• Nenhum resultado encontrado

Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of lignin contents in tropical forages using different analytical methods and their correlations with degradation of insoluble fiber"

Copied!
17
0
0

Texto

(1)

ContentslistsavailableatScienceDirect

Animal

Feed

Science

and

Technology

journalhomepage:www.elsevier.com/locate/anifeedsci

Evaluation

of

lignin

contents

in

tropical

forages

using

different

analytical

methods

and

their

correlations

with

degradation

of

insoluble

fiber

Daiany

I.

Gomes

a

, Edenio

Detmann

a,∗

, Sebastião

de

C.

Valadares

Filho

a

,

Romualdo

S.

Fukushima

b

,

Marjorrie

A.

de

Souza

a

,

Tiago

N.P.

Valente

a

,

Mário

F.

Paulino

a

,

Augusto

C.

de

Queiroz

a

aDepartamentodeZootecnia,UniversidadeFederaldeVic¸osa,Vic¸osa36571-000,MinasGerais,Brazil bFaculdadedeMedicinaVeterináriaeZootecnia,UniversidadedeSãoPaulo,Pirassununga,SãoPaulo,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21October2010

Receivedinrevisedform11April2011 Accepted4May2011

Keywords:

Acetylbromidelignin

Indigestibleneutraldetergentfiber Klasonlignin

Potassiumpermanganatelignin Sulfuricacidlignin

a

b

s

t

r

a

c

t

Wecomparedthelignincontentsoftropicalforagesbydifferentanalyticalmethodsand evaluatedtheircorrelationswithparametersrelatedtothedegradationofneutraldetergent fiber(NDF).Thelignincontentwasevaluatedbyfivemethods:cellulosesolubilizationin sulfuricacid[Lignin(sa)],oxidationwithpotassiumpermanganate[Lignin(pm)],theKlason ligninmethod(KL),solubilizationinacetylbromidefromaciddetergentfiber(ABLadf)and solubilizationinacetylbromidefromthecellwall(ABLcw).Samplesfromtengrassesand tenlegumeswereused.Thelignincontentvaluesobtainedbygravimetricmethodswere alsocorrectedforproteincontamination,andthecorrectedvalueswerereferredtoasLignin (sa)p,Lignin(pm)pandKLp.TheindigestiblefractionofNDF(iNDF),thediscretelag(LAG) andthefractionalrateofdegradation(kd)ofNDFwereestimatedusinganinvitroassay. Correctingforproteinresultedinreductions(P<0.05)inthelignincontentsasmeasured bytheLignin(sa),Lignin(pm)and,especially,theKLmethods.Therewasaninteraction (P<0.05)ofanalyticalmethodandforagegroupforlignincontent.Ingeneral,LKpmethod providedthehigher(P<0.05)lignincontents.Theestimatesoflignincontentobtainedbythe Lignin(sa)p,Lignin(pm)pandLKpmethodswereassociated(P>0.05)withalloftheNDF degradationparameters.However,thestrongestcorrelationcoefficientsforallmethods evaluatedwereobtainedwithLignin(pm)pandKLp.Thelignincontentestimatedbythe ABLcwmethoddidnotcorrelate(P>0.05)withanyparametersofNDFdegradation.There wasacorrelation(P<0.05)betweenthelignincontentestimatedbytheABLadfmethodand iNDFcontent.Nonetheless,thiscorrelationwasweakerthanthosefoundwithgravimetric methods.Fromtheseresults,weconcludedthatthegravimetricmethodsproduceresidues

Abbreviations:ABLadf,lignindeterminedbysolubilizationwithacetylbromidefromtheaciddetergentfiber;ABLcw,lignindeterminedbysolubilization withacetylbromidefromthecellwallmatrix;CP,crudeprotein;DM,drymatter;iNDF,indigestiblefractionofneutraldetergentfiber;kd,fractional degradationrateofpotentiallydegradableneutraldetergentfiber;KL,lignindeterminedbyKlasonmethod;KLp,lignindeterminedbyKlasonmethodand correctedforprotein;LAG,discretelagforfiberdegradation;Lignin(sa),lignindeterminedbysolubilizationofcellulosewithsulfuricacid;Lignin(sa)p, lignindeterminedbysolubilizationofcellulosewithsulfuricacidandcorrectedforprotein;Lignin(pm),lignindeterminedbyoxidationwithpotassium permanganate;Lignin(pm)p,lignindeterminedbyoxidationwithpotassiumpermanganateandcorrectedforprotein;NDF,neutraldetergentfiber;pdNDF, potentiallydegradablefractionofneutraldetergentfiber.

∗ Correspondingauthor.Tel.:+553138992252;fax:+553138992252. E-mailaddress:detmann@ufv.br(E.Detmann).

0377-8401 © 2011 Elsevier B.V. doi:10.1016/j.anifeedsci.2011.05.001

(2)

thatarecontaminatedbynitrogenouscompounds.Adjustmentforthesecontaminantsis suggested,particularlyfortheKLmethod,toexpresslignincontentwithgreateraccuracy. TherelationshipsbetweenlignincontentmeasurementsandNDFdegradationparameters canbebetterdeterminedusingKLpandLignin(pm)pmethods.

© 2011 Elsevier B.V.

1. Introduction

Thequantificationofthenutritionalvalueofruminantfeedrequiresstudiesthatevaluatethefiberfractionofforages, whichisoffundamentalimportanceinthetropicsandsubtropicsasitprovidessignificantenergyatlowcost.Thefiber fractionshouldoccupyacrucialpositioninenergyevaluation,asitisnaturallymorevariablethantheotherchemical components,suchascellcontents(Detmannetal.,2008).

Severalfactorshavebeenstudiedinanattempttoclarifytheuseofforagesbyanimalstooptimizeruminantperformance inthetropics.Factorsassociatedwiththecompositionofthecellwallhavebeenfoundtoberesponsibleforthelowerforage intakeandanimalperformanceinthetropics.Ofthecomponentsofthecellwall,ligninisconsideredthemainlimiting factorofthedegradationoffibrouspolysaccharidesintherumen(VanSoest,1994).

Degradationofthecellwallrequiresanactivemicrobialpopulationthatiscapableofutilizingitscomponents.Therefore, itdependsonacomplexinteractionofmicrobialenzymesandsubstrate,whichwilldeterminetheeffectivenessofthe degradationprocess(Detmannetal.,2009).Thus,thecomponentsofthecellwallthatpreventthecolonizationandutilization ofthefibrousfractionsoffeedsmustbestudiedcarefullynotonlyasabsolutechemicalstructures,butalsoinregardtotheir influenceonthedynamicprocessofruminaldegradation.

