• Nenhum resultado encontrado

Short course: Optimality Conditions and Algorithms in Nonlinear Optimization

N/A
N/A
Protected

Academic year: 2022

Share "Short course: Optimality Conditions and Algorithms in Nonlinear Optimization"

Copied!
52
0
0

Texto

(1)

Short course: Optimality Conditions and Algorithms in Nonlinear Optimization

Part III - Constraint Qualifications

Gabriel Haeser

Department of Applied Mathematics Institute of Mathematics and Statistics

University of São Paulo São Paulo, SP, Brazil

Santiago de Compostela, Spain, October 28-31, 2014

www.ime.usp.br/∼ghaeser Gabriel Haeser

(2)

Outline

Part I - Introduction to nonlinear optimization Examples and historical notes

First and Second order optimality conditions Penalty methods

Interior point methods Part II - Optimality Conditions

Algorithmic proof of Karush-Kuhn-Tucker conditions Sequential Optimality Conditions

Algorithmic discussion

Part III - Constraint Qualifications Geometric Interpretation

First and Second order constraint qualifications Part IV - Algorithms

Augmented Lagrangian methods Inexact Restoration algorithms Dual methods

www.ime.usp.br/∼ghaeser Gabriel Haeser

(3)

The general optimization problem

Minimize f(x)

Subject to hi(x) =0, i∈ I ={1, . . . ,m}

gj(x)≤0, j∈ J ={m+1, . . . ,m+p},

f,hi,gj :Rn→Rare continuously differentiable.

Feasible set:

Ω ={x|hi(x) =0, i∈ I, gj(x)≤0, j∈ J }

Set of indexes of active inequality constraints:

A(x) ={j∈ J |gj(x) =0}.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(4)

Optimality conditions

xsolution⇒optimality condition Examples:

xis feasible

xis a local minimizer Desirable characteristics:

Strong Easy to verify

Associated to the convergence of algorithms

www.ime.usp.br/∼ghaeser Gabriel Haeser

(5)

Optimality conditions

Sequential optimality conditions:

xis a local minimizer⇒there exists a sequencexk →xsuch thatP({xk}).

Punctual optimality conditions:

local minimizer⇒KKT or not-CQ.

Weaker Constraint Qualifications (CQ) generate stronger optimality conditions.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(6)

Feasible set

www.ime.usp.br/∼ghaeser Gabriel Haeser

(7)

The tangent cone

www.ime.usp.br/∼ghaeser Gabriel Haeser

(8)

Geometric optimality condition

www.ime.usp.br/∼ghaeser Gabriel Haeser

(9)

Geometric optimality condition

Ifxis a local solution, then

−∇f(x)0d≤0, ∀d ∈ T(x),

where thetangent cone inxis T(x)def=

( d ∈Rn

∃xk∈Ω, xk →x

xk−x

kxk−xkkdkd )

∪ {0}.

Alternatively, the geometric optimality condition can be written as:

−∇f(x)∈ T(x),

whereT(x)={v∈Rn|v0d≤0, ∀d∈ T(x)}is the polar of T(x).

www.ime.usp.br/∼ghaeser Gabriel Haeser

(10)

Geometric optimality condition

The tangent cone is not easy to be computed, nor is its polar.

But the tangent cone can be approximated by thelinearized cone

F(x)def= {d| ∇hi(x)0d=0, i∈ I, ∇gj(x)0d≤0, j∈ A(x)}.

Its polar can be easily computed:

F(x) =

v|v=X

i∈I

λi∇hi(x) + X

j∈A(x)

µj∇gj(x), µj ≥0

 .

www.ime.usp.br/∼ghaeser Gabriel Haeser

(11)

T (x) = F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(12)

T (x) = F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(13)

T (x) 6= F (x), T(x)

= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(14)

T (x) 6= F (x), T(x)

= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(15)

T (x) 6= F (x), T(x)

= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(16)

T (x) 6= F (x), T(x)

= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(17)

T (x) 6= F (x), T(x)

= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(18)

T (x) 6= F (x), T(x)

= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(19)

T (x) 6= F (x), T(x)

6= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(20)

T (x) 6= F (x), T(x)

6= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(21)

T (x) 6= F (x), T(x)

6= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(22)

T (x) 6= F (x), T(x)

6= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(23)

T (x) 6= F (x), T(x)

6= F (x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(24)

Karush-Kuhn-Tucker (KKT) condition

Under the condition thatT(x) =F(x), the geometric optimality condition is:

−∇f(x)∈ F(x) =

v|v=X

i∈I

λi∇hi(x) + X

j∈A(x)

µj∇gj(x), µj ≥0

 ,

that is,

∇f0(x) +X

i∈I

λi∇hi(x) + X

j∈A(x)

µj∇gj(x) =0, µj≥0.

a suficient condition:{∇hi(x)}i∈I ∪ {∇gj(x)}j∈A(x)is linearly independent.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(25)

Constraint qualifications

A Constraint Qualification (CQ) is a condition around a feasible pointxon the functions that define the feasible set in such a way that the KKT condition holds wheneverxis a local solution (for every objective functionf).

The condition

T(x)=F(x). (Guignard, 1969) Is the weakest possible CQ (Gould e Tolle, 1971), in the sense that ifxis a KKT point for each objective functionf that takes a local minimum atx(subject tox∈Ω), then Guignard CQ holds.

But Guignard CQ is to weak for practical applications, in the sense that a practical algorithm that converges to a KKT point assuming only Guignard CQ is not known.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(26)

Constraint qualifications

KKT is not an optimality condition without an additional assumption on the problem:

Minimize x Subject to x2 =0

KKT:1+λ0=0

www.ime.usp.br/∼ghaeser Gabriel Haeser

(27)

Constraint qualifications

Linear Independence Constraint Qualification (LICQ) - Regularity

{∇hi(x)}mi=1∪ {∇gj(x)}j∈A(x)is linearly independent or

∀I⊂ {1, . . . ,m},∀J⊂A(x)

{∇hi(y)}i∈I∪ {∇gj(y)}j∈Jis linearly independent ∀y∈N(x) Avoid the existance of a sequence of linearly independent gradients, that are linearly dependent in the limit.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(28)

Constraint qualifications

Constant Rank Constraint Qualification (CRCQ, Janin 1984)

∀I⊂ {1, . . . ,m},∀J⊂A(x)

If{∇hi(x)}i∈I∪ {∇gj(x)}j∈Jis linearly dependent, then {∇hi(y)}i∈I∪ {∇gj(y)}j∈Jis linearly dependent ∀y∈N(x) Example: Linear constraints

www.ime.usp.br/∼ghaeser Gabriel Haeser

(29)

Constraint qualifications

Givenu1, . . . ,um+p inRn, we say that

((u1, . . . ,um),(um+1, . . . ,um+p))is positive-linearly dependent if there existα1, . . . , αm+psuch that:

α1, . . . , αm+pare not all zero;

αm+1≥0, . . . , αm+p ≥0;

m+p

X

i=1

αiui =0.

Otherwise we say that((u1, . . . ,um),(um+1, . . . ,um+p))is positive-linearly independent.

Note that: linearly independent⇒positive-linearly independent.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(30)

Constraint qualifications

Mangasarian-Fromovitz Constraint Qualification (MFCQ, 1967) {∇hi(x)}mi=1,{∇gj(x)}j∈A(x)

is positive-linearly independent or

∀I⊂ {1, . . . ,m},∀J⊂A(x) {∇hi(y)}i∈I,{∇gj(y)}j∈J

is positive-linearly independent ∀y∈N(x)

Example:g(x)≤0,g(x)≤0,∇g(x)6=0.

Example:∇gj(x)Td<0,∀j∈A(x).

