• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número3

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número3"

Copied!
7
0
0

Texto

(1)

w w w. s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Characterization

of

intestinal

absorption

of

C

-glycoside

flavonoid

vicenin-2

from

Lychnophora

ericoides

leafs

in

rats

by

nonlinear

mixed

effects

modeling

Gabriela

A.

Buqui

a

,

Sherwin

K.B.

Sy

b

,

Matilde

Merino-Sanjuán

c

,

Dayana

R.

Gouvea

a

,

Suzana

L.

Nixdorf

d

,

Elza

Kimura

e

,

Hartmut

Derendorf

b

,

Norberto

P.

Lopes

a

,

Andrea

Diniz

a,e,∗

aNPPNS(NúcleodePesquisaemProdutosNaturaiseSintéticos),DepartamentodeFísicaeQuímica,FaculdadedeCiênciasFarmacêuticasdeRibeirãoPreto,UniversidadedeSão

Paulo,RibeirãoPreto,SP,Brazil

bDepartmentofPharmaceutics,CollegeofPharmacy,UniversityofFlorida,Gainesville,USA cDepartamentodeFarmaciayTecnologia,UniversitatdeValencia,Valencia,Spain dDepartamentodeQuímica,UniversidadeEstadualdeLondrina,Londrina,PR,Brazil eDepartamentodeFarmácia,UniversidadeEstadualdeMaringá,Maringá,PR,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15January2015 Accepted12April2015 Availableonline27April2015

Keywords: Vicenin-2 Flavonoid Intestinalabsorption Pharmacokinetic

a

b

s

t

r

a

c

t

Vicenin-2(apigenin-6,8-di-C-␤-d-glucopyranoside)ispresentinhydroalcoholicextractsoftheBrazilian

speciesLychnophoraericoidesMart.,Asteraceae,leaves,andthebiologicaleffectsofthiscompoundhave beendemonstratedincludinganti-inflammatory,antioxidantandanti-tumoreffectsinratmodels.Given thepotentialofthiscompoundasapharmacologicalagent,theaimsofthisinvestigationwereto eval-uatetheextentofintestinalabsorptionofvicenin-2,andtodeterminetheintestinalpermeationprofile usinganinsitusingle-passintestinalperfusiontechnique.AvalidatedHPLC–UVmethodwasappliedto measuretheamountofunabsorbedvicenin-2inthegutafteranoraladministrationof180mgkg−1in

fiverats.Anonlinearmixedeffectsmodelwasusedtodeterminetheabsorptionpharmacokinetic param-etersassumingafirstorderabsorptionandactivesecretionprocessesforthiscompound,whereinthe activesecretionwascharacterizedbyazero-orderprocess.Thepopulationpharmacokineticparameters obtainedwere0.274min−1forthefirst-orderabsorptionrateconstant,16.3%min−1forthezero-order

rateconstant;thefinalpercentageoftheoriginaldosethatwasabsorbedinvivowas40.2±2.5%.These parametersindicatedthatvicenin-2wasrapidlyabsorbedinthesmallintestine.Incontrasttoliterature informationindicatingnoabsorptionofvicenin-2inCaco-2cells,ourresultssuggestedthatvicenin-2 canbeabsorbedinthesmallintestineofrats.Thefindingsupportsfurtherinvestigationofvicenin-2as aviableoralphytopharmaceuticalagentfordigestivediseases.

©2015SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

Thereisanenormousgrowthofworldwideinterestinherbal medicinesinboth thedevelopedand developingcountriesover thelastdecades.Theincreasingmarketforbotanicalproductshas attractedmuchinterestofsomepharmaceuticalcompanies,which hasinturnmotivatedpre-clinicalpharmacologicalstudiesaswell ascontrolledandrandomizedclinicaltrialstoprovethesafetyand efficacyofherbalproducts(Calixto,2000).Inadditiontoshowing pharmacologicalactivities,thepharmacokineticpropertiesofthese

Correspondingauthorat:DepartamentodeFarmácia,UniversidadeEstadualde Maringá,Maringá,PR,Brazil.

E-mail:adiniz@uem.br(A.Diniz).

agentsarekeyfactorsindeterminingwhetheracompoundcould beaviablemedicinalproduct(SyandDerendorf,2014;Syetal.,

2014).