Inthemajorityofnutritionalevaluations,thecomplexitiesofthebiologicalmechanismsofdigestionhavebeenignored becauselignincontentiscorrelatedwiththepunctualdigestibilityofforages(VanSoest,1963;JungandVogel,1986;Jung andVarel,1988;FukushimaandHatifield,2004).However,theprocessofsubstrateuseinthegastrointestinaltractofthe ruminantencompassesseveralmorecomplexfactors.Thus,theassociationsbetweenthelignincontentandvariablesrelated tothepotentialforandeffectivenessofmicrobialdegradationofinsolublefiberareimportantfromabiologicalstandpoint. Itisunclearwhichmethodproducesmostaccurateestimatesoflignincontentsintropicalforages.Nevertheless,from anutritionalandfunctionalstandpoint,themethodsforthequantificationofligninmustbeseenasameanstocheckthe portionofthefeedthatcorrespondstodeleteriouseffectsonthedigestionoffibrouscarbohydrates,whichseemstobemore importantnutritionallywhencomparedtoevaluationofabsolutechemicalvalues.

Nomeasureofforagequalitycanbefullycorrect,buttheusefulnessofthedataresultingfromeffortsaimedatthe improvementofforagequalityislimitedbyhowthematerialischaracterized(JungandAllen,1995).Therefore,the mea-surementmethodthatestablishesthebestrelationshipbetweenlignincontentandthefiberruminaldegradationoftropical foragesremainsundefined.

Inthisstudy,weaimedtoevaluatelignincontentintropicalforagesbydifferentanalyticalmethodsandtoevaluateits relationshipwithneutraldetergentfiber(NDF)degradationparametersintropicalgrassesandlegumes.

2. Materialsandmethods 2.1. Locationandsamples

TheexperimentwasconductedattheAnimalNutritionLaboratoryoftheAnimalScienceDepartmentoftheUniversidade FederaldeVic¸osainVic¸osa,Brazil,andattheLigninLaboratoryoftheSchoolofVeterinaryMedicineandAnimalScienceof theUniversidadedeSãoPauloinPirassununga,Brazil.

Tengrasses,Pennisetumpurpureum,Brachiariadecumbens,Panicumrepens,Brachiariahumidicula,Andropogongayanus, Panicummaximumcv.Aruana,Panicummaximumcv.Mombac¸a,Brachiariabrizanthacv.Xaraés,tifton85bermudagrass (Cynodonsp.)andPanicummaximumcv.Massai,andtenlegumes,Arachispintoi,Medicagosativa,Leucaenaleucocephala, Galactiastriata,Dolichoslablab,Centrosemapubescens,Glycineweghtii,Gliricidiasepium,StylosantesguianenensisandCajanus cajan,wereevaluated.Theforageswerecultivatedin2-m×4-mplots.AllsampleswerecutatgroundlevelinDecember 2008.Theplantshadapproximately45daysofregrowth.

Thesampleswereoven-driedat60◦Candprocessedinaknifemill(1-mm). 2.2. Laboratoryanalyses

2.2.1. Chemicalcompositionofsamples

Thedrymatter(DM,indexno.934.01),organicmatter(indexno.942.05),crudeprotein(CP,indexno.954.01),andether extract(indexno.920.39)contentsofthesampleswereanalyzedaccordingtothemethodsoftheAOAC(1990).FortheNDF analysis,thesamplesweretreatedwithaheat-stablealphaamylasewithoutusingsodiumsulfiteandcorrectedforresidual ash(Mertens,2002)andprotein(Licitraetal.,1996)(Table1).

(3)

Table1

Chemicalcompositionofforages.

Forage DMa,b OMa,c CPa,c EEa,c aNDFom,pa,c NFCa,c,d Grasses P.purpureum 200.2 886.6 113.7 21.3 658.0 93.6 B.decumbens 305.8 920.6 78.5 36.9 710.3 94.9 P.repens 310.7 951.5 97.3 25.4 714.8 114.0 B.humidicola 290.2 930.9 70.2 23.1 723.0 114.5 A.gayanus 290.5 940.4 87.9 23.2 736.7 92.5 P.maximumcvAruana 347.5 942.1 78.0 25.1 736.5 102.5 P.maximumcvMombac¸a 294.6 905.6 103.9 12.8 690.4 98.8 B.brizanthacvXaraés 272.1 933.1 86.8 23.8 719.8 102.7 Cynodonsp. 312.5 946.5 107.4 24.0 692.3 122.8 P.maximumcvMassai 321.0 932.9 72.6 21.5 799.5 39.0 Legumes Arachispintoi 198.7 918.8 176.1 18.8 403.6 320.4 Medicagosativa 256.9 916.7 219.6 48.5 398.7 249.7 Leucenaleucocephala 342.5 934.2 220.8 39.7 408.9 264.8 Galactiastriata 332.9 924.8 198.7 26.9 407.1 292.1 Dolichoslablab 195.8 914.3 168.7 29.8 443.6 272.2 Centrozemapubescens 262.7 932.6 156.9 20.8 680.9 74.0 Glicinewightti 243.2 904.9 178.2 36.5 512.3 177.8 Gliricidiasepium 176.2 934.7 196.8 15.5 598.0 124.4 Stylosantesguianenensis 304.2 942.4 127.5 27.0 546.9 241.0 Cajanuscajan 293.8 949.2 169.8 29.0 692.5 57.9

aDM,drymatter;OM,organicmatter;CP,crudeprotein;EE,etherextract;aNDFom,p,neutraldetergentfiberassayedwithaheatstableamylaseand

expressedexclusiveforresidualashandprotein;NFC,non-fibrouscarbohydrates.

bg/kg. cg/kgDM.

dNFC=OM(CP+EE+aNDFom,p)(DetmannandValadaresFilho,2010).

2.2.2. Ligninanalyses

Thelignincontentsofforageswerequantifiedbyfivedifferentmethods:cellulosesolubilizationbysulfuricacidafter extractionwithaciddetergent[Lignin(sa)];oxidationbypotassiumpermanganateafterextractionwithaciddetergent [Lignin(pm)];theKlasonligninmethod(KL);thesolublelignininacetylbromidemethodafterextractionwithaciddetergent (ABLadf)andthesolublelignininacetylbromidemethodusingthecellwallresidue(ABLcw).

