• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
7
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Chemical

identification

and

quantification

of

Hu-Gu

capsule

by

UHPLC–Q-TOF-MS

and

HPLC-DAD

Qiang

Ren

a,∗

,

Shi-song

Long

b,∗

aDepartmentofPharmacy,JiningMedicalUniversity,Shandong,China

bGuangdongAnnolPharmaceuticalCo.,Ltd,Guangdong,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received7February2017 Accepted5June2017 Availableonline13July2017

Keywords: Hu-Gucapsule UHPLC–Q-TOF-MS HPLC-DAD Identification Quantification

a

b

s

t

r

a

c

t

Hu-GucapsuleisatraditionalChinesemedicalformulaforpreventingglucocorticoid-induced osteoporo-sis.Inthiswork,anultra-highperformanceliquidchromatographycoupledwithelectrosprayionization quadrupoletime-of-flightmassspectrometrywasdevelopedforchemicalidentificationofthe phyto-chemicalcompositionsinpositiveionmode.Atotalof41compoundsweredetectedinHu-Gucapsule, and25compoundswerecharacterizedandidentifiedbyretentiontime,accuratemasswithin5ppm errorandcharacteristicfragmentions.Amongofthem,fourmajorflavonoidswerefurtherquantifiedby highperformanceliquidchromatographydiodearraydetectioninthefourbatches.Themethodwas val-idatedintermsofcalibrationcurveregressioncoefficient(r2>0.9994),repeatability(RSD<3.5%),

intra-andinter-dayprecision(RSD<1.1%),recovery(93.0–106.4%),limitofdetection(0.1␮g/ml),andlimitof

quantification(1␮g/ml).Theresearchcouldprovidetheanalysisofchemicalcompositionandbehelpful

tocontrolthequalityofHGC.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Hu-Gucapsule(HGC)hasbeenusedasatraditionalmedicine

inChinaforpreventingglucocorticoid-inducedosteoporosis(GIO).

The formula is composedof ten Chineseherbs as described in

Box 1. According to Chinese National Drug Quality Standard

(volume82),thequalitycontrolofHGCmainlyconfinestoonly

an icariin (≥1.15mg/0.45g, per capsule) by high performance

liquidchromatographymethod(TheStateCommissionofChinese

Pharmacopoeia,2010),whichisfarfrommeetingthefurtherdepth

researchof HGConthe pharmacology.Toour bestknowledge,

theglobal chemical profileof HGC hasnot beenreported, and

fewreportsareavailableonitsqualitycontrol(Songetal.,2012). Therefore,it iscrucial todevelop aqualitative andquantitative

methodforelucidatingthesystematicchemicalcontourofHGC.

Nowadays,UHPLC–Q-TOF-MShasbecomeoneofdominanttools

toinvestigatethecomplexconstituentsofherbalformulas.Unlike

singlequadruple,iontraportandemmassspectrometers,aTOF

analyzerhasthehighresolution,highsensitivityandhighaccuracy

andadvantagetoprovidetheexcellentmassaccuracyfor

deter-minationofelementalcompositionandhighmassresolutionfor

Correspondingauthors.

E-mails:ren2323@163.com(Q.Ren),long.shisong@annol.net(S.Long).

thedifficultychromatographicseparation(Liuetal.,2016;Xiang etal.,2015;Renetal.,2016).

Theaimofpresentstudyistodevelopacomprehensive

analy-sismethodforthechemicalprofileofHGCbyUHPLC–Q-TOF-MS.

The structures were elucidated on the basis of their accurate

massandcharacteristicfragmentationbehaviorofreference

sub-stances.Furthermore,fourflavonoidsinHGCwerequantifiedby

HPLC-DAD.

Experimental

Samples,chemicals,andreagents

HGC (batch number: 20160203, 20160501, 20160502, and

20160503)wereproducedbyGuangdongAnnolPharmaceutical

Co., Ltd.Epimedin A,epimedin B, epimedinC, and icariin were

purchasedfromtheNationalInstitutefortheControlof Pharmaceu-ticalandBiologicalProducts(NICPBP,BeijingChina).Thepurities

ofthereferencecompoundsweredeterminedtobeabove98%by

HPLC-DADanalysis.LC/MS-gradeacetonitrilewaspurchasedfrom

MallinckrodtBaker,Inc.(Phillipsburg,NJ,USA).HPLC-gradeacetic acid(AS1102-002)waspurchasedfromTEDIA,Inc(Fairfield,USA). DeionizedwaterwaspurifiedbyMilliporepurificationsystem (Mil-lipore,MA,USA).

http://dx.doi.org/10.1016/j.bjp.2017.06.002

(2)

Box1:CompositionofHu-Gucapsule.

