• Nenhum resultado encontrado

Aços Planos Aplicados na Indústria Automobilística

N/A
N/A
Protected

Academic year: 2021

Share "Aços Planos Aplicados na Indústria Automobilística"

Copied!
23
0
0

Texto

(1)
(2)
(3)

3

Objetivo do Processo de Zincagem

ZINCAGEM

Resistência

à

Corrosão

Camada de Proteção

Revestimento de Zinco

Facilidade de ligação

metalúrgica do Zn ao

aço base. Sistema aço

e zinco perfeitamente

integrado.

(4)
(5)

5

Recozimento



Laminado a frio

(6)

Pote de Zn e Navalha de Ar

Galvanizado Comum

x Zinco-Ferro

Sink roll

Snout

Navalhas

de Ar

Rolo

corretor

Rolo

estabilizador

Pote de

Zn

(7)

7

Pote de Zn e Navalha de Ar

Componentes do pote



sink roll



rolo estabilizador



rolo corretor



braços e buchas

(8)

Navalha de Ar

Variáveis:



Velocidade (v - velocidade da Seção de Processo)



Pressão



Distância em relação à tira (d)



Altura em relação ao banho (h)



Ângulo de inclinação da navalha

(9)

9

Aspecto Superficial

CHAPA ZINCADA

CRISTAIS NORMAIS

CHAPA ZINCADA

CRISTAIS MINIMIZADOS

(LEAD FREE)

GALVANNEALED

(10)

Forno de Galvanneal



Realiza o reaquecimento da tira, agora já revestida

com Zn, com objetivo de promover a difusão do

Fe

do

aço base no revestimento de Zn.

Revestimento passa a ser uma liga Zn-Fe.



Temperatura de aquecimento: por volta de 470 °C.

Aquecimento

Encharque

(11)

11

BZ x BGA

 BZ %Al ~ 0,17 @ 0,19 %  BGA %Al ~ 0,13 @ 0,14 %

Al-Fe-(Zn)

ηηηη

Fe

ζζζζ −−−−

zeta

δδδδ −−−−

delta

ΓΓΓΓ −−−−

gama

Fe

Pote de Zn

fases propriedades

ΓΓΓΓ(gama) δδδδ(delta) ζζζζ(zeta) η(eta)

Fórmula do composto Fe3Zn10 FeZn7 FeZn13 Zn

Conteúdo Fe (% de peso) 24,0 ~ 31,0 8,5 ~ 13,0 6,7 ~ 7,2 0

(12)

Laminador de Encruamento



P: For

ç

a de lamina

ç

ão;



T: Tensão da tira;



ε

: Alongamento:

ε

= (L

2

- L

1

)x100% / L

1;



L

1

: comprimento inicial;

(antes da lamina

ç

ão);



L

2

: comprimento final

(ap

ó

s a lamina

ç

ão).

(13)

13

Curva tensão x deformação



Limite de Escoamento: Ponto definido como sendo a tensão a partir da qual o aço passa a assumir deformações

permanentes (plásticas);



Ausência de Patamar: Ausência de região de perturbação da tensão próxima ao limite de escoamento que gera

deformações diferenciadas para aproximadamente uma mesma tensão, resultando em estrias e quebras durante

estampagem. Muito crítico em materiais ricos em carbono e elementos de liga (intersticiais);



Limite de Resistência: Ponto definido como sendo a tensão a partir da qual o aço assume deformações desuniformes até

sua ruptura

.

0

50

100

150

200

250

300

350

400

0

2

6

8

10

12

14

16

18

0

50

100

150

200

250

300

350

400

0

2

6

8

10

12

14

16

18

Limite de

Escoamento

Limite de

Resistência

Ausência de

Patamar

(14)

Anterior

Meio de transporte

Fabricação com custo

competitivo

Segurança

regulamentadas

Atualmente

Indicador de status com maior exigência de conforto

e desempenho

Fabricação com custo competitivo, porém com maior

nível de qualidade.

Segurança como diferencial da marca: deve ser

superadas em cada novo modelo

Fabricado ecológicamente: ex: peso reduzido para

reduzir consumo (ecologia e economia)

Expectativa dos Consumidores

Algumas mudanças nas exigências dos consumidores

(15)

Redução do Carbono

0,04% ----> <0,004%

Adição de Ti e/ou Nb

Famílias de aços:

• Aços doces para estampagem: Aços IF (interticial Free) aços de grande

estampabilidade

(16)

Famílias de aços:

•Aços ao Boro (hot stamping): aços para tratamento térmico executado

durante a conformação a quente, resultando em 100% martensita

(17)

03

Perpectivas Futuras e Aplicações Renault

(18)
(19)
(20)
(21)

 Artigo da SAE International.  P. info.

 Att., Nicole. 

 Even Lotus considers high-strength steel a lightweight option 06-Jul-2010 13:43 GMT



 Lotus Engineering conducted a study replacing mild steels with high-strength steels in the body in white (BIW) of a crossover utility vehicle—a 2009 Toyota Venza. The HSS-intensive BIW (shown) was about 16% lighter—and 2% cheaper.