Toquantifythelignin contentbytheLignin(sa) method,approximately1gof samplewasconditionedin120-mL polyethylenescrewcappedbottles,and100mLofaciddetergentwasadded(VanSoestandRobertson,1985).Aftersealing, thebottleswereautoclavedat105◦Cfor1h(PellandSchofield,1993).Theaciddetergentinsolubleresiduewasretained byvacuumfiltrationinafiltercrucible,washedsequentiallywithhotwaterandacetone,andoven-driedat105◦Cfor16h. Afterward,thefiltercruciblescontainingtheresidueswereconditionedinpolyethyleneflasksandtreatedwith12Msulfuric acidfor3hasdescribedbyVanSoestandRobertson(1985).Afterthat,thecruciblesweresubjectedtovacuumfiltrationand washedwithhotwatertocompletelyremovetheacid.Thematerialwasoven-driedat105◦Cfor16handthenweighedto obtainthemassoftheresiduecomposedofligninandminerals.Then,thecruciblesweretransferredtoamufflefurnaceat 500◦Cfor3h.Theywereweighedagain,andthemassofligninwascalculatedbytheweightlossafterincineration.

Toquantifythecontentofresidualprotein(N×6.25)associatedwithlignin,aliquotsofresiduesobtainedaftertreatment withsulfuricacidwereevaluatedaccordingtotheKjeldahlmethod(AOAC,1990).

TheKLmethodfordetermininglignincontentisbasedontheacidhydrolysisofthewater-insolublefraction(Theander andWesterlund,1986).Inthismethod,thematerialwasnotsubjectedtoextractionwithaciddetergent.Approximately 250mgofsamplewasconditionedin120-mLpolyethylenescrewcappedbottles.Threemillilitersof12Msulfuricacid wasaddedtothesample,whichwasstirredwithaglassrod.Thebottleswerekeptinawaterbathat30◦Cfor30min. Subsequently,80mLofdistilledwaterwasaddedtoeachpot,andthebottleswerethensealedandautoclavedat105◦Cfor 1h.Afterautoclaving,whilethecontentswerestillwarm,theinsolublematerialwasquantitativelyvacuum-transferredto filtercruciblesandthenwashedwithhotwateranddriedat105◦Cfor16h.Subsequently,thecrucibleswereheatedinthe mufflefurnaceat500◦Cfor3h.Theweightafterincinerationwassubtractedfromtheweightoftheresidueinsolublein sulfuricacidtocalculatethelignincontent.TheresidualproteinwasevaluatedsuchdescribedforLignin(sa).

TheLignin(pm)methodwasperformedbyfirstobtainingtheaciddetergentinsolubleresidueasdescribedfortheLignin (sa)method.Then,thefiltercruciblescontainingtheresiduewereplacedinapolyethylenetraywitha2–3-cmlayerof distilledwaterandsequentiallyextractedwithasaturatedKMnO4solutionandademineralizingsolutionasdescribedby VanSoestandWine(1968).Afterthat,theresiduewasvacuumfiltered,andwashedwithanethanolsolution(800mL/L) andacetone.Thecruciblescontainingtheresiduewereoven-driedat105◦Cfor16h.Theligninmasswascalculatedbythe differencebetweenthemassoftheaciddetergentinsolubleresidueandtheresidualmassafterthetreatment.

(4)

Subsequently,aliquotsoftheresiduesobtainedaftertreatmentwiththepermanganateanddemineralizingsolutions wereevaluatedaccordingtotheKjeldahlmethod(AOAC,1990).Theproteincontentassociatedwithlignin(N× 6.25)was calculatedbysubtractingtheproteinintheresidueobtainedfromtheaciddetergentinsolubleprotein(Licitraetal.,1996). ToisolatethecellwallfortheevaluationofABLcw,10-galiquotswereconditionedinnon-woventextilefilterbags (100g/m2;15cm×10cm),whichwereconditionedinaSoxhletextractorequippedwithaheatingblanket.Thesampleswere

subjectedtosequentialextractionwithwater,ethanol(960mL/L),chloroform:methanol(2:1)andacetone.Approximately 250mLofeachsolutionwereusedandtheextractionsweresupposedtobecompletedwhentheresidualliquidwascolorless. Afterextractions,thematerialwasoven-driedat60◦Cfor72h.

MaterialforABLadfquantificationwaspreparedinasimilarmannertothatdescribedfortheevaluationofLignin(sa). TheresiduesobtainedfortheevaluationofABLcwandABLadfcontentwereanalyzedaccordingtotherecommendations ofFukushimaandKerley(2011).

A100-mgsampleofcellwalloraciddetergentresiduewasweighedinaglasscentrifugetubewithaTefloncap.Then, 10mLofasolutionofacetylbromideinaceticacid(250mL/L)wasadded,andthesamplewasslowlyhomogenized. Subse-quently,thetubeswerekeptinawaterbathat50◦Cfor2h.Thecontentswerestirredevery30min.Ablankcontrolwas setupwiththesameseriesoftubes.Afterthetubescooleddown,thematerialwascentrifugedat2000×gfor15min.Then, 0.5-mLaliquotsofthesolutions,eachcontainingaround5mgofresidues,werepipettedintotesttubescontaining6.5mL ofglacialaceticacidand2mLof0.3MNaOH.Thematerialwasstirred.Onemilliliterof0.5Mhydroxylaminehydrochloride solutionwasadded,andthecontentswerefurtherstirred.

Theabsorbanceofthesolutionwasreadat280nmandconvertedintoconcentrationsaccordingtotheequationsuggested byFukushimaandKerley(2011):

L=A−230.077.0009 (1)

whereListheligninconcentration(mg/mL)andAistheabsorbance.

ThelignincontentsdeterminedbytheABLadfandABLcpmethodswereconsideredfreefromproteincontamination (Morrison,1972);therefore,nocorrectionwasmade.

2.3. EvaluationofNDFdegradation

FortheinvitroevaluationoftheNDFdegradationdynamics,aliquotsofforage(350mgofDM)wereconditionedin50-mL glassflasks.Subsequently,28mLofabuffersolutionwhosepHhadpreviouslybeenadjustedto6.8byflushingwithCO2

wereadded(McDougall,1949).

Theflasksweremaintainedinaclimate-controlledroom(39◦C)forpriorhydrationofthesamples.Duringthehydration process,ruminalfluidwascollectedfromarumen-fistulatedsteerthatwaskeptclosetotheincubationroom.Theanimal wasfedadlibitumwithamixeddiet(80:20forage:concentrateratio)andcompletemineralmixture.