DrugLatinname Speciesname Chinesename Rate

PolygoniMultifloriRadixPraeparata Reynoutriamultiflora(Thunb.)Moldenke,Polygonaceae 1.67

EpimediumbrevicornuMaxim EpimediumbrevicornuMaxim,Berberidaceae 1.33

RehmanniaeRadixPraeparata Rehmanniaglutinosa(Gaertn.)DC.,Plantaginaceae 1.67

TestudinisCarapaxetPlastrum Chinemysreevesii(Gray),Emydidae 1

MorindaeOfficinalisRadix MorindaofficinalisF.C.How,Rubiaceae 1.33

EucommiaeCortex EucommiaulmoidesOliv.,Eucommiaceae 1.33

DipsaciRadix DipsacusasperWall.exC.B.Clarke,Caprifloiaceae 1.33

DrynariaeRhizoma DrynariaroosiiNakaike,Polypodiaceae 1.33

AngelicaeSinensisRadix Angelicasinensis(Oliv.)Diels,Apiaceae 1

DioscoreaeRhizoma DioscoreaoppositifoliaL.,Dioscoriaceae 1.33

Samplepreparation

Analiquot (500mg)ofHGCpowderwasaccuratelyweighed

andsoakedwith5ml80%methanolfor15min.Itwasextracted

byultrasonictreatment(140W,25◦C)for30min.After

centrifuga-tionat14,800×gfor10min,thesupernatantwasfilteredthrough a0.22␮mfilterpriortoinjectionintotheUHPLC–Q-TOF-MSand

HPLC-DADsystem.

AnalysisofHGCbyUHPLC–Q-TOF-MS

Agilent1290seriesRapidResolutionLCsystemwascoupledto

Agilent6530Accurate-MassQuadrupoleTimeof Flight(Q-TOF)

massspectrometer(AgilentTechnologies,CA,USA).It equipped

withanESIinterface.Thechromatographicseparationwas

per-formed on TOSOH TSK gel ODS-100Z (4.6×150mm, 3.0␮m)

column.Thecolumntemperaturewasmaintained30◦C,the

injec-tionvolumewas2␮l.Themobilephaseconsistedof0.1%aqueous aceticacid(v/v)(A)andacetonitrile(B).Thegradientprogramwas appliedasfollows:0–50minat10–45%B;50–60minat40–90%B; 60–62minat90–10%B;and62–70minat10%B.TheoutletofHPLC wassplit(1:5)andintroducedintotheESIsourceat4–62minand intowasteat0–4minand62–70min.

TheMSconditionswere setas follows:drying gasflowrate

10l/min;dryinggastemperature350◦C;pressureofnebulizergas

pressure42psig;sheathgastemperature335◦C;sheathgasflow

11l/min;capillaryvoltage3500Vpositiveionmodesandthemass

rangefromm/z200to1000.TheMS/MSspectrawereacquired

withautoMS/MSmodeatthescanrateof2spectra/s.Thedata

wasacquiredwithMassHunterAcquisitionB.06.00andanalyzed

bymeansofMass HunterQualitative Software,VersionB.06.00

(AgilentTechnologies,CA,USA).

QuantificationbyHPLC-DAD

QuantificationwasperformedonaShimadzuliquid

Chromatog-raphysystem.Theinstrumentwasequippedwithtwo LC-20AT

pumps, a SIL-20A auto sampler, a CTO-20AC column oven, a

SPD-M20Adiodearraydetector,aCBM-20Acommunicationsbus

module,andaDGU-20A3 degasser.LCsolutionsoftwareversion

1.24SP1wasusedtocontroltheHPLCsystemandprocessthedata.

A TOSOH TSK gel ODS-100Z (4.6×150mm, 3␮m) column

(Tosoh Bioscience, Japan) was used for the chromatographic

separation. Thecolumn temperaturewas maintained35◦C, the

injectionvolumewas5␮l,anddetectionwavelengthwassetat

269nm.Themobilephaseswerecomposedofwater(0.2%

aque-ousaceticacid,A)andacetonitrile(B).Thegradientprogramwas

appliedasfollows:0–50minat10–35%B;50–60minat35–95%

B;60–62minat95–10%B;and62–70minat10%B.Flowratewas

1ml/min.

Resultsanddiscussion

A total of 41 compounds were detected in HGC, and 25

compounds were tentatively identified and characterized by

UHPLC–Q-TOF-MS in the positive mode. They are summarized

alongwiththeirretentiontime,theoreticalmass,molecular for-mula,observedmass,MS/MSfragmentsasshowninTable1.Atotal

ionchromatogramandextractionchromatogramof25identified

compoundsareshowninFig.1.Tandemmassspectraandpossible

fragmentpathwaysof12typicalconstituentsinpositivemodeare presentedinFig.S1.

