipangle.

3.3. Dataanalysis

BehavioraldataatthefMRIexperimentwereanalyzedwithSPSS 17.0.Hedonicvalenceandarousalweresubmittedtorepeated mea-suresANOVAwithGreenhouse-Geisser correctionandposthoc comparisonswithBonferronicorrection.

Functional magnetic resonance imaging data were pre-processed and analyzed using Brain Voyager v. 2.8 (Brain Innovation,Maastricht,Netherlands).Forpre-processing,volumes werecorrectedformotion,slicetime,andspatiallysmoothedwith aGaussianFilter(FWHM=6mm).Threeparticipantsmovedmore than2mmor2◦andwereexcludedfromanalysis.

TheEPIdatasetwasco-registeredwiththeindividual 3DT1 structuralimage,andwerespatiallynormalizedintotheTalairach space[25].Groupanalysisduringtheimageryphasewasperformed

usingrandomeffectsGeneralLinearModel(GLM).Restingblocks

wereusedasbaselinewhensubjectshadjusttolistentolettersin

arandomorder.Thiswassettoavoidprimingandcarry-oneffects

fromonescenariototheother.Also,thiswouldkeeptheauditory

stimulationatbaseline,favoringtheidentificationofrelevantareas

foremotionalprocessingduringtheimageryphase.

Theeffects ofthe taskswereevaluated usinga wholebrain

approachconsideringsixorthogonalcontrasts:potentialthreatvs.

pleasantscenario;imminentthreatvs.pleasantscenario;neutral

scenariovs. pleasant scenario; potential threatvs. neutral

sce-nario;imminentthreatvs.neutralscenario;andimminentthreat

vs.potential threat.Also, a conjunctionanalysis wascalculated

consideringthe imminentthreat as thefirst conditionand the

combinationoftheremainingthreescenariosasthesecond

(immi-nent>potentialthreatplusneutralpluspleasantscenarios).The

statisticalsignificance ofclustersin each contrastwasassessed

usingarandom-effectsmodel.AplugininBrainVoyagerfor

esti-matingCluster-LevelStatisticalThresholdwasusedtocontrolfor

multiplecomparisons. Using Monte Carlo simulation (500

iter-ations), thepluginestimates the ratefor false-discovery (FDR),

Table3

Scoresinsubjectiveevaluationsofhedonicvalenceandarousalbyhealthy volun-teersinresponsetomentalimageryofscenariosindebriefingafterfMRIsession.

Scenarios Valence* Arousal*

Neutral 5.58(0.35) 4.68(0.38) Potential 3.47(0.35) 6.37(0.41) Imminent 2.58(0.51) 7.47(0.43) Pleasant 7.63(0.43) 2.63(0.45)

*Posthocpvalues<0.05toallscenarios.

definingaminimumcluster-sizenecessarytoproduceaneffective

alphasmallerthan5%.

Inordertoassesstheinfluenceofareaspreviouslyidentified

asimportantinthemodulationofsceneryperception,fourbrain

areaswere chosen inthe followingvolumes ofinterest (VOIs):

theanterior cingulatecortex (ACC)(x=±9, y=41, z=8),vmPFC

(x=−1,y=51,z=−1),amygdala(x=±23,y=0,z=−15)andPAG

(x=−6, y=−30,z=−5).Thechoicewasbasedonprevious

non-human[26,27]andhumanstudies[13,14]and,whenneeded,MNI

coordinatesweretransformedintotheTalairachspaceusingBrett

algorithm[28].Aboxwasdrawnaroundeachofthesecoordinates,

whosesizevariedfrom125to719,dependingontheanatomical

locationandthespecificityrequired.Posthocanalysisinspectedfor

changesontheaverage␤-valuesobtainedfromeachoftheseVOIs.

Theanalysiswasseparatelyperformedinthelisteningandimagery

phases,andcomparedeachscenario.Statisticalsignificance was

setforalphasmallerthan5%,correctedformultiplecomparisons

acrossVOIs.

3.4. Results

3.4.1. Hedonicvalenceandarousal

Inlinewiththebehavioralexperiment,significantdifferences

werefoundamongthescenariosforbothvalence[F(2,34)=36.38,

p<0.001] and arousalscales [F(2,36)=38.72,p<0.001](Table3).

Valencescalespointstothepleasantscenarioasthemost

appe-titive(vs.neutral p=0.021;vs.potentialp<0.001;vs.imminent

p<0.001) and imminent threat as the most aversive (vs.

neu-tral p<0.01; vs. potential p=0.053). The scenario neutral was

locatednearthemiddleofthescale,anddifferedfrompotential

(p<0.001).Asforarousal,pleasantwasthelessexciting(vs.

neu-tralp<0.001;vs.potentialp=0.008;vs.imminentp<0.001),and

imminentreceivedthehighestarousalscores(vs.neutralp<0.001;

vs.potentialp=0.032).Neutralwassignificantlylessexcitingthan

potential(p<0.001)(Table3).

3.4.2. Neuroimagingresults

3.4.2.1. Whole−brain contrasts. Whole brain voxel-wise maps

werecalculatedtofurtherexplorespecificbrainareasdepending

onthescenario.InregionswheretheBOLDsignalsweremost

dis-paratebetweenscenarios,wecalculatedthemeanBOLDchange

acrossallvoxelsinthesurvivingcluster(cluster-wisecorrection,

p<0.05). See Table 4 for coordinates and values on significant

regionsofactivationintheproposedorthogonalcontrasts.