Withgrowinginterestsinpolyphenoliccompoundsas pharma-cologicalagents, flavonoid,belongingtothisgroup,is themost studiedclassofcompounds;theirpharmacologicalactivitiesand pharmacokineticbehaviorshavebeenwellcharacterized. Polyphe-noliccompoundsoftenhavepoorbioavailability,giventhattheyare substratesofbothinfluxandeffluxtransportersandarealso sub-jectedtopre-systemicmetabolism(Barnes,2004;Geeetal.,2000). PhysiologicalpH,formationofconjugatedmetabolitesincluding glucuronidemetabolitesduringitspassagethroughtheenterocytes andevenbiotransformationbyintestinalmicrobiotaareknown toaffectthedispositionofvicenin-2presystemically(Gobbo-Neto

etal.,2005).

http://dx.doi.org/10.1016/j.bjp.2015.04.001

(2)

Mostof thestudiesof flavonoidabsorptionwereperformed ontheaglyconeorO-glycosylformswhichhaveunstable glyco-sidicbondsthatareeasilyhydrolyzed.Incontrast,vicenin-2(1), whosechemicalstructureisshownbelow,isaC-glycosylflavonoid thattendstobemorestableagainsthydrolysisthantheO-glycosyl flavonoids.

HO

HO

HO

HO

HO HO

O

O O

O

1

OH

OH

OH OH

OH

Thiscompoundisfoundinthehydroalcoholicextractsoftheleaves oftheBrazilianspeciesLychnophoraericoidesMart.,Asteraceae,and someofitsbiologicalactivitieshavealreadybeencharacterized. Inrecentstudy,investigatorshavedemonstratedthatL.ericoides extractswhicharerichinvicenin-2wereeffectiveas prophylac-ticagentagainstthediseaseprogressionofcoloncancerintherat model(Fernandesetal.,2011).Otherpharmacologicalactionof thiscompoundincludedanti-inflammatoryandantioxidant prop-erties(Gobbo-Netoetal.,2005).Thesepromisingpharmacological effectspromptedustoinvestigateandcharacterizetheintestinal absorptionofvicenin-2.

Theinvitroandinsituabsorptionmodels,suchasCaco-2cell monolayers,evertedgutsacsand perfusedanimalintestine,are commonlyusedtoinvestigatetransportmechanisms,toclassify permeability,andtopredictinvivoabsorptionofdrugsinhumans

(Lennernasetal.,1997).Theinsitusingle-passintestinalperfusion

techniquehasanadvantagesuchthatitiscarriedoutinlive exper-imentalanimalswithintactbloodsupplyandfunctionalnervous system.Thismethodologyisfoundtobesimpleandhighlyaccurate forpredictingintestinalabsorptioninhumans(Fagerholmetal., 1996).Theaimsofthisinvestigationaretoevaluatetheintestinal absorptionofvicenin-2,toobtaintheintestinalpermeationprofile forthisglycosyl-flavonoid,andtodevelopamathematicalmodel describingitsabsorption.

Materialsandmethods

Chemicals

AllsolventsforchromatographicanalysiswereHPLCgrade.All otherreagentswereP.A.grade.Thevicenin-2(1)wasisolatedfrom LychnophoraericoidesMart.,Asteraceae,accordingtothe method-ologypreviouslydescribed(Gobbo-Netoetal.,2005).

Single-passintestinalperfusionstudies

All animal experiments were conducted using protocols approvedbytheAnimalExperimentandEthicsCommitteeof Lon-drinaStateUniversity(protocol107/09).MalealbinoWistarrats, weighingfrom190to250gwereusedfortheperfusionstudies. Priortoeachexperiment,theratswerefastedovernight,12–18h

priortoexperimentation.Waterwasfreelyavailableforthese ani-malsduringthefastingperiod.

The in situ single-pass perfusion follows the procedure in publishedreports (Fagerholm et al., 1996).Briefly, theanimals wereanesthetizedwithanintra-peritonealinjectionof40mgkg−1 of thiopental solution and were placed on a heated surface maintainedat37◦C.For theperfusion, 10ml isosmoticsolution

(282–297mOsml−1)waspreparedcontaining5%ofTween80(v/v), bufferedatpH6.4withavicenin-2doseof180mgkg−1(n=5).

The remaining amountof drugin the intestinal lumen was collected in the volume of 200␮l per sample and measured every 5min, for a total time of 30min, by a validated high-performance liquid chromatography and ultraviolet detection (HPLC–UV)method.Thesamplescollectedwerefirstcentrifuged at140×gfor15minandthenfrozenat−40◦C. Nodrug

degra-dationwasdetectedafterfreeze-thawcycle.Waterreabsorption wasevaluatedforeachanimal.Thisprocessfollowsapparent zero-orderkinetics(Martin-Villodreetal.,1986;Ruiz-Balagueretal., 2002)andtheremainingvicenin-2concentrationswereproperly corrected.