Characterizationandidentificationofprenylatedflavonoids

Fifteen prenylated flavonoids were identified in HGC. The

prenylatedflavonoidglycosidesarecharacteristicconstituentsof Epimediumbrevicornu.Theanhydroicaritinflavonoidsareusually 3-O,7-O,and3,7-di-O-glycosideswithamonosaccharideor

dis-accharide (Wang et al.,2010).The characteristic fragmentation

pathwaysindicated thatglucosesubstitutedatthe3-Oposition losteasierthanatthe7-Oposition.Theionofm/z369wasformed.

The rearrangement of theisopentane group in position C8 led

tothe formation of a product ion m/z 313(Shevlyakova et al.,

2016).

Compounds29,32,33,and34wereidentifiedbycomparison

withreferencesubstances.They wereidentifiedasepimedin A,

epimedinB, epimedinC,and icariin,respectively.Theepimedin

A,B,C,andicariinindicatedthesimilaritiesoffragmentation pat-terns.Allofthempresentedthreecharacteristicfragmentionsat m/z531,369,and313.Theionofm/z369wasthetypicalfragment foranhydroicaritinaglycone.Theionatm/z313wasformedby fur-therlossofC4H7(56Da)fromtheionofm/z369.Fortheprenylated

flavonoids,theglucosesubstitutedatthe3-Opositionlosteasier thanatthe7-Opositionaccordingtothecharacteristic

fragmenta-tionpathways.TheMS2spectrumgavethebasepeakatm/z531,

whichcorrespondedtoanhydroicaritinaglyconebearingO-linked monosaccharidesubstituent(Dingetal.,2011).

Compounds 31 (tR=32.70min), 36 (tR=39.40min), 38

(tR=52.02min),and41(tR=54.39min),[M+H]+ionsindicatedat

m/z 839.2971, 677.2455, 531.1874, and 515.1933, respectively.

The MS2 spectrum gave the same characteristic fragmentions

atm/z 369and 313.Compounds31,36, 38, and 41 possessan

anhydroicaritinaglyconeskeleton. Compound 31gave thebase

peakatm/z 531,due tothelossof bothglucoseand rhamnose

moieties(308Da).Theionswerecleavagedatm/z677[M–Glu+H]+,

531 [M–Glu–Rha+H]+, and 369[M–2Glu–Rha+H]+, respectively.

Compound31 wastentatively identified asepimedin A1.

Com-pound36yieldedamajorfragmentionatm/z369,duetothelossof bothglucoseandrhamnosemoieties(308Da).Theionswere

frag-mentedatm/z531[M–Rha+H]+and313[M–Glu–Rha–C

4H7+H]+,

(3)

Table1

IdentificationofthechemicalconstituentsfromHGCbyUHPLC–Q-TOF-MS.

PeakNo. tR(min) Theoreticalmass [M+H]+or[M+Na]+ Error(ppm) Observedmass max(nm) MS/MSfragments

(relativeion intensity,%)

Identification compounds

1 5.51 365.0867 C17H16O9 −3.00 365.0878 221,293 288.0345(43),

203.0509(100), 180.0639(50), 136.0570(30), 104.9880(69)

Unknown

2 5.74 379.0660 C17H14O10 0.19 379.0659 231,293 339.1278(14),

295.0779(15), 233.0214(100), 197.5969(10), 169.0289(17), 147.0468(63)

Unknown

3 5.82 399.1286 C18H22O10 0.18 399.1285 – 255.0827(58),

237.0741(100), 203.0459(23), 167.0317(31), 149.0169(14)

Unknown

4 6.12 441.1391 C20H24O11 1.45 441.1385 196,255 205.0092(100) Unknown

5 7.07 515.2639 C29H38O8 −2.05 515.2650 – 269.1270(100),

210.0535(67), 182.0557(16)

Unknown

6 7.36 359.1489 C20H22O6 2.55 359.1480 236,280 191.0669(100) Unknown

7 7.83 355.1024 C16H18O9 −4.07 355.1038 240,328 163.0393(100),

145.0297(17), 135.0436(6), 117.028(7)

Chlorogenic acid

8 8.06 355.1024 C16H18O9 −4.07 355.1038 242,328 163.0393(100),

145.0314(14), 135.0434(9), 117.0393(3)

Cryptochlorogenic acid

9 9.21 509.1290 C23H24O13 −0.06 509.1290 252,282 509.1291(100),

363.0718(13), 331.1036(46), 201.0154(11)

Unknown

10 9.55 413.1442 C19H24O10 1.51 413.1436 245 413.1426(100),

251.0932(11), 219.0611(20)

CnidiosideB methylester

11 9.72 739.2444 C34H42O18 1.61 739.2432 – 381.1175(100),

219.0630(6), 149.0207(3)

Unknown

12 11.98 342.1700 C20H23NO4 −3.86 342.1713 – 342.1706(28),

297.1140(82), 282.0874(22), 265.0861(100), 237.0942(24)

Magnoflorine

13 13.77 413.2170 C21H32O8 0.96 413.2166 241 413.2163(100),

203.0536(15)