Theliquidwascollectedintheliquid:solidinterfaceoftheruminalenvironment,filteredbyatriplelayerofcheesecloth, conditionedinanthermalcontainerandimmediatelytransported totheincubationroom.Sevenmillilitersofruminal inoculawasaddedperflask.TheincubationenvironmentwasimmediatelysaturatedwithCO2andtheflaskswerequickly

sealed.Theflasksweremaintainedat39◦Cwithorbitalshaking(40rpm).Gasesarisingfromfermentationwereremoved every3husingneedles.

Incubationtimesof0,3,6,9,12,24,36,48,72and96hwereevaluated.Theincubationprocedurewasrepeatedfour times,resultinginatotaloffourevaluationsperincubationperiodforeachforagesample.Attheendofeachincubation period,theflaskswereremovedfromtheclimate-controlledroom,andthecontentswerevacuumfilteredinfiltercrucibles. Thecrucibleswerethenconditionedinpolyethyleneflasks(120mL)towhich50mLofneutraldetergentwasadded. Afterbeingsealed,theflaskswereautoclavedat105◦Cfor1h(PellandSchofield,1993).Afterthat,residueswerevacuum filtered,sequentiallywashedwithhotwaterandacetone,andoven-driedat105◦Cfor16h.

TheNDFresiduesweresubjectedtoadjustmentbythenon-linearlogisticmodeldescribedbyVanMilgenetal.(1991) throughtheGauss-NewtonalgorithmimplementedinthePROCNLINofSAS:

Rt=pdNDF×(1+×t)×exp(−×t)+iNDF (2)

whereRtisthenon-degradedNDFresidueattime“t”(g/100gNDF);pdNDFisthepotentiallydigestibleNDFfraction(g/100g NDF);iNDFistheindigestibleNDF(g/100gNDF);isthecombinedfractionalrateoflaganddegradationofpdNDF(h−1); andtisthetime(h).

Giventhattheparameterrepresentsboththelaganddegradationrates,thefractionalrateofdegradationrateofpdNDF (kd,h−1)wasestimatedfromusingthegamma-2distributionproperties(Ellisetal.,1994):

kd=0.59635× (3)

TheestimatesofdiscretelagtimewereobtainedaccordingtoVieiraetal.(1997): LAG=R(0)−R(ti)

(5)

whereLAGisthediscretelagtime(h);R(0)isthenon-degradedNDFresidueatt=0(g/100gNDF);R(ti)isthenon-degraded

NDFresidueobtainedatthepointofinflectionofthedegradationcurve(g/100gNDF);R(ti)isthederivativefromthefitted

degradationcurvetothepointofinflection(maximumrateofsubstratedegradation)(h−1);andtiisthetimeequivalentto

thepointofinflectiononthedegradationcurve(h).

ThetivalueswereobtainedaccordingtoVanMilgenetal.(1991):

ti= 1 (5)

2.4. Statisticalanalyses

ThevaluesforcrudeligninandlignincorrectedforproteincontaminantswerecomparedindependentlyfortheLignin (sa),Lignin(pm)andKLmethodsbyadjustingthesimplelinearregressionequationofcorrectedvalues(dependentvariable) oncrudevalues(independentvariable);thestatisticalanalysiswasconductedunderthenullhypothesis:

H0: ˇ0=0 and ˇ1=1 (6)

Correctedandcrudelignincontentswereconsideredtobesimilarwhenthenullhypothesiswasnotrejected.

Thelignincontentsobtainedbythedifferentmethodsweredirectlycomparedbetweenthedifferentspeciesgroups (grassesorlegumes)accordingtothemodel:

Yijk=+Gi+S(i)j+Mk+GMik+εijk (7)

whereisthegeneralconstant;Giistheeffectofthespeciesgroupi(grassorlegume;fixedeffect);S(i)jistheeffectof

speciesjnestedwithingroupi(randomeffect);Mkistheeffectofthekthmethodofanalysis(fixedeffect);GMikisthe

interactioneffectofthespeciesgroupiandthemethodk;andεijkistherandomerror.

Thetotalnumberofobservationsusedintheanalysisofvariancewas100,consistingofplantgroups(2),specieswithin groups(10)andligninmethods(5).

TherelationshipsbetweenthelignincontentsobtainedbythedifferentmethodsandthecharacteristicsofNDF degra-dation(kd,LAGandiNDF)wereevaluatedbylinearregressionusingadummyvariable(DraperandSmith,1966)according tothebasicmodel:

Yij=ˇ0+ˇ1×D+ˇ2×Lij+ˇ3×(D×Lij)+eij (8)

whereYijisthedependentvariableobservedinspeciesjofgroupi;Lij isthelignincontent(g/kgNDF);Disthedummy

variablecorrespondingtothegroupofspecies,withD=0forgrassesandD=1forlegumes;andeijistherandomerror.

Thebestmodelforthedescriptionofrelationshipswaschosenviathebackwardregressionmethod(DraperandSmith, 1966).

AllstatisticalprocedureswereperformedusingSAS(StatisticalAnalysisSystem)(PROCMIXEDandPROCNLIN)(˛=0.05). 3. Results

CorrectingforcontaminantproteinreducedthelignincontentsestimatedbytheLignin(sa),KLandLignin(pm)methods, onaverage,by0.8,19.9and2.8g/kgDM,respectively,ingrasses.Forlegumes,thecorrectionreducedtheestimatedlignin contentsby2.6,38.9and7.9g/kgDM,respectively(Table2).Therewashigherproteincontaminationinthelignincontents evaluatedgravimetricallyinlegumesthantherewasingrasses.

Consideringbothunitsofexpressionoflignincontent(g/kgDMandg/kgNDF),theadjustmentforproteincontamination resultedinareduction(P<0.05)ofthelignincontentsobtainedbytheLignin(sa),KLandLignin(pm)methods(Table3).

Duetothereduction(P<0.05)inthelignincontentsobtainedbytheLignin(sa),KLandLignin(pm)methodsasaresult ofthecorrections,weusedtheadjustedvalues,Lignin(sa)p,KLpandLignin(pm)p,asthebasisforfurtheranalysisand discussion.Thisdecisionwasbasedonthefactthatthenitrogenouscompoundsofthecellwalldonotexertinhibitory effectsonthedegradationoffibrouscarbohydrates,thusallowingamoreaccuratecomparisonwiththecontentsevaluated bytheABLadfandABLcwmethods,whichareconsideredtobefreefromproteincontamination.