Analyticalprocedures

Intestinalperfusedsampleswereassayedforvicenin-2 concen-trationusingHPLC–UV.Intestinalperfusedsampleswerediluted in100␮lofmethanol:water(1:1,v/v)solution,filteredacrossa 0.45␮Mmembrane(Millipore®)andanalyzedbychromatographic

system.ThechromatographicsystemconsistsofaShimadzu®

HPLC systemwhichincludedLC10ADpump,UVdetector,Class-VP sys-tem,Rheodyne®7125manualinjectorwitha20lloop.AWaters®

C18analyticalcolumnNova-Pak(3.9×150mm)andguardcolumn C-18(5mm,Hamilton)wasused.Themobilephasewasamixture (20:80,v/v)ofmethanolandultra-purifiedwater,bothcontaining 2%aceticacidatpH2.3;theflowratewas0.8mlmin−1.The wave-lengthusedwas330nm.Calibrationcurvescovering7.0–40.0mM L–1vicenin-2concentrationsintheluminalsampleswereprepared.

Pharmacokineticanalysis

Thevicenin-2concentrationsineachsamplerepresentedthe remainingconcentrationintheintestinallumen.Itwasassumed thatnodegradationoccurredduringtheexperimentsincenoother chromatographicpeakwasobservedat254nmand330nm,which werethewavelengthsthatproducethemaximumexcitationand emissionforflavonoidandphenolrings.

Thefinalpercentageabsorbed(%Abs)wasdeterminedusingEq.

(1):

%Abs= Ct30

Ct0

×100% (1)

where Ct30 is thevicenin-2 concentrationat thelast sampleat 30minandCt0istheinitialvicenin-2concentration.

Flavonoids are substrates for the efflux protein expressed in enterocyte membranes. Among the transporters, the P-glycoproteinwasthemoststudied(LiandPaxton,2013;Tianetal., 2009).Given thattheflavonoids are subjecttoactive secretion bytheenterocytes,boththeMichaelis–Mentenequationandthe zero-orderprocesstodescribedrugsecretionintothelumenwere evaluated,similartothemodelspreviouslydescribed(Munozetal.,

2005).

Model1isafirst-orderabsorptionandzero-ordersecretion pro-cess:

dA

(3)

Model 2 consists of a first-order absorption and Michaelis–Mentenfunctionrepresentingactivesecretion:

dA

dt =−ka·A+ VmsAE

Kms+AE (3)

Model3encompassesMichaelis–Mentenabsorptionandactive secretionprocesses:

dA dt =−

VmA Km+A+

VmsAE

Kms+AE (4)

Model4incorporatesacosinefunctiontotheactivesecretion processinModel2:

dA

dt =−ka·A+ VmsAE

Kms+AE

·(cos2t+1) (5)

Model5alsoincorporatesacosinefunctiontothezero-order secretionprocessinModel1:

dA

dt =−ka·A+k0·(cos

2t+1) (6)

wheredA/dtistheabsorptionrate,Aistheremainingvicenin-2 concentrationsinthegut,karepresentsthefirstorderabsorption rateconstant,Vmsreferstothemaximumsecretionrate,Kms is theconcentrationatwhichthesecretionishalfmaximal,Vmisthe maximumabsorption,Kmistheconcentrationwhichresultsinhalf maximumabsorption,k0isthezero-ordersecretionprocess,and AEissupposedlythevicenin-2concentrationintheenterocytethat isachievedinfirst5min.GiventhatAandAEareproportional,A, representingtheamountremaininginthegut,wasusedforAE.

Theremainingconcentrationofvicenin-2reportedasa percent-ageoftheinitialdoseineachsamplewasusedinthemodelfit. ThemodelslistedinEqs.(1)–(5)werefittedtothedatafromall animals,usingNonmem®versionVII.2(Buquietal.,2015;Munoz

etal.,2005;Sy etal.,2013).Thefirstorderconditional

estima-tionwithinteraction,usingsubroutineADVAN9andtoleranceof 5wasused.Between-animalvariabilityin themodelparameter wasassumedtobelog-normallydistributed.TheBayesianestimate ofindividualmodel-predictedvicenin-2remainingconcentration wasevaluatedwithandwithoutweightingfactorsbyusing addi-tiveorproportionalerrormodelsorthecombinationofboth.Given theexploratorynatureofthis study,modelselectionwasbased onmaximumlikelihoodstatistics,goodness-of-fitplots (consist-ingof populationandindividualpredictionsversusobservations

andconditionalweightedresidualsversustimeandindividual pre-dictions)andvisualpredictivechecks(VPC,with1000simulated profiles).Forhierarchicalmodels,thedifferenceinobjective func-tionvaluewas-squareddistributed.Ap-valueof0.01wasused asthecriteriaforselectingamorecomplexmodeloverareduced one,correspondingtothedifferenceinobjectivefunctionvalueof 6.63.Theevaluationofprecisionintheestimatedparametervalue wasbasedontherelativestandarderror.