Unknown

14 16.85 547.2174 C28H34O11 1.99 547.2163 – 547.2151(100),

385.1600(18)

3-

Hydroxyicariine-O-glucoside 15 17.09 619.1633 C27H31O15Na −4.46 619.1661 230,285 619.1640(100),

473.1125(3), 331.1005(12)

Neoeriocitrin

16 17.56 363.1438 C19H22O7 1.19 363.1434 243,322 363.1366(100),

191.0420(35), 117.0669(45)

Unknown

17 18.13 407.1337 C20H22O9 −4.78 407.1356 230,320 245.0818(100),

227.0715(32), 199.0767(69), 181.0603(10), 151.0392(46), 125.0244(99), 121.0637(37), 107.0484(17)

Stilbene glucoside

18 18.69 355.1751 C18H26O7 1.78 355.1745 – 355.1726(100),

131.0513(7)

Unknown

19 19.36 518.2146 C27H33O10 1.25 518.2140 – 518.2109(98),

356.1590(100)

Unknown

20 19.87 435.2589 C21H38O9 1.98 435.2580 – 435.2529(100),

349.1808(34), 321.1940(9), 293.1556(9)

(4)

Table1(Continued)

PeakNo. tR(min) Theoreticalmass [M+H]+or[M+Na]+ Error(ppm) Observedmass max(nm) MS/MSfragments

(relativeion intensity,%)

Identification compounds

21 21.22 581.1865 C27H32O14 −2.27 581.1878 229,284 339.0889(17),

315.0855(16), 297.0741(20), 273.0772(100), 195.0279(55), 153.0171(13), 129.0547(22)

Naringin

22 22.12 769.2550 C35H44O19 1.24 769.2540 243,328 769.2556(100),

607.2022(5), 395.1308(5)

Unknown

23 23.09 247.0965 C14H14O4 2.79 247.0958 278 187.8379(100) Diallyl

phthalate

24 25.48 825.2812 C38H48O20 0.93 825.2804 – 663.2378(8),

517.1745(100), 355.1176(58)

DiphyllosideA

25 27.42 489.2119 C26H32O9 0.84 489.2115 – 489.2111(23),

309.1462(100), 281.1513(11)

Unknown

26 27.46 663.2283 C32H38O15 −2.35 663.2299 – 517.1756(23),

355.1194(100), 299.0526(6)

EpimedosideA

27 28.51 693.2389 C33H40O16 −1.86 693.2402 – 547.1816(38),

385.1317(100), 367.1011(11), 329.0609(18)

3-

Hydroxyicariine-O -glucose-rhamnose

28 31.29 431.1337 C22H22O9 1.53 431.1330 – 431.1257(100),

269.0802(57)

Ononin

29 31.81 839.2968 C39H50O20 −1.29 839.2979 270 677.2451(7),

531.1903(100), 369.1363(45), 313.0665(10)

EpimedinA

30 32.49 455.0973 C23H18O10 2.14 455.0963 – 455.1004(29),

293.0420(100), 185.0394(59)

Unknown

31 32.70 839.2968 C39H50O20 −0.33 839.2971 – 677.2454(6),

531.1862(100), 369.1313(55), 313.0797(4)

EpimedinA1

32 33.64 809.2863 C38H48O19 −2.41 809.2882 270 677.2454(8),

531.1878(100), 369.1329(52), 313.0665(7)

EpimedinB

33 34.17 823.3019 C39H50O19 −0.24 823.3021 270 677.2418(12),

531.1863(100), 369.1338(56), 313.0691(5)

EpimedinC

34 35.45 677.2440 C33H40O15 −1.78 677.2452 270 531.1874(26),

369.1336(100), 313.0702(17)

Icariin

35 38.64 469.1129 C24H20O10 3.25 469.1114 270 469.1089(47),

307.0555(100), 185.0364(67)

Epigallocatechin 3-O-caffeoate

36 39.40 677.2440 C33H40O15 −2.22 677.2455 – 531.1830(30),

369.1328(100), 313.0685(6)

SagittatosideA

37 47.17 523.1599 C26H27O10Na −0.63 523.1602 – 377.1013(100),

318.9111(9), 169.0395(8)

IkarisosideA (BaohuosideII)

38 52.02 531.1861 C27H30O11 −2.47 531.1874 – 369.1341(100),

313.0711(29)

IcarisideI

39 52.45 669.2154 C32H37O14Na −1.53 669.2164 – 391.1117(26),

301.0896(100)

SagittatosideB

40 52.70 683.2310 C33H40O14Na −2.08 683.2324 – 683.2299(100),

391.1118(41), 315.1050(92)

2′′-O -rhamnosyl icarisideII

41 54.39 515.1912 C27H30O10 −4.14 515.1933 – 369.1338(100),

313.0711(20)