Con-trastsbetweenthreateningscenariosinvolvedwidespreadwhole

brainareas,fromfrontaltosubcorticalregions,includingamygdala

andPAG(Figs.2and3).

Weperformedcontrastsbetweenthemostdisparatescenarios

in terms of arousal and valence. Thus, the three first

compar-isonsweremadeagainstproximalthreat(Elevator).Thecontrastof

imminent>potentialthreatrevealedsignificantclusters(p<0.05,

corrected)intherightmiddletemporalgyrus,whiletheinverse

contrast(potential>imminentthreat)indicatedtosignificant

clus-tersintherightsuperioroccipitalgyrus,andintraparietalsulcus

(6)

R.Shuhamaetal./BehaviouralBrainResearch313(2016)358–369 363

Fig.2.BOLDcontrastdeterminedbyimaginingthreatscenarios.Constrastbetweenimaginationofanimminentthreatandotherscenarios.(A)Contrastimminent>potential threats.Theleftsuperiortemporalgyrus(STG)showsgreateractivationduringtheimaginationofimminentthreatthanpotentialthreat(p<0.05,corrected).(B)Contrast imminentthreat>neutral.TheleftSTGshowsgreateractivationduringtheimaginationofimminentthreatthanmeetingcondition(p<0.05,corrected).Also,abrainstem cluster(whichincludesPAG)showhigherlevelofBOLDsignalduringimminentthreatimagining.(C)Contrastimminent>pleasantscenarios.Temporoparietaljunctionand brainstemshowlargesignalcontrast(p<0.01,clustercorrected).Percentsignalchangewascalculatedfromthemeanvariationofsignalacrossallvoxelsinthecluster. Asterisksshowtheconditionsusedinthecontrast.Errorbarsreflectbetween-subjectstandarderror.

(7)

Fig.3.Contrastsdeterminedbyimaginingthreatscenarios,comparinglessthreateningscenarios.(A)Contrastpotential>neutralscenario.Theleftsuperiortemporalgyrus (STG)showsgreateractivationduringtheimaginationofimminentthreatthannoisecondition(p<0.05,corrected).(B)Contrastneutral>pleasant.TheleftSTGshowsgreater activationduringtheimaginationofimminentthreatthanmeetingcondition(p<0.05,corrected).Also,abrainstemcluster(whichincludesPAG)showhigherlevelofBOLD signalduringimminentthreatimagining.(C)Contrastpotentialthreat>pleasant.Temporoparietaljunctionandbrainstemshowlargesignalchange(p<0.01withcluster correction).Percentsignalchangewascalculatedfromthemeanvariationofsignalacrossallvoxelsinthecluster.AsterisksinBOLDsignalchangebargraphsshowthe conditionsbeingcontrasted.Errorbarsreflectbetween-subjectstandarderror.

(8)

R.Shuhamaetal./BehaviouralBrainResearch313(2016)358–369 365

Table4

BOLDsignalchange(%)andt-valuesdependingonthecontrastbetweenscenarios.Positivet-valuesindicatetheclusterissignificantforthefirstscenariointhecomparison. SignalBOLDchangeinpercentagewascalculatedfromthemeanofallvoxelssurvivingcluster-wisecorrection(p<0.05.corrected).

Contrast Brainarea R/L %BOLDchange t-valuecontrast Voxels Talairachcoordinates

Condition1 Condition2 x y z

Imminentvs.potential Superioroccipital gyrus(BA7)

R −0.107 0.030 −3.21 2677 22 −72 31

L Intraparietalsulcus(BA 40)

R −0.105 0.035 −3.23 3624 38 −35 39

L Middletemporalgyrus (BA22)

R 0.292 0.113 3.46 5959 43 −28 2

L Imminentvs.neutral Intraparietalsulcus(BA

39) R −0.139 0.027 −3.48 3050 37 −63 37 L Superiortemporal gyrus(BA22) R 0.268 0.075 3.70 9001 44 −22 −3 L 0.394 0.164 3.52 9541 −57 −33 6 Cerebellum R L 0.086 −0.036 3.34 2341 −18 −43 −20 Occipital(BA18) R L 0.126 −0.047 3.69 3338 −4 −77 4

Brainstem(PAG) 0.122 −0.031 3.53 23,507 −3 −33 −9

Imminentvs.pleasant Inferiorparietallobe (BA40) R −0.136 0 −3.18 2412 44 −33 38 L 0.139 −0.098 3.32 2859 −59 −46 31 Brainstem 0.123 −0.031 3.49 8770 0 −22 −2 Cerebellum R 0.157 0.027 3.47 4946 20 −65 −32 L Middletemporalgyrus (BA21)

R 0.381 0.198 3.57 3653 47 −25 −1

L

Potentialvs.neutral Parahippocampal(BA

19) R L 0.079 −0.049 3.91 6442 −32 −47 −6 Posteriorcingulate gyrus(BA30) R 0.142 −0.049 3.84 3363 17 −59 13 L 0.158 −0.007 3.45 2479 −18 −58 11 0.088 −0.045 3.43 2201 −14 −42 42 Parahippocampal (BA20) R 0.127 −0.023 3.57 1634 24 −40 −16 L