Therobustnessofthefinalmodelandparameterimprecision wasevaluatedusinganon-parametricbootstrapprocedure.The algorithminvolvesrepeatedrandomsamplingofanimalsinthe study,withreplacementoftheoriginaldatasetineachsubsequent samplingtoproduceanotherdatasetofthesamesizeastheoriginal, butwithadifferentlistofanimals.There-samplingwasrepeated 500times.Thefinalpopulationpharmacokineticmodelwasfitted toeachofthebootstrapdatasetsandasetofmodelparameters weredeterminedforeach run.Themedianand 95%confidence intervalswerecomputedandcomparedtothevaluesfromthe orig-inalNonmem®analysis.PerlSpeaksNonmem®3.5.5runningactive

Perl® 5.10.1(Active StateSoftware Inc.,Vancouver,BC,Canada)

wereusedtomanagepost-NonmemanalysisandXpose®4running

onR®2.14.0forgraphicalevaluation.

Results

AchromatographicmethodusingHPLC–UVwasdevelopedand validatedforthequantificationofvicenin-2thatremainedinthe gutofratsovera30minperiod.Thestandardcurveforcalibration showedexcellentlinearplotsrelatingthepeakareatosolute con-centration(r2>0.9990);theinterceptofthelinearregressiondid notsignificantlydifferfromzero.Accuracywasevaluatedby cal-culatingtherelativeerror,whichwaslessthan15%.Precisionwas evaluatedbycalculatingthecoefficientofvariation,whichwasless than5%.Theseresultswereconsideredsatisfactory.

Theextentofvicenin-2absorptioncomputedfromEq.(1)was 40.2±2.5%.Theabsorptionprofilesofvicenin-2insixratswere evaluatedusingfivemodels.Theparameterestimatesforthefive modelsarelistedinTable1.Assomestudieshaveindicatedthat flavonoidsaresubstratesofeffluxtransportersoftheATPbinding cassettefamily(ABCB1,p-glycoprotein)(Barnes,2004;Fagerholm

etal.,1996;Geeetal.,2000),aMichaelis–Mentenkineticwas

incor-poratedtodescribetheactivesecretionprocessinModels2through

Table1

Populationpharmacokineticmodelsandmodelparameterestimatesforvicenin-2absorptioninrats.

Modeldescription

Absorption First-order First-order Michaelis-Menten First-order First-order

Secretion Zero-order Michaelis–Menten Michaelis–Menten Michaelis–Mentenwithcosinefunction Zero-orderwithcosinefunction

ModelNo. 1 2 3 4a 5a

Parameter

ka(min−1) 0.274(11%) 0.28(9.2%) 0.502 0.291

Vm(%min−1) 91.7(105%)

Km(%) 47,000(130%)

k0(%min−1) 16.3(9.4%) 8.78

Vms(%min−1) 17.2(7.3%) 6.99(84%) 9.55

Kms(%) 18.2(1.8%) 1.15(295%) 12.1

(min−1) 1.21 1.88

Interindividualvariability

%CVofka 8.4(75%) 8.2(77%) 60.5 0.0892

%CVofVm 16.6(90%)

%CVof 14.0 0.4

Residualvariability

Residualerror 0.00154(25%) 0.00154(25%) 0.00148(26%) 0.00142 0.00134

MOFV 118.43 118.4 117.143 151.05 117.78

Valuesreportedasmean(relativestandarderror,%).

(4)

100

90

80

70

60

50

40

Unabsorbed fla

v

onoid (%)

Time (min)

0 5 10 15 20 25 30 0

Rat No : 1 Rat No : 2 Rat No : 3 Rat No : 4 Rat No : 5 5 10 15 20 25 30 0 5 10 15 20 2530

0 5 10 15 20 2530 0 5 10 15 20 25 30 30

20

10

0

Fig.1.Plotofremainingunabsorbedvicenin-2asapercentageoftheinitialconcentrationintheintestinallumenversustimeusingtheratsingle-passperfusionmodel(n=5). ThesolidlinesrepresentindividualBayesianpredictedvaluesanddottedlinesarethepopulation-predictedvalues.Theactualobserveddataarerepresentedbytriangular symbols.

4.Theminimumobjectivefunctionvalues(MOFV)inTable1were comparable for allfive models,exceptfor Model 4, whichwas approximately33pointsgreaterthantheotherfourmodels.The saturable absorptionmodel (Model3)was consideredunstable giventhatthemagnitudeofthestandarderroroftheparameter estimateswasverylargerangingfrom84%to295%.