IcarisideII (BaohuosideI)

–,UVspectrahavenotbeenobservedduetolowintensity.

etal.,2011).Compound38 gavethebasepeakat m/z369, due tothelossofaglucosemoiety(162Da).Theionofm/z369was

the characteristic fragment for anhydroicaritin aglycone. The

ionat m/z 313wasformedby theloss ofC4H7 (56Da).It was

tentativelyidentifiedasicarisideI(Zhaoetal.,2008).Compound

41 yieldedtwo fragmentions atm/z 369[M–Rha+H]+ and 313

[M–Rha–C4H7+H]+. Compound 41 wastentatively identified as

(5)

A

x107

x106 1.2

+ESI TIC Frag 150.0V HGC ESI+ MS.d

+ESI EIC Frag 150.0V HGC ESI+ MS.d

1

0.8

0.6

0.4

0.2

3

2.5

2

1.5

1

0.5

0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

0

2 4 6

78 10

12

141517 21 23

24 2627 282931 32

33 34

3536 37 3839

40 41

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

B

Fig.1. ThetotalionchromatogramofHGC(A)andextractedionchromatogramof25identifiedcompounds(B).

Compounds 14 and 27 (tR=16.85 and 28.51min), [M+H]+

pseudomolecularionspresentedatm/z547.2163 and693.2402,

whichcorrespondedtothemolecularformulaofC28H34O11and

C33H40O16,respectively.In theMS2 spectrathefragmentswere

atm/z 385, which wasattributedtotheloss ofa glucose

moi-ety(162Da)and bothglucose andrhamnose moieties(308Da).

Compound14wastentativelyidentifiedas3-hydroxyicariine-O -glucoside(Zhaoetal.,2008).Forcompound27,thefragmentions

wereatm/z547[M–Rha+H]+andm/z367[M–Rha–Glu–H

2O+H]+.

It was tentatively identified as 3-hydroxyicariine-O

-glucose-rhamnose(Zhaoetal.,2008).

Twocompounds24(tR=25.48min)and26(tR=27.46min)

indi-cated[M+H]+ionswereatm/z825.2804and663.2299.TheMS2

spectrum of compound 24 gave the fragment ions at m/z 663

[M–Glu+H]+(8%ofbasepeak),m/z517[M–Glu–Rha+H]+asbase

peak,andm/z355[M–Glu–Rha–Glu+H]+(58%ofbasepeak).

Com-pound24wastentativelyidentifiedasdiphyllosideAinagreement withtheliterature(Guanetal.,2011).IntheMS2spectraof

com-pound26,thefragmentionatm/z517wasattributedtothelossof arhamnosemoiety(146Da).Thebasepeakwasatm/z355,dueto thelossofbothrhamnoseandglucosemoieties.Itwastentatively identifiedasepimedosideA.

Compound37,tR=47.17min,[M+Na]+ionwasatm/z523.1602. TheMS2spectrumgavethebasepeakatm/z377,duetothelossofa

rhamnosemoiety(146Da).Itwastentativelyidentifiedas ikariso-sideAornamedbaohuosideII(Guanetal.,2011).

Compounds39(tR=52.45min)and40(tR=52.70min)exhibited [M+Na]+ionsatm/z669.2164and683.2324.IntheMS2spectrum,

thesamefragmentionatm/z391indicatedthelossofboth

rham-noseand xylosemoieties (278Da) and two rhamnose moieties

(292Da),respectively.Theyweretentativelyidentifiedas sagittato-sideBand2′′-O-rhamnosylicarisideII(Guanetal.,2011).

Otherchemicalcomponents

Compounds7and8(tR=7.83minand8.06min)showed[M+H]+ ionatm/z355.1038,whichcorrespondedtothemolecularformula ofC16H18O9.TheMS2spectrumgaveabasepeakatm/z163

[caf-feicacid–H2O+H]+,correspondingtothelossofquinicacidmoiety

(192Da).Thecompounds7and8indicatethesameelemental com-position.TheMS2spectrademonstratethesimilarfragmentation

andintensity.However,thedifferenceinretentiontimeislikelyto identifythetwopeaksduetolinkage.Generally,cryptochlorogenic

acidhasstrongerretentionontheC18columnthanchlorogenic

acidbycomparison withthepublisheddata(Dinget al.,2011;

Zhaoetal.,2008).Thecompound7and8wastentatively iden-tifiedaschlorogenicacidandcryptochlorogenicacid.Theymight befromEucommiaeCortexandEpimediumbrevicornuMaxim(Zhu etal.,2016;Zhaoetal.,2008).

Compound 10 (tR=9.55min), [M+H]+ ion presented at m/z

413.1436, which corresponded to the molecular formula of

C19H24O10.Thefragmentionatm/z251indicatedthelossofa

glu-cosemoiety.Compound10wastentativelyidentifiedascnidioside Bmethylester.