Mid-insula(BA13) R 0.073 −0.061 3.25 1804 37 2 4

L

Neutralvs.pleasant Hippocampus(BA37) R

L −0.027 0.117 −3.64 6314 −30 −35 −12

Lateralinferiorparietal (BA39)

R

L 0.114 −0.041 3.32 1293 −52 −58 29

Inferiorparietallobe (BA40)

R 0.003 −0.159 3.42 3371 48 −56 39

L Potentialvs.pleasant Inferiorparietallobe

(BA40) R L 0.032 −0.115 3.33 2517 −56 −45 34 Imminentvs.other scenarios Brainstem/cerebellum R 0.689 −0.241 2.52 7774 4 −43 −20 L

Medialfrontal(BA32) −0.006 −0.468 2.57 13,908 −13 23 22

PCC(BA29) 0.290 0.704 −2.56 4316 0 −54 11

Temporal(BA21) L 1.243 0.882 −3.50 24,121 −57 −22 −2

R 1.406 1.101 −2.79 15,977 54 −10 −4

L:lefthemisphere;R:righthemisphere;BA:Brodmannarea;Condition1:firstconditioninthecontrast;Condition2:secondconditioninthecontrast.

differentialBOLDsignalactivationinaregionintheleftsuperior temporalgyrus,leftcerebellum,leftoccipital,rightsuperior tem-poralgyrusandbrainstem(PAG/thalamus)(p<0.01,corrected). Theinversecontrast(neutral>imminentthreat) showedgreater activationintherightintraparietalsulcus(Fig.2B).Thethird

con-trastinvolvingproximalthreatcomparedittothemostpleasant

one. Resultingsignificantclusters for imminent>pleasant were

foundinleftinferiorparietallobe,rightmiddletemporal gyrus,

right cerebellum, and brain stem. The inverse contrast

(pleas-ant>imminent threat) showed onecluster in the rightinferior

parietallobe(Fig.2C).Allmapswerecorrectedattheclusterlevel

withtheBrainVoyagerplugin(p<0.05,corrected).

Otherthreecontrastswereperformedtocomparespecific

acti-vationsbetweenless arousingscenarios. Thefirstwaspotential

threat>neutral scenario Significant clusters were found in the

parahippocampalgyrusand inposteriorcingulategyrus

bilater-allyandintherightmid-insula(Fig.3A).Noclusterwasfoundfor

theinversecontrast(neutral>potentialthreat).

The contrast neutral>pleasant revealed clusters in left

lat-eral inferior parietal cortex and in the right inferior parietal

lobe(p<0.05,corrected).Theinversecontrast(pleasant>neutral)

showedasignificantclusterinthelefthippocampus(Fig.3B).

Finally,thecontrast potentialthreat>pleasant scenario

indi-cated one significant cluster in the left inferior parietal lobe

(p<0.05,corrected).

Aconjunctioncontrastwasperformedtotestforregionsthat

weremorestronglyactiveduringimminentthreatthanallother

scenarios(imminent>distalplusneutralpluspleasant).This

con-junctioncontrastshowedsignificantlygreateractivationinbrain

stem, cerebellum and medial frontal (p<0.05, corrected). The

inverse contrastshowed significantclusters in bilateralmiddle

temporal and posterior cingulate cortex. Detailed information

abouttheclustersfoundinthecontrastsandconjunctioncontrast

(9)

Table5

tValuesofcontrastsbetweenscenariopairsduringtheimageryphase.

Brainarea Neutralvs. Pleasant Potentialvs. Pleasant Imminentvs. Pleasant Imminentvs. Neutral Imminentvs. Potential Potentialvs. Neutral

Voxels Talairachcoordinates

x y z ACC L −1.42 0.01 −2.34 −0.85 −2.34 1.35 512 −9 41 8 R −0.42 0.91 −1.54 −1.44 −2.45 0.89 512 9 41 8 vmPFC −2.02 −1.76 −3.35 −1.21 −1.59 0.26 512 −1 51 −1 AMY L −2.51 −0.95 −0.80 1.70 0.17 1.54 125 −23 0 −15 R −3.03 −0.07 −0.77 2.24 −0.68 2.91 125 23 0 −15 PAG 0.29 1.22 4.83 4.37 3.60 0.90 729 −6 −30 −5

L:lefthemisphere;R:righthemisphere;ACC:anteriorcingulatecortex;AMY:amygdala;PAG:periaqueductalgraymatter.Boldcharactersindicatestatisticallysignificant differences(p<0.05uncorrectedorp<0.0013,correctedformultiplecomparisonsacrossVOIs).Thesignalinthistableindicateswhichscenariocontributestothesignificance oftheactivity.Positivesignalsindicatethefirstexperimentalcondition,andnegativevaluestothesecond.

Fig.4.BOLDcontrastdeterminedbyimaginingthreatscenarios.(A)AttenuationofthevmPFCresponseinimminentvs.pleasantcontrast(Talairachx=4,y=51,z=−3). (B)Activationoftherightamygdalaresponseinpotentialvs.neutralcontrast(Talairachx=24,y=−1,z=−22).(C)ActivationofthePAGresponseinimminentvs.pleasant contrast(Talairachx=−6,y=−30,z=−5).(D)IllustrationofPAGtimecourseofpercentageofBOLDsignalchangeasresultoflinearregressionanalysisoflisteningphase (untiltime=0)andimageryphase(aftertime=0).