Avoid the existance of a sequence of positive-linearly

independent gradients, that are positive-linearly dependent in the limit.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(31)

Constraint qualifications

Constant Positive Linear Dependence (CPLD, Qi, Wei, 2000;

Andreani, Martínez, Schuverdt, 2005)

∀I⊂ {1, . . . ,m},∀J⊂A(x) If

{∇hi(x)}i∈I,{∇gj(x)}j∈J

is positive-linearly dependent, then

{∇hi(y)}i∈I,{∇gj(y)}j∈J

is (positive-)linearly dependent ∀y∈N(x)

Example:h(x)≤0,−h(x)≤0,∇h(x)6=0.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(32)

Constraint qualifications

Relaxed Constant Rank (RCRCQ):

[Minchenko, Stakhovski, 2011]

∀J ⊂A(x),

the rank of{∇hi(y)}mi=1∪ {∇gi(y)}i∈J is constant∀y∈N(x).

Constant Rank (CRCQ):

[Janin, 1984]

∀I ⊂ {1, . . . ,m},∀J ⊂A(x),

the rank of{∇hi(y)}i∈I∪ {∇gi(y)}i∈J is constant∀y∈N(x).

www.ime.usp.br/∼ghaeser Gabriel Haeser

(33)

Example

h1 :=x−y=0 g1:=−x+y2≤0

g2:=−x≤0 At the pointx=0,y=0.

∇h1= 1

−1

∇g1=

−1

2y

∇g2=

−1

0

CRCQ failsbut RCRCQ holds.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(34)

Constraint qualifications

Relaxed Constant Positive Linear Dependence (RCPLD):

{∇hi(y)}mi=1has the same rank for everyy∈N(x), FixI ⊂ {1, . . . ,m}such that{∇hi(x)}i∈I is a basis for span{∇hi(x)}mi=1.

For everyJ ⊂A(x), if({∇hi(x)}i∈I,{∇gi(x)}i∈J)is positive-linearly dependent, then

({∇hi(y)}i∈I,{∇gi(y)}i∈J)is (positive-)linearly dependent for everyy∈N(x).

www.ime.usp.br/∼ghaeser Gabriel Haeser

(35)

Example

−(x+1)2−y2+1=0

x2+ (y+1)2−1≤0

−y≤0 At the pointx=0,y=0.

−2x−2

−2y

2x 2y+2

0

−1

1 0

2

+2 0

−1

=0, positive-linearly dependent.

x6=0, α

2x 2y+2

0

−1

0⇒α=β =0, linearly independent.

CPLD fails.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(36)

Example

0 −2

0

+1 0

2

+2 0

−1

=0, positive-linearly dependent.

−2x−2

−2y

,

2x 2y+2

,

0

−1

, linearly dependent.

RCPLD holds.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(37)

How can we get rid of verificationsfor everysubset of inequality constraints?

RCRCQ:

∀J ⊂A(x),

the rank of{∇hi(y)}mi=1∪ {∇gi(y)}i∈J is constant∀y∈N(x).

RCPLD:

{∇hi(y)}mi=1has the same rank for everyy∈N(x), For everyJ ⊂A(x), if({∇hi(x)}i∈I,{∇gi(x)}i∈J)is positive-linearly dependent, then

({∇hi(y)}i∈I,{∇gi(y)}i∈J)is (positive-)linearly dependent for everyy∈N(x).

www.ime.usp.br/∼ghaeser Gabriel Haeser

(38)

Constraint qualifications

Cone generated by the full set of constraint gradients (polar of the linearized cone):

F(x) =

 y|y=

m

X

i=1

λi∇hi(x) + X

i∈A(x)

µi∇gi(x), µi≥0

 .

Constant Rank of the Subspace Component (CRSC):

LetJ(x) ={i∈A(x)| − ∇gi(x)∈ F(x)}.

The rank of{∇hi(y)}mi=1∪ {∇gi(y)}i∈J

(x)is constant∀y∈N(x).

www.ime.usp.br/∼ghaeser Gabriel Haeser

(39)

Example

g1(x) :=x≤0 g2(x) :=−x≤0

g3(x) :=x2≤0 At the pointx=0.

∇g1(x) =1

∇g2(x) =−1

∇g3(x) =2x

F(x) =R⇒ J(x) ={1,2,3}.

rank{∇g1(x),∇g2(x),∇g3(x)}=1for everyx(CRSC holds) {∇g3(0) =0}is positive-linearly dependent but {∇g3(x)}is linearly independent forx6=0(RCPLD fails)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(40)

Properties

RCRCQ ensures strong second order optimality conditions.