Compound 12 (tR=11.98min), [M+H]+ ion indicated at m/z

342.1713, which corresponded to the molecular formula of

C20H23NO4.Thefragmentionsatm/z297and265indicatedthe

lossof–N(CH3)2and–OCH3.Compound12wastentatively

iden-tifiedasmagnoflorinefromEpimediumbrevicornu(Naseeretal., 2015).

Compound 15 (tR=17.09min), [M+Na]+ ion showed at m/z

619.1661, which corresponded to the molecular formula of

C27H31O15Na.Thefragmentionatm/z473indicatedthe

elimina-tionofarhamnoseresidue(146Da)fromtheprecursorion.Itwas tentativelyidentifiedasneoeriocitrin(Liuetal.,2012).

Compound 17 (tR=18.13min), [M+H]+ ion presented at m/z

407.1356withidenticalmolecularformulaC20H22O9.The

elemen-talcompositionwasobtainedwithanerroroflessthan5ppm.The MS2spectrumofionatm/z407presentedthesuccessivefragments

ofm/z245,227,199,181,151,125,121,and107.Hence,itwas tentativelyidentifiedasstilbeneglucosidefromPolygoniMultiflori RadixPraeparatabycomparisontotheliterature(Qiuetal.,2013). Compound21,tR=21.22min,[M+H]+ionatm/z581.1878gave themolecularformulaofC27H32O14.TheMS2spectrumgavethe

fragmentionsatm/z339, 315,297,273,195,153,and129.The

aglyconeionatm/z273indicated theconsecutivelossof

rham-noseandglucosefragment(308Da).Theionatm/z153wasyielded fromretro Diels–Alderfragmentationpattern oftheC-ring.The

neutral loss of 120Da was attributed to the characteristic ion

[M–C4H8O4+H]+.Compound21fromDrynariaeRhizomawas

ten-tativelyidentifiedasnaringin(Lietal.,2010;Wuetal.,2015). Compound23,tR=23.09min,[M+H]+ionatm/z247.0958gave themolecularformulaofC14H14O4.Theprominentfragmentionin

theMS/MSspectrumwasatm/z187[M–C3H5O+H]+.Itwas

tenta-tivelyidentifiedasdiallylphthalate.Thecompoundmaybefroma contaminationofthecolumnorthesolventsusedintheextraction.

Compound 28, tR=31.29min, [M+H]+ ion exhibited at m/z

(6)

whichwasattributedtothelossofaglucosemoiety(162Da).Itwas

tentativelyidentifiedasononinfromEpimediumbrevicornu(Luo

etal.,2014).

Compound 35, tR=38.64min, [M+H]+ ion displayed at m/z

469.1114.IntheMS2 spectra,thefragmentionwasatm/z307,

whichwasattributedtothelossofacaffeicacidgroup(162Da).It wastentativelyidentifiedasepigallocatechin-O-caffeoate.

Calibrationcurves,limitsofdetection(LOD)andquantification (LOQ)

ForHPLC-DAD quantification,fourstandardsubstances were

accuratelyweighedanddissolvedin 80%methanoltomakethe

concentrationof1000␮g/mlforepimedinA,epimedinB,epimedin C,andicariin.Mixstocksolutionwasdilutedinthe10–500␮g/ml concentrationrange.Thesixconcentrationsfortheconstruction ofcalibrationcurveswereanalyzedintriplicate.Thecalibration curveswereconstructedbyplottingthepeakareasversusthe con-centrations.Peakareas(x)ofserialworkingsolutionswereplotted againstthecorrespondingconcentrations(y,␮g/ml).Allthe cali-brationcurvesshowedgoodlinearitywithcorrelationcoefficients (r2)nolessthan0.9994.Limitofdetection(LOD)andlimitof

quan-tification (LOQ) weredetermined byserial dilution ofstandard

solutionuntil thesignalto noise ratio(S/N) for each reference substancegotto3and10,respectively.Thecalibrationcurves, cor-relationcoefficients(r2),linearranges,LOD,andLOQarepresented

inTableS1.

Precision,recovery,repeatability,andstability

Thestandardworkingsolutionsusedfortheintra-dayand inter-dayprecisionwerethesameasthoseusedinthecalibrationcurve

experiment.Theintra-andinter-dayprecisionsweredetermined

bytherelativestandarddeviation(RSD<1.1%).Therecoverywas carriedoutbyaddingaknownamountofstandardsubstancesinto

HGC(sample20160502).Thespikedsampleswereextractedusing

theproceduredescribedforsamplepreparation.Themethod recov-erywascalculatedusingtheequationsbelow:

Recovery%=

Csample+standard−Csample

Cstandard

×100.