3.4.2.2. VOIanalysis. VOIanalysisshowedthatimaginationofthe scenariosdidnotchangesignificantlyintheACC,bilaterally,forall contrasts(Table5).SignificantchangeswereobservedinthevmPFC

whenimminentthreatwascontrastedwithapleasantsituation

(Fig.4A;Table5),andalsointherightamygdala,whenpleasant

wascontrastedwithneutralscenario(Table5).

Additionally,therightamygdalashowedagreatersignal

dur-ingtheimaginationofthepotentialthreatscenariothanduring

theneutralscenario(Table2,Fig.4B).Asignificantlygreatersignal

wasobservedinthePAGduringtheimaginationoftheimminent

threatsituationthanduringpleasant(Fig.4C),neutralandpotential

(Table5).

Fig.5showsthebetas(columns)±standarderror(bars)ofthe

VOI-GLManalysesforbothlisteningandimageryphases.

Significantsignalchanges werefoundinACC bilaterally[left

ACC F(23,50)=2.56, p<0.001; right ACC F(23,50)=4.28, p<0.001].

Increasedsignalwasobservedduring listeningtothescenarios

neutralandimminentinbilateralACC(p<0.001).Decreasedsignal

wasfoundduringtheimaginationofbothscenarios(leftACC:

neu-tralp=0.030andimminentp<0.001;rightACC:neutralp=0.017

andimminentp<0.001).

Ventromedial prefrontal cortex [F(23,50)=2.98, p<0.001]

showedapatternsimilartothatofACCregardingactivationswith

thelistening epochfor thescenarios neutral (p=0.002) and of

imminentthreat(p<0.001).Theperiod ofimagininga pleasant

situationalsoelicitedincreasedsignalinthevmPFC(p<0.001).

Atrendtoward significancebetweenthepresentationofthe

(10)

R.Shuhamaetal./BehaviouralBrainResearch313(2016)358–369 367

Fig.5.BetasandstandarderrorsoftheGLManalysesovervariationsoftheBOLDsignaldependingonstimulationphasesineachscenariocondition(neutral,potential, imminentthreatandpleasant)inthelisteningandimageryphases.VOIsselectedwereleftandrightamygdala,ventromedialprefrontalcortex(vmPFC),leftandrightanterior cingulatecortex(ACC)andperiaqueductalgraymatter(PAG).

rightamygdala[F(23,50)=1.51,p=0.055].Posthocanalysesshowed

asignificantincreaseduringthelisteningphaseoftheimminent

threat(p<0.001)andtheimageryphasesofpotential(p<0.001),

imminentthreats(p=0.016)andpleasant(p<0.001).

ChangesinPAGactivitywereobserved[F(23,50)=3,21,p<0.001]

duringthelisteningphasesofthepleasantscenario(p<0.001)and

imminentthreat(p<0.001)andtheimageryphasesofthe

scenar-iospotential(p=0.023)andimminentthreats(p<0.001).Posthoc

analysesshowedasignificantsignalincreaseinthePAGduringthe

imageryphaseoftheimminentthreat,whencomparedtoallother

scenarios(FisherLSDtvalues=2.54,2.04and2.58,p<0.05).

4. Discussion

Whole-brainanalysisshowedthatthemostarousingscenario

(imminent threat) had higher BOLD signal in areas related to

secondaryauditoryprocessing(middletemporalgyrus)when

con-trastedwiththethreeremainingscenarios.Brainstem,cerebellum,

occipitalandinferiorparietalgyriwerespecificallyactivatedfor

proximalthreatscenarioonlywhenitwascontrastedwithneutral

orpleasant.Thisresultseemsplausibleinawaythatonlythese

twoscenariosaredifferentenoughfromproximalthreattoresult

inclustersinthebrainstem(PAGandthalamus)andcerebellum.

Iffromonesidecerebellumisresponsibleformotorplanningand

preparedness,PAGandmorerostralsubcorticalstructures

(tha-lamus) maybe related withresponses toemotionally arousing

stimuli.Asdescribedpreviously,theresultsherecorroboratethe

viewthatinformationtowardsactivationofthePAGoccursasa

functionofthreatproximity[29].Interestingly,inversecontrasts

againstproximalthreatresultedinclustersintherightmultimodal

parietallobesofthebrain,whatcouldsuggesttop-down

modula-tionofintegrativebrainareas.

Assumingthat mentalimageryandactualsituationsactivate

thesamebrainregions[16,30],wepredictedthatimaginationof

aproximalthreatscenariowouldactivatethePAG,whilethatof

potentialthreatwouldactivateforebrainstructures,aspreviously

reportedwithactualthreatsituations[13–15].Ourresultsmeet

thesepredictions.ThePAGshowedhigherBOLDsignalduringthe

processingofasituationrelatedtoimminentandintensethreat

whencomparedwithsituationsrepresentingpotentialthreat,

neu-tralorpleasantcontent.Ontheotherhand,theBOLDresponsein

thevmPFCduringtheimaginationoftheimminentthreatscenario

wassignificantlyreducedincomparisonwiththeBOLDresponse

duringtheimaginationofthepleasantscenario.Theactivityofthe

rightamygdalaalsoincreasedduringtheprocessingofapotential

threatincomparisontoaneutralsituation.