Stable CQs - not sensible to perturbations inx.

Inequalities inJ(x)are locally equalities.

An error bound holds: For everyy∈N(x),

d(y,feasible set)≤αmax{kmax{0,g(y)}k,kh(y)k}.

Practical CQs (global convergence of Approximate-KKT algorithms).

Augmented Lagrangian [Andreani, Birgin, Martínez, Schuverdt, 2007, 2008]

Inexact Restoration [Martínez, Pilotta, 2000], [Fischer, Friedlander, 2010]

Sequential Quadratic Programming [Qi, Wei, 2000], [Panier, Tits, 1993]

Interior Point [Chen, Goldfarb, 2006]

www.ime.usp.br/∼ghaeser Gabriel Haeser

(41)

Constraint qualifications

Guignard CQ (1969):F(x) =T(x) Abadie CQ (1967): F(x) =T(x)

www.ime.usp.br/∼ghaeser Gabriel Haeser

(42)

Constraint qualifications

Quasinormality [Hestenes, 1975]:

For allλ∈Rm, µ≥0such that

m

X

i=1

λi∇hi(x) + X

j∈A(x)

µj∇gj(x) =0,

there is no sequenceyk →xsuch that(λi 6=0⇒λihi(yk)>0) and(µj>0⇒gj(yk)>0).

Ex:−x2≤0(holds),x2≤0(doesn’t hold).

www.ime.usp.br/∼ghaeser Gabriel Haeser

(43)

Constraint qualifications

Pseudonormality [Bertsekas, Ozdaglar, 2002]:

For everyλ∈Rm, µ≥0such that

m

X

i=1

λi∇hi(x) + X

j∈A(x)

µj∇gj(x) =0,

there is no sequenceyk →xsuch that Pm

i=1λihi(yk) +P

j∈A(x)µjgj(yk)>0.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(44)

Relation

Pseudonormality

Abadie MFCQ LICQ

RCRCQ CRCQ

CPLD

RCPLD

CRSC Quasinormality

www.ime.usp.br/∼ghaeser Gabriel Haeser

(45)

Punctual vs Sequential optimality conditions

Practical CQs:

AKKT+CQ⇒KKT ?

yes: LICQ, MFCQ, (R)CRCQ, (R)CPLD, CRSC.

no: Pseudonormality, Quasinormality, Abadie, Guignard.

CRSC is not the weakest practical CQ.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(46)

Weak practical CQs

V ={v1, . . . ,vK},I,J ⊂ {1, . . . ,K},

span+(I,J,V) =

 X

i∈I

λivi+X

j∈J

µjvj | λi∈R, µj≥0

 We can always find a “basis” for this cone:

I0⊂ I ∪ J,J0 ⊂ J such that

span+(I0,J0,V) =span+(I,J,V) and{vi}i∈I0∪ {vj}j∈J0 is positive-linearly independent

X

i∈I0

αivi+X

j∈J0

βjvj =0, β≥0⇒(α, β) =0

www.ime.usp.br/∼ghaeser Gabriel Haeser

(47)

Weak practical CQs

Ω ={x∈R|g1(x) :=x≤0,g2(x) :=−x≤0},x=0 V={∇g1(x),∇g2(x)},I=∅,J ={1,2}

span+(I,J,V) ={µ1∇g1(x) +µ2∇g2(x)|µ1 ≥0, µ2≥0} basis:I0 ={1},J0 =∅

span+(I0,J0,V) ={λ1∇g1(x)|λ1∈R}

www.ime.usp.br/∼ghaeser Gabriel Haeser

(48)

Weak practical CQs

x∈Ω,I :={1, . . . ,m},J :=A(x), V={∇fi(x)}i∈I∪J,

fi :=hi,i∈ I, fj:=gj,j∈ J.