WeinitiallyevaluatedModel2giventhattheactivesecretionis asaturableprocess.Theparameterestimateswere0.28min−1for thefirstorderabsorptionrateconstantka,17.2%min–1and18.2% forVmsandKmsoftheactivesecretionprocess,respectively.The relativestandarderroroftheparameterestimatesrangedfrom1.8% to9.2%,whichweremarkedlysmallerthanthoseofModel3.We furtherevaluatedareducedmodelbyusingazero-ordersecretion processtoreplacetheMichaelis–Mentenprocess(Model1).The MOFVofModels1and2wereidentical,suggestingthatthemore complexMichaelis–Mentenactivesecretiondoesnotprovide sig-nificantadvantageoverthemoreparsimoniouszero-orderprocess. TheparametersofModel1were0.274min−1and16.3%min−1for kaandzero-ordersecretionk0,respectively.Theprecisionofthe pharmacokineticparametersandtheirvariabilitywereconsidered acceptableforbothModels1and2.

Theabsorptionprofilesofvicenin-2inthefiveratsareplotted inFig.1withtheremainingamountasapercentageofthe origi-naldoseversustimerepresentedbytrianglesymbols.Themodelfit ofEq.(1),whichhasfirst-orderabsorptionandzero-order secre-tionprocesses, totheobserved dataare representedasdashed linesandsolidlinesforthepopulationpredictedandindividual predictedcurvesinthesamefigure,respectively.Giventhe iden-ticalMOFVofbothModels1and2,theindividualplotofModel 2isidenticaltothatshowninFig.1.Theplotforeachanimalis presentedwiththetoppanelstripindicatedbyanimalnumber. Therewasagoodagreementbetweenmodelpredictionandthe observedpercentageunabsorbedvicenin-2.Theplotsofthemodel predicted(PRED)andindividualpredicted(IPRED)concentrations versusobserveddata(OBS)areshownonthetopgraphsofFig.3

forthefinalmodeldescribingvicenin-2intestinalabsorption.The conditionalweightedresiduals(CWRES)versustimeandCWRES

versusPREDplotsinthebottomgraphsofFig.2showthatmostof thedatalieswithin2unitsfromthezero-ordinate.

From theindividualplots and thediagnostic plotof CWRES versus TIME in Figs. 1 and 2 respectively, we noticed an alternating sinusoidal pattern with a period of approximately 25min.Asinusoidal functioncos2t+1wasincorporatedtothe Michaelis–Mentenandzero-ordersecretionprocessesinModels4 and5.Giventherangeofvaluesofacosinefunctionisbetween−1 and1,thecosinefunctionwassquaredandtranslatedby1unitto avoidnegativeandzerovalues.Bothmodelsachievedsuccessful convergencebutmatrixsingularitywasencountered. Incorporat-ing thesinusoidal functiondidnot give anadvantage over the reducedmodels1and2,astheMOFVswereeitherthesameor increased.

ThebootstrapanalysesforbothModels1and2arereportedin

Table2.Themedianvaluesweresimilartothepopulation

param-eterestimatesoftheoriginaldataandthe95%confidenceinterval (CI)containedtheparameterestimatesforModel1.The param-etersoftheMichaelis–MentenactivesecretionprocessinModel 2weresmallerthanthebootstrapmedianandmean,suggesting thatthere maybemultiplelocalminimaor possibleparameter non-identifiabilityforVmsandKms.Wheninterindividual variabil-itywasintroducedtoeitherVmsorKms,modelconvergencewas achievedwithboundaryproblems.

ThedegeneratevisualpredictivecheckinFig.3showedthatthe 2.5thand97.5thpercentilesofthesimulatedresultsfromModel1 containedtheindividualdataandtheobserveddata.These diag-nosticsindicatedthatthepopulationestimatesinthefinalmodel wereaccurateandstable.

Discussion

(5)

Predicted (%)

Observed (%) PRED vs. OBS

Time (h)

0 20 40 60 80 100 0

20 40 60 80 100

Indv

. Predicted (%)

Observed (%) IPRED vs. OBS

0 20 40 60 80 100 0

20 40 60 80 100

CWRES

CWRES vs. Time CWRES vs. PRED

0 5 10 15 20 25 30 –6

–4 –2 0 2 4 6

–6 –4 –2 0 2 4 6

CWRES

Predicted (%)

60 70 80 90 100

Fig.2. Goodness-of-fitplotforthefinalvicenin-2intestinalabsorptionpopulationmodel.IPRED,individualpredictedconcentration;OBS,observedconcentrations;PRED, modelpredictedconcentrations;CWRES,conditionalweightedresiduals.