Theabove resultsare inagreementwiththose describedby

Mobbsandco-workersusingactualthreatsituations.Intheirfirst

study,inwhichavirtualpredatorcapableofchasing,capturing,

andinflictingpainpursuedavirtualpreythroughamaze,there

wasanincrease of brainactivityin thevmPFCduring the

pro-cessingofapotentialordistantthreat,butasthethreatbecame

closer,thebrainactivityshiftedtothePAG.Moreover,the

magni-tudeofPAGactivationpositivelycorrelatedwithsubjectivefeelings

ofdreadandnegativelycorrelatedwithfeelingsofconfidence[13].

In a furtherexperiment, it was shown that the anticipationof

anaversiveevent(potentialthreat)increasedtheactivityof

fore-brainstructures,mainlythevmPFC,hippocampus,hypothalamus

andamygdala,whereasimminentthreatelicitedactivitymainly

(11)

aphylogeneticthreat,theresultsshowedthatasatarantulagrew

nearertooneofthesubject’sbarefoot,themagnitudeofsubjective

fearcorrelatedwithincreasedactivityinthePAG,amygdala,and

bednucleusofthestriaterminalis,whereasthevmPFCwas

acti-vatedasthetarantulawasmovedaway[15].However,wedidnot

findahigheractivationofthevmPFCduringthepotentialthreat

scenario,probablybecauseourparadigmwasnotstrongenough

toelicittheactivationpatternobservedinthestudiesdescribed

above,withactualthreatscenarios.

Thepresentlinearmodelpointedtoapositiveresponseofthe

BOLDsignalduringthelisteningphaseoftheimminentthreat

sce-nario,whenthevolunteershadtoplanwhattodotoaddressthe

situationpicturedintheinstructions.Thisoutcomeisinaccordance

withtheroleattributedtothevmPFCofgatheringcontingencyand

contextualinformationand,indirectly,viatheamygdala,of

mod-ulatingthedefensivebehaviorandtheshiftfromforebrainareas

tothemidbrainPAGactivationinmoreintensethreatsituations

[9,14].

Inthesamedirection,duringthelisteningphaseoftheimminent

threatthere wasanincreaseintheBOLDsignalofACC,

bilater-ally,whichmayberelatedtoitsproposedfunctionofmonitoring

goal-directedbehavior,processingstimulusvalence,and

engag-ingattentiontorelevantstimuli[31,32].Duringtheimageryphase,

therewasanegativeBOLDsignalinACC;bilaterally,duringthe

imagerycondition.Thisresultcanbeassociatedtotheproposition

thattheACCismainlyactivatedattheearlystagesofdemanding

tasks,whenitisintegratingsensorialandautonomicinformation

[33].It is interestingtonotethat this patternof hemodynamic

activityintheACCduringtheprocessingofanimminentthreat

wasnotobservedduringtheprocessingofalessintenseandmore

ambiguoussituation.However,asituationsupposedtobeneutral

presentedanalternativepatternofassociation−apositivesignal

duringthelisteningphaseandnegativesignalduringtheimagery

phase.Apossibleexplanationforthisphenomenonisthat even

thoughthesituationisneutral,thescenariorequiredactionsas

answeringthephone andmakingpreparationsfor the

appoint-ment.Incontrast,thewakingupwithavagueanddubiousdistal

noiseinthesecondscenariomaylackthiscalltoactiononspecific

objectsorpeople.

We alsofoundanincreased BOLDsignalin theright

amyg-daladuringtheimaginationphaseofthescenarios,notonlywith

aversivecontent,butalsowithappetitivecontent.Theamygdala

isassociatedwithhedonicvalenceattribution,morespecifically

reward processing [34,35] and also intensity-related activation

[36].Nevertheless,wewerenotabletodiscriminatewhich

amyg-dalarnucleiwouldbeinvolvedinpositiveornegativeemotional

processing due to thelow spatial resolution of the fMRI

tech-niqueused.Inthepresentexperiment,thecommonfactorwasthe

salienceoftheemotionalcontent[37,38]ofthethreescenariosthat

activatedtheamygdala.Accordingly,thebrainactivityoftheright

amygdaladuringtheneutralscenariowassignificantlylowerthan

duringthepleasantscenario.

ThemeaningofthepresentfMRIanalysisisunderscoredbythe

presentassessmentofbehavioralresponsesassociatedwiththe

dif-ferentimaginedscenarios.Supportingthehypothesisthatmental

imageryisasuitableparadigmfortheinvestigationofdefensive

neuralprocessinginhumans,theobtainedresultsshowedthat

dif-ferentnarrativescenariosprovokedexpectedchangesinsubjective

feelingstothescenario’sfeatures, fromneutraland pleasantto

potentialandimminentdanger.

Theratingofqualitiesofthementalimagerytaskshowedthat,

ingeneral,theimageswereeasyandclearlyimagined,visualizedas

mediumsizedpictures.Moreover,thetaskofassumingactionsto

specificsituationswasevaluatedaseasytoperform,with

preserva-tionofthecontentofthenarratives.Theseresultsarecomparableto

previouslyreportedobservationswithasimilarparadigmof

con-specificconfrontationscenariosshowingareductionin cerebral

bloodflowinvmPFCduringtheimaginationofadefensiveattack

behavior[19].Interestingly,thescenariosselectedtorepresentthe

extremesofthehedonicvalencecontinuum(pleasantscenariovs.

imminentthreat) weretheonesimaginedwithbestclarity.The

engagementofthevolunteerswiththetaskwasalsosuccessfully

evaluated,basedonthereportedreductionincognitiveimpairment

aftertheimageryphase,independentlyofthescenario,andwith

noincreaseinsedation.