Therewasaninteractioneffect(P<0.05)oftheanalyticalmethodandtheforagegrouponlignincontentconsideringboth evaluatedunits(g/kgDMandg/kgNDF;Table4).Ingeneral,KLpproducesthehigherlignincontents(P<0.05).Thepattern oflignincontentswasquitevariableamongmethodsandbetweenforagegroups(Table4).

Despitethedifferencesbetweenthemethods(Table4),theLignin(sa)p,KLpandLignin(pm)pmeasurementswere correlatedwitheachother(P<0.05),withmoderatetostrongcorrelationcoefficientestimates(Table5).Ontheotherhand, themeasurementsobtainedbythespectrophotometricmethods,ABLadfandABLcw,werenotcorrelatedwitheachother (P>0.05)orwiththemeasurementsobtainedbythegravimetricmethods(Table5).

Consideringthattheinhibitoryeffectsofligninondegradationareonlyobservedinthefibrousfraction,therelationships withtheNDFdegradationparameterswereinterpretedonlyintermsoftheunitg/kgNDF.Similarlytowhatwaspreviously described,lignincontentobtainedbygravimetricmethodsandadjustedforproteincontaminationwasconsidered.

TheestimatesoflignincontentobtainedbytheLignin(sa)pandLignin(pm)pmethodswererelated(P<0.05)totheiNDF contentaswellastokdandLAG(Table6andFigs.1and2).However,forbothmethods,therewerenodifferencesinbehavior

(6)

Table2

Descriptivestatisticsfortheevaluatedvariables.

Itema Grasses Legumes

Mean SD Mean SD g/kgDM NDFap 568.5 42.3 412.4 62.3 Lignin(sa) 63.4 11.1 92.3 21.5 Lignin(as)p 62.6 10.7 89.7 18.6 KL 154.2 20.9 171.3 56.2 KLp 134.3 18.6 132.4 47.1 Lignin(pm) 83.9 7.0 116.8 16.4 Lignin(PM)p 81.1 6.6 108.9 17.4 ABLcw 79.7 16.7 53.1 49.9 ABLadf 46.9 11.1 41.6 6.6 g/kgNDF Lignin(sa) 111.5 18.3 224.1 43.3 Lignin(as)p 110.3 17.7 217.7 37.6 KL 271.8 38.9 413.8 122.3 KLp 236.8 35.1 319.3 101.8 Lignin(pm) 147.8 11.1 286.1 37.9 Lignin(PM)p 142.8 10.7 266.6 40.1 ABLcw 141.4 34.1 131.8 25.0 ABLadf 82.8 19.9 101.3 9.8 Degradationparameters iNDF 369.3 48.7 510.4 84.7 LAG 3.43 0.47 4.71 1.20 kd 0.0498 0.0070 0.0376 0.0088

aNDFap,neutraldetergentfibercorrectedforashandprotein;Lignin(sa),lignindeterminedbysolubilizationofcellulosewithsulfuricacid;Lignin

(sa)p,lignindeterminedbysolubilizationofcellulosewithsulfuricacidandcorrectdforprotein;KL,Klasonlignin;KLp,Klasonlignincorrectedforprotein; Lignin(pm),lignindeterminedbyoxidationwithpotassiumpermanganate;Lignin(pm)p,lignindeterminedbyoxidationwithpotassiumpermanganate andcorrectedforprotein;ABLadf,lignindeterminedbysolubilizationwithacetylbromidefromtheaciddetergentfiber;ABLcw,lignindeterminedby solubilizationwithacetylbromidefromthecellwallmatrix;iNDF,indigestiblefractionofneutraldetergentfiber(g/kgNDF);LAG,discretelag(h);kd, fractionaldegradationrateofpotentiallydegradableneutraldetergentfiber(h−1).

Table3

Estimatesofregressionparametersofrelationshipbetweencrude(X)andproteincorrected(Y)lignincontentsaccordingtodifferentgravimetricmethods.

Methodsa Regressionparameters

Intercept Slope r2 s xy P-valueb g/kgDM Lignin(sa) 4.8238 0.9163 0.9941 1.61 <0.0001 KL 5.4141 0.7859 0.9010 11.34 <0.0001 Lignin(pm) 3.5644 0.9109 0.9772 2.98 <0.0001 g/kgNDF Lignin(sa) 6.7810 0.9370 0.9960 4.06 <0.0001 KL 31.3182 0.7196 0.9345 22.44 <0.0001 Lignin(pm) 6.5452 0.9135 0.9920 6.42 <0.0001

aLignin(sa),lignindeterminedbysolubilizationofcellulosewithsulfuricacid;KL,Klasonlignin;Lignin(pm),lignindeterminedbyoxidationwith

potassiumpermanganate.

b H

0:ˇ0=0andˇ1=1(Eq.(6)).

Table4

Evaluationofinteractioneffectofanalyticalmethodandforagegroupsonaveragelignincontents.

Forage Methoda

Lignin(as)p KLp Lignin(pm)p ABLcw ABLadf SEM g/kgDMb

Grasses 62.6Bc 134.3Aa 81.1Bb 79.7Ab 46.9Ad 6.24 Legumes 89.7Ac 132.4Aa 108.9Ab 53.1Bd 41.6Ad

g/kgNDFb

Grasses 110.3Bc 236.8Ba 142.8Bb 141.4Ab 82.8Ac 13.18 Legumes 217.7Ac 319.3Aa 266.6Ab 131.8Ad 101.3Ad

aLignin(sa)p,lignindeterminedbysolubilizationofcellulosewithsulfuricacidandcorrectedforprotein;KLp,Klasonlignincorrectedforprotein;Lignin

(pm)p,lignindeterminedbyoxidationwithpotassiumpermanganateandcorrectedforprotein;ABLadf,lignindeterminedbysolubilizationwithacetyl bromidefromtheaciddetergentfiber;ABLcw,lignindeterminedbysolubilizationwithacetylbromidefromthecellwallmatrix.

b MeansinthecolumnfollowedbydifferentcapitallettersorintherowfollowedbydifferentlowercaselettersaredifferentaccordingtoFishers’LSD

(7)

Table5

Partialcorrelationsbetweenlignincontents(g/kgNDF)obtainedbydifferentmethods.