Becausethecurrentstudyisperformedinliveanimals,theactive transportprocessisintact.Thedifferenceintheextentof absorp-tionbetweenthetwotechniquessupportedthenotionthatthe efflux pumps play an active role in limiting the absorption of vicenin-2,asvicenin-2canonlybeabsorbedthroughpassive trans-portacrossthemembraneintheBMCassay(Molero-Monfortetal.,

2001).TheBMCprediction methodwasbased onthechemical propertiesofvicenin-2andestimatedavalue70%largerthanwhat theinvivomodelhadfound.

Absorption studies of vicenin-2 in Caco-2 cells showed that vicenin-2 were not absorbed in the conditions that were tested (Gouvea et al., 2014). The possible explanationsfor the

Table2

StabilityofModels1and2usingnonparametricbootstrap.

ModelNo. 1 2

Mean(RSE%) Median(95%CI) Mean(RSE%) Median(95%CI)

Parameter

ka(min−1) 0.277(10.6) 0.279(0.217,0.327) 0.39(18.8) 0.388(0.285,0.563)

k0(%min−1) 16.4(9.0) 16.4(13.1,18.8)

Vms(%min−1) 35.5(32.1) 36.7(17.4,61.0)

Kms(%) 29.0(51.7) 31.2(0.98,52.3)

Interindividualvariability

%CVofka 7.7(26) 8.4(0.7,11.1) 4.0(0.45,9.3)

Residualvariability

Residualerror 0.00151(26) 0.00151(0.00074,0.00228) 0.00156(28.2) 0.00157(0.00074,0.00242)

MOFV 113.5(8.7) 114.9(83.0,126.4) 112.8(9.7) 114.2(83.0,127.8)

(6)

Time (min)

Unabsorbed fla

vinoid (%)

0 5 10 15 20 25 30 0

20 40 60 80 100

Fig.3. VPCplotforthefinalvicenin-2intestinalabsorptionpopulationmodel,where theobserveddataareincircles,themedianinsolidlineand2.5thand97.5th per-centilesofthepredictionindashedlines.Thedarkergrayshaderepresentsthe90% confidenceintervalofthemedianandthelightergrayshadesarethe90%confidence intervalsofthe2.5thand97.5thpercentiles.

discrepanciesbetweentheirstudyandthecurrentstudyarelow dosesandthesiteofabsorption.TheinvestigatorsusingCaco-2 cellstestedonlylowconcentrations at25 and50␮Mvicenin-2, whereasthepresentstudyusedadoseof180mgkg−1.Atthisdose, theconcentrationofdrugattheabsorptionsiteisapproximately 3.6mgml−1,whichisequivalentto6000M.Itislikelythatthe permeationprocessmayalsobedifferentinthecolonversusthat inthesmallintestine.Caco-2cellsarederivedfromcoloncancer cellswhereasmajorityofvicenin-2absorptionintheinvivomodel inthecurrentstudyislikelytohaveoccurredinthesmallintestine. Thesinglepassintestinalperfusiontechniqueillustratedthat therateofvicenin-2absorptionwasrapidbuttheextentof absorp-tionat 40%can beclassifiedas poorlyabsorbed. The collective informationpointstovicenin-2beingabsorbedbythesmall intes-tine butnot likely absorbedin thecolon. Thispharmacokinetic characteristicofvicenin-2suggeststhepotentialforthiscompound asa local anti-inflammatoryor anti-oxidativeagentfor intesti-nal diseases. This property may possibly explain how extracts fromL.ericoideswereeffectivebothasaprophylacticagentand treatmentforcoloncancerintheanimalmodel(Fernandesetal., 2011).Thedoseof90mgkg−1exhibitedefficacioussystemic anti-inflammatoryactivity(Gobbo-Netoetal.,2005)buthigherdose (180mgkg−1)wasusedin thisworkinorder toguarantee that theremainingconcentrationismeasurablebyHPLCassuminga rapidintestinalabsorptionofvicenin-2.Theresultsuggeststhat theextentofvicenin-2absorptioninthesmallintestinecouldbe sufficienttoelicitpharmacologicaleffectatthesiteofaction.The informationgeneratedfromthisstudycanbeusefulforguiding targetsandformulationsforthepotentialdevelopmentofnovel phytomedicinescontainingvicenin-2againstcoloncancer,Crohn’s diseaseandotherintestinalinflammatoryinjuries.However,more studiesarestillneededtoconfirmthishypothesis.