Note that span+(I,J,{∇fi(x)}i∈I∪J) =F(x). The Constant Positive Generators CQ (CPG) holds atxif there is a basis I0,J0 of span+(I,J,{∇fi(x)}i∈I∪J)such that

span+(I0,J0,{∇fi(y)}i∈I∪J)⊃span+(I,J,{∇fi(y)}i∈I∪J), for allyin some neighborhood ofx.

Every nice property of CRSC is lost, but CPG is still practical.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(49)

AKKT + CPG ⇒ KKT

∇f0(xk) +X

i∈I

λki∇fi(xk) +X

j∈J

µkj∇fj(xk)→0, µk ≥0

∇f0(xk) +X

i∈I0

λ¯ki∇fi(xk) +X

j∈J0

¯

µkj∇fj(xk)→0,µ¯k ≥0

If(¯λk,µ¯k)is unbounded

∇f0(xk)

k(¯λk,µ¯k)k+X

i∈I0

¯λki

k(¯λk,µ¯k)k∇fi(xk)+X

j∈J0

¯ µkj

k(¯λk,µ¯k)k∇fj(xk)→0,

X

i∈I0

λi∇fi(x) +X

j∈J0

µj∇fj(x) =0, µ≥0,(λ, µ)6=0

Otherwise

∇f0(x) +X

i∈I0

λi∇fi(x) +X

j∈J0

µj∇fj(x) =0, µ≥0

www.ime.usp.br/∼ghaeser Gabriel Haeser

(50)

Example

Ω =

x|f1(x) :=x31−x2≤0,f2(x) :=x31+x2≤0,f3(x) :=x1≤0

∇f1(x) = 3x21

−1

,∇f2(x) = 3x21

1

,∇f3(x) = 1

0

x=0,I =∅,J ={1,2,3} I0={1},J0={3}.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(51)

Weak practical CQs

The weakest CQ such that AKKT+CQ⇒KKT

AKKT-CQ (Ramos, 2014): It holds atxif the point-to-set mapping

y7→ F(y) =

 v|v=

m

X

i=1

λi∇hi(y) + X

i∈A(x)

µi∇gi(y), µi≥0

 is continuous atx.

www.ime.usp.br/∼ghaeser Gabriel Haeser

(52)

References

1 R. Andreani, G. Haeser, M.L. Schuverdt, P.J.S. Silva - Two new weak constraint qualifications and applications. SIAM Journal on Optimization, 22(3), 1109-1135, 2012.

2 R. Andreani, G. Haeser, M.L. Schuverdt, P.J.S. Silva - A relaxed constant positive linear dependence constraint qualification and applications. Mathematical Programming, v. 135, p. 255-273, 2012.

3 E. G. Birgin and J. M. Martínez, Practical Augmented Lagrangian Methods for Constrained Optimization, SIAM, Philadelphia, 2014.

www.ime.usp.br/∼ghaeser Gabriel Haeser

Referências

Documentos relacionados

Concluindo que existe uma forte correlação entre o processo de microtrauma muscular e o sinal mioelétrico, enfatizando a eficácia do uso dessa variável para

O tema da migração internacional de goianos para os Estados Unidos da América, em especial para o estado da Califórnia e para a cidade de San Francisco, tem sido tema e

Dessa Portaria de criação devem surgir as diretrizes de funcionamento tais como as instruções gerais e regimento interno para funcionamento do núcleo de

As relações, mudanças e mecanismos de regulação expressos no quadro possuem diferentes níveis de complexidade, por isso, o processo de construção de um

Tabela S41 – Tabela de contingência produzida durante o teste de χ² para as variáveis Auxílio prestado pelos encarregados de educação de 2º CEB na aprendizagem do idioma

O foco da pesquisa sobre as escutas dos jovens evidenciou-se após uma leitura cuidadosa das falas. Considerando que a experiência musical se dá através da escuta, foi

and is characterized by the triad: presence of 100 or more nevi, with at least one nevus with a diameter larger than 8mm and a nevus with clinical features of atypia, in patients

NÓS E OS OUTROS EM/COM QUEM HABITAMOS Na atual sociedade do conhecimento, pautada por encontros inesperados com as mudanças da era digital e cimentada por múltiplas incertezas,