Therecoveryfor each compound atdifferent concentrations

rangedfrom93.0%to106.4%.TheHGC(sample20160502)was

appliedtodeterminetherepeatabilityand stability.Thesample

wasprepared according tothe procedure described as sample

preparation. It wasanalyzed for six replicates in a dayfor the repeatability.TherepeatabilityofRSDwaslessthan3.5%.The sam-plewasstoredat25◦

Candanalyzedat0,2,4,6,12and24hfor stabilitytest.ThestabilitiesofRSDwerelessthan0.68%.The pre-cision,recovery,repeatability,andstabilityareindicatedinTable S2.Themethodwasvalidatedaccordingtotheguidancefor Inter-nationalCouncilforHarmonisationguidelinesQ2(R1).

Sampleanalysis

TheproposedHPLC-DADhasbeenusedtodeterminethefour

majorflavonoids inHGC. Thequantitative resultsindicated the

contentsofepimedinA,epimedinB,epimedinC,andicariinper cap-suleinfourbatchesofsamplesasshowninTableS3.Thecontents

offourmajorcompoundsinHGCwererelativelyconsistentamong

fourbatches.AccordingtoChineseNationalDrugQualityStandard, thecontentoficariinshouldbenolessthan1.15mg/450mgorper

capsule.Ourresultsshowedthatthefourbatchescompliedwith

thisqualitystandard.

Conclusion

TheUHPLC–Q-TOF-MSandHPLC-DADmethodswereapplied

toqualitativeandquantitativeforthequalitycontrolofHGC. Com-paredwithpreviousinvestigations,atotalof41compoundswere

detectedinHGC.Amongofthem,25compoundsincludingfifteen

prenylatedflavonoidsandtenotherchemical componentswere

identifiedonthebasisofdiagnosticmassdataandfragment

pat-ternbyUHPLC–Q-TOF-MSinpositivemode.TheHPLC-DADmethod

wasappliedtodetermineinthefourbatchesofHGC.Prenylated

flavonoidsarerevealedtobethemainbioactiveingredientsofHGC, whichmightplayimportantrolesinthebiologicaland pharmaco-logicaleffects.ThefourpotentialbioactivecompoundsinHGCwere

determinedbythedevelopedHPLC-DADmethod.Theinvestigation

washelpforthequalityevaluationofHGC.

Authorship

QRdesignedandperformedtheexperiments;S-SLonganalyzed

thedata.Allauthorsreadandapprovedthefinalmanuscript.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

This investigation was supportedby grants from the Jining

Medical Universitydoctor scientificresearchfoundation project

(No. JY14QD05). This investigation was supported by grants

fromShandongProvincialNaturalScienceFoundation,China(No.

ZR2015HL124).WethanktheMedicineandHealthScience

Tech-nology Development Plan Funds from the Health and Family

PlanningCommissionofShandongProvince(No.2014WS0508).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.bjp.2017.06.002.

References

Ding,X.P.,Wang,X.T.,Chen,L.L.,Guo,Q.,Wang,H.,Qi,J.,Yu,B.Y.,2011.On-line high-performanceliquidchromatography-diodearraydetection-electrospray ionization-massspectrometry-chemiluminescenceassayofradicalscavengers inEpimedium.J.Chromatogr.A1218,1227–1235.

Guan,X.Y.,Li,H.F.,Yang,W.Z.,Lin,C.H.,Sun,C.,2011.HPLC-DAD-MSn analysis

andHPLCquantitationofchemicalconstituentsinXian-ling-gu-baocapsules. J.Pharm.Biomed.Anal.55,932–933.

Li,X.H.,Xiong,Z.L.,Lu,S.,Zhang,Y.,Li,F.M.,2010.Pharmacokineticsofnaringinand itsmetabolitenaringenininratsafteroraladministrationofrhizomedrynariae extractassayedbyUPLC–MS/MS.Chin.J.Nat.Med.8,40–46.

Liu,Q.F.,Jiao,Z.,Liu,Y.,Li,Z.D.,Shi,X.J.,Wang,W.J.,Wang,B.,Zhong,M.K.,2016.

ChemicalprofilingofSan-HuangdecoctionbyUPLC-ESI-Q-TOF-MS.J.Pharm. Biomed.Anal.131,20–32.

Liu,W.Y.,Zhou,C.,Yan,C.M.,Xie,S.L.,Feng,F.,Wu,C.Y.,Xie,N.,2012.Characterization andsimultaneousquantificationofmultipleconstituentsinAurantiiFructus ImmaturusextractsbyHPLC-DAD-ESI-MS/MS.Chin.J.Nat.Med.10,456–463.

Luo,Q.L.,Nurahmat,M.,Li,M.H.,Sun,J.,Chen,M.X.,Liu,F.,Wei,Y.,Dong,J.C., 2014.PharmacologicalinvestigationofaHPLC/MSstandardizedthreeherbal extractscontainingformulae(Bu-Shen-Yi-Qi-Tang)onairwayinflammationand hypothalamic-pituitary-adrenalaxisactivityinasthmaticmice.Phytomedicine 21,1439–1450.