AccordingtoLang etal.[6],thescenarios wereevaluatedin

termsofhedonicvalence,andarousal.Overall,althoughthe

differ-encesinthesubjectiveresponsesforthedifferentscenarioswere

mild,ourfindingsdrawa gradientofthreat,froma neutral

sit-uationtoanintensethreat,withamoderatethreatplacedatan

intermediate position;totheopposite directionwasa pleasant

and calmingscenario.Thisgradient wassupportedbythedata

regardingsubjectiveanxiety.Boththreateningsituationsstudied

–thedistal/potentialscenarioand theproximaland high

mag-nitudethreatscenario–wereabletoincreasesubjectiveanxiety.

However,complaintsaboutdiscomfortandsomaticsymptomsof

anxietyweresignificantlyincreasedonlyaftertheimminentthreat,

mostlikely becauseitrepresentsa threatthatdemands urgent

responses.Inthepreviousvalidationstudiesoftheseaversive

sce-narios[4,5,39],thefirstchoiceresponseforthisscenariowasto

attack,coherentwiththeevaluationofthehighestmagnitudeof

threat,lowestpossibilityofescapeandlowestpossibilityof

find-ingahidingplace.Ontheotherhand,thefirstchoiceresponsefor

themostambiguousscenariowastocheckoutthesituation,which

correspondstotheriskassessmentbehaviorobservedinrodents.

Thisstudyhasseverallimitations:thesamplesizeofboth

exper-imentswassmall,andwomenwerethemostwhovolunteeredto

participate,moreover,withoutcontrolforthephaseofthe

men-strualcycle;thenwemustbecarefulingeneralizingtheresultsto

otherpopulations.TheBlanchards’scenariosareatoolresulting

froma composite offive dimensions influencingthreat

evalua-tion,notbeingourintent,inordertomaintainitsconstructand

itsecologicalvalidity,toisolateonlyoneofthem[40].However,

weintroducedanewfactor,theprosodyintheauditorystimuli,

intentionallychosentoincreaseemotionalengagementofsubjects.

Thechoiceofsingleprototypicalscenariosofproximaland

dis-talthreatimpliesrestrictiontothegeneralization,butitwasdone

becauseofthecomplexityofthefMRIexam.Wetriedtoavoidvery

longdatacollectionthatincreasesthechanceofheadmovements

andfatigue.Wealsodidnotcheckforordereffectofscenario

pre-sentationinthebehavioralandfMRIparadigms.Asanexploratory

study,ordertesting wouldextendexcessivelytheexperimental

sessionordemandabiggersample.Oncethedecisionofnot

pro-longingthefMRItaskwastaken,thescenarioswerepresentedin

afixedsequence.Wehopedthattheintervalbetweentwo

scenar-iosusedwassufficienttodisengagethevolunteerandpreventa

carry-overeffectfromonesituationtothenext,especiallyfrom

potentialtoimminentthreat.Evenso,werecognizetheneedto

testordereffectinfuturestudies.Finally,thefMRItechniqueused

hasrelativelylowspatialresolution,whatcouldraisesome

criti-cismonproblemsofVOIsizes,spatialfilterrangeandanatomical

location.ThispointcouldbeespeciallyrelevantintheePAG.

Nev-ertheless,eventhoughsomeresultsintheVOIsanalysisarenot

coincidentwithpreviousresults[13,41],ourwhole-braincontrast

mapsindicatethattheclustersshowingdifferentialactivitiesare

inPAG,chieflyintheproximalthreatcondition.

4.1. Conclusion

Inspiteoftheseshortcomings,thepresentresultsshow,toour

knowledgeforthefirsttime, thatimaginaryscenariosof

(12)

R.Shuhamaetal./BehaviouralBrainResearch313(2016)358–369 369

fearandanxietynotasstrongasbutinthesamewayasactual

threatsituations[13–15],and,inbothcases,theactivationpattern

wasconsistentwiththatreportedinnon-humanspecies.

There-fore,thepresentresultsindicatethatneuralprocessingofrelevant

behavioralprocessescanbestudiedinhumansubjectsusing

men-talimagery,obviatingtheethicalandpracticallimitationsofreal

threatsituations. Onceit is knownthat differentmental

disor-dersembodydisturbanceinthedefensivesystem,futureresearch

investmentsmightdisentanglethedimensionsinfluencingofthe

agonistencounterthatcomposethethreatintensity,asdistance,

andshedlightonspecificcontributiontothedefensiveprocessing.

Becauseanxietyandfeardisordersarelikelytoinvolve

dysfunc-tionofbrainstructuresthatcontroldifferentdefensestrategies,

suchstudiesarelikelytoenhanceourunderstandingofthe

patho-physiologyofthesedisorders.

Acknowledgements

ThisstudywassupportedbyFundac¸ãodeAmparoàPesquisa

do EstadodeSãoPaulo(FAPESP-2007/03685-3).DBA,ACS,FGG

andCMDBaresupportedbyresearchfellowshipsfromConselho

Nacional de Desenvolvimento Científico e Tecnológico. RS and

CRaresupportedbyFAPESP.Theauthorsdeclarenocompeting

financialinterests.Thefundershadnoroleinstudydesign,data

collectionandanalysis,decisiontopublish,orpreparationofthe

manuscript.