Method Methoda,b,c

Lignin(as)p KLp Lignin(pm)p ABLcw

KLp 0.7397 – (0.0003) Lignin(pm)p 0.5954 0.6545 – (0.0072) (0.0024) ABLcw −0.0046 0.0743 0.3760 – (0.9850) (0.7625) (0.1126) ABLadf 0.2034 0.1044 0.1550 −0.0103 (0.4036) (0.6705) (0.5263) (0.9667)

aLignin(sa)p,lignindeterminedbysolubilizationofcellulosewithsulfuricacidandcorrectedforprotein;KLp,Klasonlignincorrectedforprotein;Lignin

(pm)p,lignindeterminedbyoxidationwithpotassiumpermanganateandcorrectedforprotein;ABLadf,lignindeterminedbysolubilizationwithacetyl bromidefromtheaciddetergent.

bThecorrelationestimatesareadjustedregardingforagegroupseffect.

cThevaluesbetweenparenthesiscorrespondtodescriptivelevelofprobabilityfortypeIerrorassociatedwithH 0:=0.

betweengrassesandlegumesintermsoftheinterceptortheslopeofthefittedline(P>0.05).Lignincontentestimatesmade usingtheLignin(pm)pmethodweremorestronglycorrelatedwiththeNDFdegradationparametersthanwerethosemade bytheLignin(sa)pmethod(Table6).

ThelignincontentsestimatedbyKLpwereassociated(P<0.05)withallNDFdegradationparameters(Table6). Neverthe-less,unliketheLignin(sa)pandLignin(pm)pmethods,therewasadifferencebetweengrassesandlegumesintermsofthe interceptofthefittedline(P<0.05);higheriNDFandLAGvaluesandlowerkdvalueswereobservedforlegumes,regardless oftheligninconcentration(Fig.3).Theinclusionofanadditionalparameter(interceptadjustmentbyusingthedummy variable;Eq.(8)),basedonwhichpeculiaritiesoftheforagegroupswereconsidered,resultedintheKLpmethodhaving

Table6

Estimatesofregressionparametersforrelationshipbetweenparametersofneutraldetergentfiberdegradationandlignincontentsobtainedbydifferent methods.

Itema Methodb,c

Lignin(sa)p KLp Lignin(pm)p ABLcw ABLadf iNDF(g/kgNDF) ˇ0 242.3 255.9 187.7 369.3 179.8 ˇ1 – 111.3 – 141.1 – ˇ2 1.2292 0.4790 1.2817 – 2.8263 ˇ3 – – – – – P-Value 0.0001 <0.0001 0.0004 0.0002 0.0208 r 0.7698 0.8534 0.8237 – 0.5209 rd 0.7541 0.8333 0.8121 0.4779 sxy 67.20 58.68 71.56 69.29 87.27 kd(h−1) ˇ0 0.0590 0.0605 0.0637 0.0499 0.0499 ˇ1 – −0.0067 – −0.0106 −0.0106 ˇ2 −0.000087 −0.000045 −0.000095 – – ˇ3 – – – – – P-Value 0.0046 0.0030 0.0010 0.0056 0.0056 r −0.6200 −0.7179 −0.6934 – – rd −0.5901 −0.6744 −0.6710 sxy 0.0072 0.0066 0.0066 0.0073 0.0073 LAG(h) ˇ0 2.60 2.45 2.16 3.43 3.43 ˇ1 – 0.63 – 0.98 0.98 ˇ2 0.0080 0.0041 0.0088 – – ˇ3 – – – – – P-Value 0.0038 0.0019 0.0007 0.0040 0.0040 r 0.6301 0.7372 0.7077 – – rd 0.6013 0.6974 0.6867 sxy 0.64 0.58 0.58 0.64 0.64

aSeemoredetailsaboutparametersinEq.(8).

bLignin(sa)p,lignindeterminedbysolubilizationofcellulosewithsulphuricacidandcorrectedforprotein;KLp,Klasonlignincorrectedforprotein;

Lignin(pm)p,lignindeterminedbyoxidationwithpotassiumpermanganateandcorrectedforprotein;ABLadf,lignindeterminedbysolubilizationwith acetylbromidefromtheaciddetergentfiber;ABLcw,lignindeterminedbysolubilizationwithacetylbromidefromthecellwallmatrix.

ciNDF,indigestiblefractionofneutraldetergentfiber;LAG,discretelag;kd,fractionaldegradationrateofpotentiallydegradableneutraldetergentfiber. dCorrelationsadjustedforthenumberofparametersinthefittedmodel(DraperandSmith,1966).

(8)

200 300 400 500 600 700 50 100 150 200 250 300 350 Lignin (as)p (g/kg NDF) iNDF (g/kg NDF) 0.02 0.03 0.04 0.05 0.06 50 100 150 200 250 300 350 Lignin (sa)p (g/kg NDF) kd (/h) 2 3 4 5 6 50 100 150 200 250 300 350 Lignin (sa)p (g/kg NDF) LAG (h)

Fig.1. Relationshipbetweenligninobtainedbysolubilizationwithsulfuricacidandcorrectedforprotein[Lignin(sa)p]andtheindigestibleneutral detergentfiber(iNDF),thefractionaldegradationrateofpotentiallydegradableneutraldetergentfiber(kd)andthediscretelag(LAG)(+=grasses; =legumes).

strongercorrelationcoefficientsthanalloftheothermethodsevaluated.However,whenthecorrelationcoefficientswere adjustedforthenumberofparametersinthemodel,theyweresimilartothoseobtainedwiththeLignin(pm)pmethod (Table6).

ThelignincontentsestimatedbytheABLcwmethodshowednofunctionalrelationship(P>0.05)toanyoftheparameters ofNDFdegradationdynamics.For alloftheseparameters,onlytheaveragedifferencebetweentheforagegroupswas obtained(Fig.4).

Therewasanassociation(P<0.05)betweenthelignincontentsestimatedbytheABLadfmethodandtheiNDFcontents; however,therewerenodifferencesbetweengrassesandlegumes(P>0.05).Nevertheless,thecorrelationcoefficientwas weakerthanthosefoundfortheLignin(sa)p,KLpandLignin(pm)pmethods(Table6).Inaddition,asfortheABLcwmethod, nofunctionalrelationships(P>0.05)werefoundbetweenlignincontentandthekdandLAGparameters(Table6),inwhich onlyanaveragedifferencebetweenthegroupsofforageswasdetected(Fig.5).