This study also evaluated the kinetics of vicenin-2 absorption using a first-order absorption and zero-order or Michaelis–Mententype secretionintotheintestinallumen.The Michaelis–Menten secretionprocess combined witheither first orderorMichaelis–Mentenorthecombinationofbothfor absorp-tionwaspreviouslyusedtodescribetheabsorptionbehaviorof ritonavirinrats,alsoassumingthatritonavirissubjecttoefflux transport(Munozetal.,2005).Theinvestigatorshaveshownthat

theapplicationoftwo Michaelis–Mentenfunctionsmayleadto instabilityandtheMichaelis–Mentenactivesecretionprocesscan becollapsedtoazero-order process.Theirresultscorroborated withourfindings.Ourstudyhasshownthatfurthermodel reduc-tiontoafirst-orderabsorptionandzero-ordersecretionprocesses canadequatelydescribetheabsorptionkineticsofvicenin-2.The differencesinthetwomodelingstrategywerethattheirstudywas conductedinfourdoseswhereasourstudyhadonlyonedoselevel, andtheirmodelswerefittedtothedrugconcentrationsreported inmicromolarunitwhereasthedatafromthepresentstudywere modeled onthepercent of thedosethat wasunabsorbed. The modelsutilizedinthisstudydescribedwelltheabsorptionprofiles ofvicenin-2intheinvivoratmodel.

Insummary,theabsorptionofvicenin-2iscomplexandlikely non-linear.Thisstudycharacterizedthegastro-intestinal absorp-tionkineticsofvicenin-2andhadshownthepotentialroleofactive secretionintothelumenofliveanimals.Furtherinvestigationof vicenin-2as anoral pharmacologicalagentissupportedby the findingsofthisstudy.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Authors’contributions

GABandMMSdevelopedtheanimalmodel.NPLwas responsi-bleforthecollectionofplantsampleaswellasidentificationand confirmationoftheherbalproduct.DRGisolatedthevicenin-2.SLN andEKdevelopedtheanalyticalmethodology.SKBSandHDwere responsiblefordataanalysisand thedevelopmentofthe math-ematicalmodels.ADandNPLdesignedthestudy,supervisedthe laboratoryworkandwrotethemanuscript.Alltheauthorsread thefinalmanuscriptandapprovedthesubmission.

Acknowledgements

This study was supported by a grant from the Fapesp and Fundac¸ãoAraucária(024/2007)andtheCAPES(BEX1525/06-9).

References

Barnes,S.,2004.Theimportanceofinvivometabolismofpolyphenolsandtheir biologicalactions.In:Meskin,M.,Bidlack,W.,Davies,A.,Lewis,D.,Randolph,R. (org.),Phytochemicals:MechanismsofAction.CRCombiPress,BocaRaton,pp. 51–59.

Buqui,G.A.,Gouvea,D.R.,Sy,S.K.,Voelkner,A.,Singh,R.S.,daSilva,D.B.,Kimura,E., Derendorf,H.,Lopes,N.P.,Diniz,A.,2015.Pharmacokineticevaluationof avicu-larinusingamodel-baseddevelopmentapproach.PlantaMed.81,373–381. Calixto,J.B.,2000.Efficacy,safety,qualitycontrol,marketingandregulatory

guide-linesforherbalmedicines(phytotherapeuticagents).Bras.J.Med.Biol.Res.33, 179–189.

Diniz,A.,Escuder-Gilabert,L.,Lopes,N.P.,Gobbo-Neto,L.,Villanueva-Camanas,R.M., Sagrado,S.,Medina-Hernandez,M.J.,2007.Permeabilityprofileestimationof flavonoidsandotherphenoliccompoundsbybiopartitioningmicellarcapillary chromatography.J.Agric.Food.Chem.55,8372–8379.

Fagerholm,U.,Johansson,M.,Lennernas,H.,1996.Comparisonbetween permeabil-itycoefficientsinratandhumanjejunum.Pharm.Res.13,1336–1342. Fernandes,C.R.,Turatti,A.,Gouvea,D.R.,Gobbo-Neto,L.,Diniz,A.,Ribeiro-Silva,

A.,Lopes,N.P.,Garcia,S.B.,2011.TheprotectiveroleofLychnophoraericoides Mart.(Brazilianarnica)in1,2-dimethylhydrazine-inducedexperimentalcolon carcinogenesis.Nutr.Cancer63,593–599.

Gee,J.M.,DuPont,M.S.,Day,A.J.,Plumb,G.W.,Williamson,G.,Johnson,I.T.,2000. Intestinaltransportofquercetinglycosidesinratsinvolvesbothdeglycosylation andinteractionwiththehexosetransportpathway.J.Nutr.130,2765–2771. Gobbo-Neto,L.,Santos,M.D.,Kanashiro,A.,Almeida,M.C.,Lucisano-Valim,Y.M.,

Lopes,J.L.,Souza,G.E.,Lopes,N.P.,2005.Evaluationoftheanti-inflammatoryand antioxidantactivitiesofdi-C-glucoflavonesfromLychnophoraericoides (Aster-aceae).PlantaMed.71,3–6.