 “Some of you are probably wondering what Lotus is doing at a steel seminar,” Lotus Engineering’s Senior Technology Specialist said to begin his presentation at the recent Great Designs in Steel (GDIS) seminar in Livonia, MI. “The overriding mission for Lotus Engineering is basically performance through light weight. It’s not performance through intensive use of aluminum or nonferrous materials, it’s not performance through carbon fiber, and it’s not performance through

composites…but performance through lightweight materials.”

 For example, the current Lotus Elise and Exige production cars use high-strength steel (HSS) for the rear bulkhead—which is saying something considering that even the automaker’s cup holder is machined from billet aluminum and includes some carbon fiber, noted Gregory Peterson.

 “High-strength steel was the best material from a cost standpoint, a functional standpoint, as well as from a mass standpoint for this particular application,” he said. “It certainly has great applications for many vehicles especially for the near term.”

 Peterson presented a study at GDIS that was a subset of a broader study recently published by the International Council on Clean Transportation, which addressed both long-term and near-term scenarios. The near-term scenario—defined as production-ready in 2017 with a 2014 technology-readiness level—involved replacing mild steel with HSS in a crossover utility vehicle’s all-steel body in white (BIW).

 A 2009 Toyota Venza was selected for the analysis. The target was to reduce overall BIW mass by 20%, with a 20% plus cost allowance for the BIW piece cost, while using equivalent manufacturing and assembly processes. “What we also did on a component and subsystem level was not define any constraints. In other words, we could have used magnesium, titanium, carbon fiber—and that’s one of the more interesting aspects of this study, what we ended up with,” Peterson said.

 Spectrometer analysis was performed on the BIW to categorize the steel types, and a bill of materials was created—a total of 419 parts for the all-steel BIW.

Dimensional and volumetric targets were kept identical—so from a NHTSA standpoint, the HSS-intensive vehicle was the same as the baseline vehicle, according to Peterson.

 The baseline BIW mass was determined to be 382.5 kg (843.3 lb). Its material breakdown consisted of 8% high-strength steel (DP 590), 2% Quiet Steel, 12% interstitial-free mild steel (IFMS), and 78% cold-rolled mild steel (CRMS). The HSS-intensive BIW (about 89% HSS) ended up weighing just shy of 325 kg (716.5 lb)—about a 16% mass reduction. The underbody floor alone went from roughly 114 kg (251 lb) on the baseline crossover vehicle to about 94 kg (207 lb).

 The material balance consisted of 5% mild steel, 2% magnesium, and 4% paint/NVH materials.

 “We ended up using steel for all panels to ensure manufacturing compatibility,” Peterson said. “The interesting thing was that we also ended up with about a 2% cost saving.”

 The mass reduction came solely from gauge-thickness reductions; there were no design changes, he said.

 Peterson conceded that some weight might have to be added back in for NVH characteristics due to the switch to thinner gauge HSS. He also noted that repairability could be more difficult with such a high amount of HSS, but that those issues were outside the scope of this study.

 So the question becomes, is 89% HSS for a production BIW feasible in the near term? Peterson answered this question by referencing the 2010 Mercedes-Benz E-Class, which reportedly uses 72% HSS. “The bottom line is that’s a 2.4% per year increase in high-strength steel to go from 72% today to 89% in the 2017 time frame,” he said. “So we think it’s a fairly conservative value.”

 Peterson concluded that a greater than 10% mass reduction by switching from mild steel to HSS appears feasible “based on the conservative estimates that we use, at near or little plus cost to the BIW structure.”

 So look for Lotus to continue incorporating some HSS components into its sports cars—but likely not for the cup holder.

 Ryan Gehm

Com o uso intensivo de aços de alta resistência:

-Redução em 10% o peso da carroceria

(22)

No Brasil:

-No geral, projetos mais “antigos”



Menor utilização de

aços alta resistência.

-Tendência de maior aplicação de aços de alta resistência

com maior com a produção local destes aços (melhor preço

e logística)

- Usinas no Brasil:

- Arcelor Mittal (São Francisco do Sul - SC)

- Usiminas (Ipatinga - MG e Cubatão- SP)

- CSN/ Galvasud (Volta redonda/ Porto Real- RJ)

- Usinas na Argentina:

(23)

Referências

Documentos relacionados

The present study aims to characterize ultraine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and

The super martensitic steel in the rerolled condition showed a higher corrosion resistance than the rolled steel in an aqueous solution of 35 g/L NaCl and in

A presente dissertação tem dois objetivos principais: entender a razão pela qual a presença de peças esquiroladas é constante ao longo das várias fases do Paleolítico

Logo, não há um cálculo ou formula que determine como será essa transição e adaptação, considerando que até os alunos tornaram-se habituados à transferência de conteúdo.

To evaluate anisotropy effects in steel plates, two directions of the weld bead were considered: Welding was performed in both parallel and transversal direction of rolled steel

Hence, an attempt has been made to use an organic dye, as corrosion inhibitor for corrosion of mild steel in acid media and thus, the present study describes corrosion

O objetivo deste artigo é avaliar a cobertura vegetal da Serra do Congo e da Serra da Capivara, verificando as áreas com maior ocorrência de estresse hídrico, através da avaliação