References

[1]D.C.Blanchard,G.Griebel,R.J.Blanchard,Mousedefensivebehaviors: pharmacologicalandbehavioralassaysforanxietyandpanic,Neurosci. Biobehav.Rev.25(May(3))(2001)205–218.

[2]R.J.Blanchard,K.J.Flannelly,D.C.Blanchard,Defensivebehavioroflaboratory andwildRattusnorvegicus,J.Comp.Psychol.100(June(2))(1986)101–107.

[3]R.J.Blanchard,M.A.Hebert,P.F.Ferrari,P.Ferrari,P.Palanza,R.Figueira,etal., Defensivebehaviorsinwildandlaboratory(Swiss)mice:themousedefense testbattery,Physiol.Behav.65(November(2))(1998)201–209.

[4]D.C.Blanchard,A.L.Hynd,K.A.Minke,T.Minemoto,R.J.Blanchard,Human defensivebehaviorstothreatscenariosshowparallelstofear-and anxiety-relateddefensepatternsofnon-humanmammals,Neurosci. Biobehav.Rev.25(December(7–8))(2001)761–770.

[5]R.Shuhama,C.Del-Ben,S.Loureiro,F.Graeff,Defensiveresponsestothreat scenariosinBraziliansreproducethepatternofHawaiianAmericansand non-humanmammals,Braz.J.Med.Biol.Res.41(April(4))(2008)324–332.

[6]P.J.Lang,M.M.Bradley,B.N.Cuthbert,Emotion,motivation,andanxiety:brain mechanismsandpsychophysiology,Biol.Psychiatry44(December(12)) (1998)1248–1263.

[7]A.M.Perkins,P.J.Corr,Reactionstothreatandpersonality:psychometric differentiationofintensityanddirectiondimensionsofhumandefensive behaviour,Behav.BrainRes.169(April(1))(2006)21–28.

[8]A.P.Carobrez,K.V.Teixeira,F.G.Graeff,Modulationofdefensivebehaviorby periaqueductalgrayNMDA/glycine-Breceptor,Neurosci.Biobehav.Rev.25 (December(7–8))(2001)697–709.

[9]J.F.Deakin,F.G.Graeff,5-HTandmechanismsofdefence,J.Psychopharmacol. 5(January(4))(1991)305–315.

[10]N.McNaughton,P.J.Corr,Atwo-dimensionalneuropsychologyofdefense: fear/anxietyanddefensivedistance,Neurosci.Biobehav.Rev.28(May(3)) (2004)285–305.

[11]V.Magierek,P.L.Ramos,N.G.daSilveira-Filho,R.L.Nogueira,J.

Landeira-Fernandez,Contextfearconditioninginhibitspanic-likebehavior elicitedbyelectricalstimulationofdorsalperiaqueductalgray,NeuroReport 14(August(12))(2003)1641–1644.

[12]L.J.Bertoglio,H.Zangrossi,Involvementofdorsolateralperiaqueductalgray N-methyl-d-asparticacidglutamatereceptorsintheregulationofrisk assessmentandinhibitoryavoidancebehaviorsintheratelevatedT-maze, Behav.Pharmacol.17(November(7))(2006)589–596.

[13]D.Mobbs,P.Petrovic,J.L.Marchant,D.Hassabis,N.Weiskopf,B.Seymour, etal.,Whenfearisnear:threatimminenceelicitsprefrontal-periaqueductal grayshiftsinhumans,Science317(August(5841))(2007)1079–1083.

[14]D.Mobbs,J.L.Marchant,D.Hassabis,B.Seymour,G.Tan,M.Gray,etal.,From threattofear:theneuralorganizationofdefensivefearsystemsinhumans,J. Neurosci.29(September(39))(2009)12236–12243.

[15]D.Mobbs,R.Yu,J.B.Rowe,H.Eich,O.FeldmanHall,T.Dalgleish,Neural activityassociatedwithmonitoringtheoscillatingthreatvalueofatarantula, Proc.Natl.Acad.Sci.U.S.A.107(November(47))(2010)20582–20586.

[16]D.Sabatinelli,P.J.Lang,M.M.Bradley,T.Flaisch,Theneuralbasisofnarrative imagery:emotionandaction,Prog.BrainRes.156(2006)93–103.

[17]E.P.Vianna,N.Naqvi,A.Bechara,D.Tranel,Doesvividemotionalimagery dependonbodysignals?Int.J.Psychophysiol.72(April(1))(2009)46–50.

[18]P.J.Lang,M.M.Bradley,B.N.Cuthbert,Internationalaffectivepicturesystem (IAPS):affectiveratingsofpicturesandinstructionmanual,Gainesville, TechnicalReport,A-6(2005).

[19]P.Pietrini,M.Guazzelli,G.Basso,K.Jaffe,J.Grafman,Neuralcorrelatesof imaginalaggressivebehaviorassessedbypositronemissiontomographyin healthysubjects,Am.J.Psychiatry157(November(11))(2000)1772–1781.

[20]H.Norris,Theactionofsedativesonbrainstemoculomotorsystemsinman, Neuropharmacology10(March(21))(1971)181–191.

[21]A.W.Zuardi,I.G.Karniol,Estudotransculturaldeumaescaladeauto-avaliac¸ão paraestadossubjetivos,J.Bras.Psiquiatr.31(5)(1981)403–496.