(9)

200 300 400 500 600 700 100 150 200 250 300 350 Lignin (pm)p (g/kg NDF) iNDF(g/kg NDF) 0.02 0.03 0.04 0.05 0.06 100 150 200 250 300 350 Lignin (pm)p (g/kg NDF) kd(/h) 2 3 4 5 6 100 150 200 250 300 350 Lignin (pm)p (g/kg NDF) LAG (h)

Fig.2. Relationshipbetweenligninobtainedbyoxidationwithpotassiumpermanganateandcorrectedforprotein[Lignin(pm)p]andtheindigestible neutraldetergentfiber(iNDF),thefractionaldegradationrateofpotentiallydegradableneutraldetergentfiber(kd)andthediscretelag(LAG)(+=grasses; =legumes).

4. Discussion

Thisstudyshowedthatproteincontaminationsignificantlyaffectedtheestimatesoflignincontentbyallgravimetric methods.However,thiscontaminationwasmoreevidentfortheKLmethodthanfortheLignin(sa)andLignin(pm)methods (Tables2and3).

Amongthegravimetricmethodsofligninanalysis,KLhasthehighestproteincontamination(FukushimaandHatifield, 2001),whichconstitutesoneofthemainbiasesintheestimatesobtainedbythismethod.KLwasinitiallydevelopedforthe evaluationoflignincontentinwood.Inthistypeofmaterial,proteincontaminationproblemsarenotexpectedduetothe lowproteinconcentrationinthesamples(WhiteheadandQuicke,1964;TheanderandWesterlund,1986).However,theuse ofKLwithnoadjustmenttoquantifythelignincontentinforagesbecomescomplicatedbecauseofthesignificantpresence ofnitrogenouscompoundsintheinsolubleresiduethatcouldbeincorrectlyclassifiedaslignin(VanSoest,1994).

(10)

200 300 400 500 600 700 150 200 250 300 350 400 450 500 550 600 KLp (g/kg NDF) iNDF(g/kg NDF) 0.02 0.03 0.04 0.05 0.06 150 200 250 300 350 400 450 500 550 600 KLp (g/kg NDF) kd(/h) 2 3 4 5 6 150 200 250 300 350 400 450 500 550 600 KLp (g/kg NDF) LAG (h)

Fig.3.RelationshipbetweenligninobtainedbyKlasonmethodandcorrectedforprotein(KLp)andtheindigestibleneutraldetergentfiber(iNDF),the fractionaldegradationrateofpotentiallydegradableneutraldetergentfiber(kd)andthediscretelag(LAG)(+=grasses;=legumes).

Thenitrogenouscompoundsassociatedwithligninresiduecanoriginatefromfourpotentialsources:nitrogenthatis naturallyassociatedwiththecellwall,nitrogenattachedtoMaillardartifacts,nitrogenlinkedtotannins,andkeratinsof animalorigin(VanSoest,1994).Thelastsourceisnotapplicabletotheresultsofthisstudy.

Itispresumedthatlegumesshowhigherproteincontaminationthandograsses(FukushimaandHatifield,2001),as foundinthisstudy(Table2).Althoughlegumesnaturallyhavehigherproteincontentsthangrassesdo,thelevelofCPina samplewasnotcorrelatedwiththedegreeofproteincontaminationinligninresidues(Hatifieldetal.,1994).However,as previouslyshown,thecorrectionoftheKLvaluesforproteincontaminationreducedtheaverageestimatedlignincontentsof legumesby38.9g/kg,comparedto19.9g/kgDMforgrasses(Table2).Atleastpartofthisgreatercontaminationinlegumes canbetracedtotheirgreatertannincontent,whichwouldresultintheformationofinsolublecomplexeswiththeprotein componentsofforages(VanSoest,1994).

Theanalysisoflignincontentislaboriousandtimeconsuming,anditcanproduceresiduesconsistingpartlyofartifacts thatoverestimatelignincontent(VanSoest,1963).Partoftheproteincontaminationrelatedtolignincouldbeattributedto theformationofartifactsbytheMaillardreaction.However,theirformationoccursmainlyduringdryingattemperatures ofatleast65◦C,whichwereavoidedinthisstudy(samplesweredriedat60◦C).Theuseofadequatetemperaturesand

(11)

200 300 400 500 600 700 50 100 150 200 250 ABLcw (g/kg NDF) iNDF (g/kg NDF) 0.02 0.03 0.04 0.05 0.06 50 100 150 200 250 ABLcw (g/kg NDF) kd (/h) 2 3 4 5 6 50 100 150 200 250 ABLcw (g/kg NDF) LAG (h)

Fig.4. Relationshipbetweenligninobtainedbysolubilizationwithacetylbromidefromcellwall(ABLcw)andtheindigestibleneutraldetergentfiber (iNDF),thefractionaldegradationrateofpotentiallydegradableneutraldetergentfiber(kd)andthediscretelag(LAG)(+=grasses;=legumes).

ventilatedovensreducestheformationoftheseartifactsbyacceleratingtheremovalofhumidityfromthematerial,which isnecessaryfornon-enzymaticreactionstooccur(VanSoest,1994).

Inaddition,theuseofhightemperaturesduringtheextractionprocesscouldberelatedtotheformationof nitrogen-containingartifacts.However,theMaillardreactionisnotfavoredunderacidconditions(Eskinetal.,1971);thereisno evidencethatinsolubleartifactsformbetweenthecellularproteinandtheproductsofcellwallcarbohydratehydrolysis (Hatifieldetal.,1994).

Therefore,despitethepossibilityofprotein–tannincomplexformationinlegumes,mostoftheproteincontamination associatedwithKLappearstoberelatedtoretentionofnitrogenouscompoundsnaturallypresentinthecellwallininsoluble residues.

Thecellwallcontainsproteinsthathaveastructuralroleinthematrix,whichmayhavecross-linkswithlignin(Whitmore, 1982).However,itisnotclearwhetherthenitrogenouscompoundspresentintheinsolubleresidueofKLrepresentintact proteins,proteinfragments,modifiedproteinsornucleicacids(Hatifieldetal.,1994).Nonetheless,regardlessoftheoriginof

(12)

200 300 400 500 600 700 50 70 90 110 130 150 ABLadf(g/kg NDF) iNDF(g/kg NDF) 0.02 0.03 0.04 0.05 0.06 50 70 90 110 130 150 ABLadf(g/kg NDF) kd(/h) 2 3 4 5 6 50 70 90 110 130 150 ABLadf(g/kg NDF) LAG (h)

Fig.5. Relationshipbetweenligninobtainedbysolubilizationwithacetylbromidefromaciddetergentfiber(ABLadf)andtheindigestibleneutraldetergent fiber(iNDF),thefractionaldegradationrateofpotentiallydegradableneutraldetergentfiber(kd)andthediscretelag(LAG)(+=grasses;=legumes).

thenitrogenouscompounds,themainprobleminthechemicalfractionationofthefibroustissueoftheplantistheefficient separationofproteinsandlignin(VanSoest,1963).