Naseer,S.,Lone,S.H.,Lone,J.A.,Khuroo,M.A.,Bhat,K.A.,2015.LC–MSguided iso-lation,quantificationandantioxidantevaluationofbioactiveprinciplesfrom Epimediumelatum.J.Chromatogr.B989,62–70.

Qiu,X.H.,Zhang,J.,Huang, Z.H.,Zhu,D.Y., Xu,W.,2013.Profilingofphenolic constituents in Polygonum multiflorum Thunb. by combination of ultra-high-pressure liquid chromatography with linear ion trap-Orbitrap mass spectrometry.J.Chromatogr.A1292,121–131.

(7)

UHPLC–Q-TOF-MS mass spectrometry and HPLC-DAD. Int. J. Food Prop.,

http://dx.doi.org/10.1080/10942912.2016.1256303.

Shevlyakova,O.A.,Vasil’ev,K.Y.,Ikhalainen,A.A.,Antokhin,A.M.,Taranchenko,V.F., Goncharov,V.M.,Mitrofanov,D.A.,Aksenov,A.V.,Rodin,I.A.,Shpigun,O.A.,2016.

Identificationofbarrenwortflavonoidsbyhigh-resolutiontandemmass spec-trometry.J.Anal.Chem.71,768–776.

Song,L.J.,Zhao,W.C.,Zeng,Q.L.,Wu,J.D.,Li,B.H.,2012.Simultaneousdetermination of5majorbioactivecomponentsinHuguCapsulebyHPLC-DAD.J.Chin.Med. Mater.35,2019–2023.

TheStateCommissionofChinesePharmacopoeia,2010.Chin.Natl.DrugQual.Stand. 82,141–143.

Wang,Y.Q.,Guo,Z.M.,Jin,Y.,Zhang,X.L.,Wang,L.,Xue,X.Y.,Liang,X.M.,2010.

IdentificationofprenylflavonoidglycosidesandphenolicacidsinEpimedium koreanumNakaibyQ-TOF-MScombinedwithselectiveenrichmenton“click oligo(ethyleneglycol)”column.J.Pharm.Biomed.Anal.51,606–616.

Wu,H.,Li,X.X.,Yan,X.M.,An,L.,Luo,K.W.,Shao,M.J.,Jiang,Y.,Xie,R.,Feng,F., 2015.Anuntargetedmetabolomics-drivenapproachbasedonLC-TOF/MSand LC–MS/MSforthescreeningofxenobioticsandmetabolitesofZhi-Zi-Da-Huang decoctioninratplasma.J.Pharm.Biomed.Anal.115,315–322.

Xiang,H.,Xu,H.Y.,Zhan,L.B.,2015.Fingerprintanalysisandmulti-component deter-minationofZibuPiyinrecipebyHPLCwithDADandQ-TOF/MSmethod.Nat. Prod.Res.30,1081–1084.

Zhao,H.Y.,Sun,J.H.,Fan,M.X.,Fan,L.,Zhou,L.,Li,Z.,Han,J.,Wang,B.R.,Guo, D.A.,2008.AnalysisofphenoliccompoundsinEpimediumplantsusing liq-uidchromatographycoupledwithelectrosprayionizationmassspectrometry. J.Chromatogr.A1190,157–181.

Imagem

Fig. 1. The total ion chromatogram of HGC (A) and extracted ion chromatogram of 25 identified compounds (B).

Referências

Documentos relacionados

Para análise e síntese do material serão observados os seguintes procedimentos: leitura exploratória, que será realizada a leitura do material para saber o conteúdo dos

Pulps were analyzed for their physicochemical parameters (total solids, pH, soluble solids and acidity), instrumental color, bioactive compounds (total phenolic compounds and

Thirty-six volatile compounds were identified (24 and 12 compounds were positively and tentatively identified, respectively) in the headspace of base and in the

efficient drug candidates for Chagas disease with a less severe side effects profile, we have prepared 17 isoxazole derivatives and tested them against both amastigote and

Stigmasterols, ceramides, including ceramide-1-phosphates and pyrimidines were identified in an ethanol extract of the marine sponge Myxilla sp.. The compounds were identified by

ftom t,I:e axillary f,lexus of mice or directly ftoln the.. C _ ArnE¡ICAN TIYPANOSOMiASß fChâSAS, diseâse) in conventionâl and germftee rats ând

A total of 42, 46, 49 and 54 aromatic compounds were respectively identified in Crystal distilled grape spirits of 51%vol, 65%vol, 77%vol and 80%vol alcohol content, indicating that

Remarkably, some ECs in tumor blood vessels of mice inoculated with MDA-MB-231 and monocytes were hvWF positive (Figure 5 F; black arrow); in the cancer scenario, that