[22]A.W.Zuardi,F.S.Guimarães,A.C.Moreira,Effectofcannabidiolonplasma prolactin,growthhormoneandcortisolinhumanvolunteers,Braz.J.Med. Biol.Res.26(February(2))(1993)213–217.

[23]A.C.Parente,C.Garcia-Leal,C.M.Del-Ben,F.S.Guimarães,F.G.Graeff, Subjectiveandneurovegetativechangesinhealthyvolunteersandpanic patientsperformingsimulatedpublicspeaking,Eur.Neuropsychopharmacol. 15(December(6))(2005)663–671.

[24]W.Schneider,A.Eschman,A.Zuccolotto,E-PrimeUser’sGuide,Psychology SoftwareToolsInc.,Pittsburcg,2002.

[25]J.Talairach,P.Tournoux,Co-PlanarStereotaxicAtlasoftheHumanBrain, 3-DimensionalProportionalSystem:AnApproachtoCerebralImaging, ThiemeMedical,NewYork,1988.

[26]E.F.Carvalho-Netto,C.Markham,D.C.Blanchard,R.L.Nunes-de-Souza,R.J. Blanchard,Physicalenvironmentmodulatesthebehavioralresponses inducedbychemicalstimulationofdorsalperiaqueductalgrayinmice, Pharmacol.Biochem.Behav.85(September(1))(2006)140–147.

[27]R.K.Butler,A.C.Sharko,E.M.Oliver,P.Brito-Vargas,K.F.Kaigler,J.R.Fadel, etal.,Activationofphenotypically-distinctneuronalsubpopulationsoftherat amygdalafollowingexposuretopredatorodor,Neuroscience175(February) (2011)133–144.

[28]M.Brett,K.Christoff,R.Cusack,J.Lancaster,UsingtheTalairachatlaswiththe MNItemplate,Neuroimage1(2001).

[29]E.J.Hermans,M.J.Henckens,K.Roelofs,G.Fernández,Fearbradycardiaand activationofthehumanperiaqueductalgrey,Neuroimage66(February) (2013)278–287.

[30]E.A.Holmes,A.Mathews,Mentalimageryinemotionandemotional disorders,Clin.Psychol.Rev.30(April(3))(2010)349–362.

[31]P.Kanske,S.A.Kotz,Effortfulcontrol,depression,andanxietycorrelatewith theinfluenceofemotiononexecutiveattentionalcontrol,Biol.Psychol.91 (September(1))(2012)88–95.

[32]P.G.Gasquoine,Localizationoffunctioninanteriorcingulatecortex:from psychosurgerytofunctionalneuroimaging,Neurosci.Biobehav.Rev.37 (March(3))(2013)340–348.

[33]C.S.Weston,Anothermajorfunctionoftheanteriorcingulatecortex:the representationofrequirements,Neurosci.Biobehav.Rev.36(January(1)) (2012)90–110.

[34]M.G.Baxter,E.A.Murray,Theamygdalaandreward,Nat.Rev.Neurosci.3 (July(7))(2002)563–573.

[35]P.H.Janak,K.M.Tye,Fromcircuitstobehaviourintheamygdala,Nature517 (January(7534))(2015)284–292.

[36]L.Bonnet,A.Comte,L.Tatu,J.L.Millot,T.Moulin,E.MedeirosdeBustos,The roleoftheamygdalaintheperceptionofpositiveemotions:anintensity detector,Front.Behav.Neurosci.9(2015)178.

[37]A.B.Fernando,J.E.Murray,A.L.Milton,Theamygdala:securingpleasureand avoidingpain,Front.Behav.Neurosci.7(2013)190.

[38]D.J.Hayes,N.W.Duncan,J.Xu,G.Northoff,Acomparisonofneuralresponses toappetitiveandaversivestimuliinhumansandothermammals,Neurosci. Biobehav.Rev.45C(September)(2014)350–368.

[39]D.C.Blanchard,G.Griebel,R.Pobbe,R.J.Blanchard,Riskassessmentasan evolvedthreatdetectionandanalysisprocess,Neurosci.Biobehav.Rev.35 (March(4))(2011)991–998.

[40]D.C.Blanchard,G.Griebel,R.Pobbe,R.J.Blanchard,Riskassessmentasan evolvedthreatdetectionandanalysisprocess,Neurosci.Biobehav.Rev.35 (March(4))(2011)991–998.

[41]J.T.Buhle,H.Kober,K.N.Ochsner,P.Mende-Siedlecki,J.Weber,B.L.Hughes, etal.,Commonrepresentationofpainandnegativeemotioninthemidbrain periaqueductalgray,Soc.Cogn.Affect.Neurosci.8(August(6))(2013) 609–616.

Referências

Documentos relacionados

financeiras, como ainda por se não ter chegado a concluo entendimento quanto à demolição a Igreja de S. Bento da Ave-Maria, os trabalhos haviam entrado numa fase

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

É nesta mudança, abruptamente solicitada e muitas das vezes legislada, que nos vão impondo, neste contexto de sociedades sem emprego; a ordem para a flexibilização como

The fourth generation of sinkholes is connected with the older Đulin ponor-Medvedica cave system and collects the water which appears deeper in the cave as permanent

Este relatório relata as vivências experimentadas durante o estágio curricular, realizado na Farmácia S.Miguel, bem como todas as atividades/formações realizadas

Afinal, se o marido, por qualquer circunstância, não puder assum ir a direção da Família, a lei reconhece à mulher aptidão para ficar com os poderes de chefia, substituição que