(7)

Lennernas,H.,Nylander,S.,Ungell,A.L.,1997.Jejunalpermeability:acomparison betweentheusingchambertechniqueandthesingle-passperfusioninhumans. Pharm.Res.14,667–671.

Li,Y.,Paxton,J.W.,2013.TheeffectsofflavonoidsontheABCtransporters: conse-quencesforthepharmacokineticsofsubstratedrugs.Expert.Opin.DrugMetab. Toxicol.9,267–285.

Martin-Villodre,A.,Pla-Delfina,J.M.,Moreno,J.,Perez-Buendia,D.,Miralles,J., Col-lado,E.F.,Sanchez-Moyano,E.,delPozo,A.,1986.Studiesonthereliabilityofa bihyperbolicfunctionalabsorptionmodel.I.Ring-substitutedanilines.J. Phar-macokinet.Biopharm.14,615–633.

Molero-Monfort,M.,Escuder-Gilabert,L.,Villanueva-Camanas,R.M.,Sagrado,S., Medina-Hernandez,M.J.,2001.Biopartitioningmicellarchromatography:an invitrotechniqueforpredictinghumandrugabsorption.J.Chromatogr.B: Biomed.Sci.Appl.753,225–236.

Munoz,M.J.,Merino-Sanjuan,M.,Lledo-Garcia,R.,Casabo,V.G.,Manez-Castillejo, F.J.,Nacher,A.,2005.Useofnonlinearmixedeffectsmodelingfortheintestinal absorptiondata:applicationtoritonavirintherat.Eur.J.Pharm.Biopharm.61, 20–26.

Ruiz-Balaguer,N.,Nacher,A.,Casabo,V.G.,MerinoSanjuan,M.,2002.Intestinal transportofcefuroximeaxetilinrats:absorptionandhydrolysisprocesses.Int. J.Pharm.234,101–111.

Sy,S.K.,Derendorf,H.,2014.Pharmacometricsinbacterialinfections.In:Schmidt, S.,Derendorf,H.(org.),AppliedPharmacometrics,1sted.Springer,NewYork, pp.229–258.

Sy,S.K.,Singh,R.P.,Shilbayeh,S.,Zmeili,R.,Conrado,D.,Derendorf,H.,2013. Influ-enceofCYP3A56986A>GandABCB13435C>Tpolymorphismsonadverse events associated with tacrolimus in Jordanian pediatric renal transplant patients.Clin.Pharmacol.Drug.Dev.2,67–78.

Sy,S.K.,Wang, X., Derendorf,H., 2014.Introductionto pharmacometrics and quantitativepharmacologywithanemphasisonphysiologicallybased phar-macokinetics.In:Derendorf,H.,Schmidt,S.(org.),AppliedPharmacometrics. Springer,NewYork,pp.1–64.

Imagem

Fig. 1. Plot of remaining unabsorbed vicenin-2 as a percentage of the initial concentration in the intestinal lumen versus time using the rat single-pass perfusion model (n = 5).
Fig. 2. Goodness-of-fit plot for the final vicenin-2 intestinal absorption population model
Fig. 3. VPC plot for the final vicenin-2 intestinal absorption population model, where the observed data are in circles, the median in solid line and 2.5th and 97.5th  per-centiles of the prediction in dashed lines

Referências

Documentos relacionados

Considering the importance of intestinal villus integrity for nutrient absorption and weight performance among poultry, the objective of the present study was to evaluate

In an active construction such as (1a) below, for example, its external argument is realized as the syntactic subject, bearing nominative Case and triggering

In the pasteurized pulp, the decrease is linear and shows first order kinetics; however, the non- pasteurized pulp showed second order reaction kinetics, which indicates that

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

O sistema de controle avançado em estudo define o set-point dos seguintes controladores PID que compõem a base do sistema de controle regulatório: (i)- alimentação de minério fresco,

Há, contudo, alguns aspectos em que estas construções são ligeiramente diferentes, consoante as variedades do Português, nomeadamente na proporção entre leituras temporais e

Relativamente às dimensões ambiental e social os resultados também são estatisticamente significativos e positivos (p<0.1 e p<0.01, respetivamente). De facto, e no

No que respeita a Reumatologia e apesar da enorme e extraordinária oferta de exames com- plementares de diagnóstico (ECD) de imagem, laboratório e outros, a clínica, e