ThemainanalyticaldifferencebetweentheKLandLignin(sa)methodsisthesequenceinwhichthedifferent concentra-tionsofsulfuricacidandextractiontemperaturesareused,whichcausesdifferenteffectsonthehydrolysisofpolysaccharides (Hatifieldetal.,1994).However,itmustbenotedthatcationicdetergents(e.g.,cetyltrimethylammoniumbromide,CTAB) arenotusedintheKLmethodasanaccessoryintheremovalofmaterialstobesolubilized,whichallowsthecleaning ofthematerialthatwillbesubjectedtoacidhydrolysis.Thus,theaciddetergentsolution(20g/LCTABin0.5MH2SO4)is

responsibleforobtainingaresiduethatisnearlyfreefromproteininterference(VanSoestandRobertson,1985),promoting solubilizationofmuchoftheproteinassociatedwiththecellwall(VanSoest,1994).

Becauseofthepreviousextractionwithaciddetergent,Lignin(pm)showedlowerlevelsofproteincontaminationthan KLbutslightlyhigherproteincontaminationlevelsthanwereobservedwithLignin(sa)(Table2).Thisfindingseemstobe justifiedbythefactthatsomeproteinsthatarenotremovedbyaciddetergentcanreactwiththepermanganateandbe quantifiedaslignin(VanSoestandWine,1968).

(13)

AccordingtoVanSoest(1994),evenwhenligninanalysesareperformedcarefully,contaminationwillstillexistregardless ofthegravimetricmethodused,whichcorroboratestheresultsfoundinthisstudy(Table3).Therefore,tocorrectlyexpress theconcentrationsofligninobtainedbygravimetricmethods,especiallyKL,proteincontaminationmustbecorrectedfor (Henriquesetal.,2007).

Inthiscontext,themethodsweredirectlycompared,emphasizingthecorrectionforproteincontaminationintheresidues measuredgravimetricallyandthusavoidingconfusionbecausetherearedifferencesbetweenthesemethodsintermsof con-taminationintensity(Table2).Theresultsobtainedspectrophotometricallyareconsideredfreefromthistypeofcontaminant (FukushimaandKerley,2011).

Lignincontentsinforagesamplesvaryaccordingtothemethodofchemicalisolationofthepolyphenolicmolecule. Thephysicalpropertiesofligninaregenerallychanged bystrongacids,whichpromote polymerizationandadditional condensationandcanconvertpartoftheoriginallysolublematerialintoinsolubleproducts(VanSoest,1994).

Thedifferenceinlignincontentsmeasuredinthesamesamplebydifferentmethodsmayresultfromdifferencesinthe mechanismsofactionofthereagents.Thisfindingimpliesthatdifferentanalyticalproceduresprovidedifferentestimates oflignincontent(FukushimaandDehority,2000).

Themethodsforligninanalysiscanbedividedintothreemaincategories:gravimetricmethodslikeLignin(sa)andKL thatremovecellwallconstituentsbutleaveligninbehind;gravimetricmethodslikeLignin(pm)thatoxidizeligninfrom thecellwallmatrix;andsolubilizationmethodsemployingspectrophotometricquantification,suchasABLadfandABLcw.

However,inadditiontothechemicalpeculiaritiesofeachmethod,differencesintheresultscanalsobeobtainedbasedon differencesinsamplepreparationsteps.Theuseofaciddetergent,whichreducesproteincontamination(VanSoest,1994), alsogenerallyunderestimatesthelignincontentsofforages,especiallygrasses,asaresultofthepartialsolubilizationof phenoliccompounds(Lowryetal.,1994;FukushimaandHatifield,2001;Fukushimaetal.,2009).Ingeneral,theseaspects supportthefindingoflowerligninvalueswithLignin(sa)pandLignin(pm)pthanwithKLpandwithABLadfincomparison toABLcw(Table4).

AlthoughLignin(pm)pandLignin(sa)parebothgravimetricmethodsthatareprecededbyaciddetergentextraction, higherlignincontentestimateswerefoundwithLignin(pm)pthanwithLignin(sa)p(Table4).AccordingtoVanSoestand Wine(1968),theLignin(pm):Lignin(sa)ratioisapproximately1.2:1.Inagreementwiththeirfindings,weobtainedratios of1.30:1and1.23:1forgrassesandlegumes,respectively(basedontheg/kgNDFvaluesinTable4).

Theevaluationoflignincontentsbyoxidationinpotassiumpermanganatecanbeaffectedbysomesamplecomponents, suchasphenolsandotherunsaturatedsubstances,includingtanninsandpigments,thatarenotcompletelyremovedduring aciddetergentextraction.Thesesubstancesreactwiththepermanganatesolutionandarethuscountedaslignin,especially inimmaturegrasses(VanSoestandWine,1968),increasingthetotallignincontentofthesample.Thiscouldjustify,atleast partly,thehigherestimatesgivenbytheLignin(pm)pmethodcomparedtotheLignin(sa)pmethod(Table4).

Generally,themainlimitationintheuseoftheKLmethodisproteincontamination,whichgeneratesapositivebiasin thelignincontentestimates(VanSoestandRobertson,1985;Kondoetal.,1987).However,aftercorrection,thehighvalues estimatedbyKLpcannotbeattributedtoproteincontamination.

AlthoughtheKLmethodwasdevelopedtoextractligninfromwood(VanSoest,1994),itcanbeusedtoquantifyligninfrom feedsusedforruminantnutrition.However,evenaftermodificationsinwhichdirectheatingwasincorporated(Theander andWesterlund,1986),themethodcontinuestobeappliedtointactsamples.Therefore,itisspeculatedthatsulfuricacid cansolubilizepartofthehemi-cellulosecontainedinthecellwall,whichprecipitateswiththedilutionofacidwithwater, leadingtoitsquantificationaslignin(VanSoest,1967).Compoundssuchasd-galacturonicacid,d-glucuronicacidand d-xylosecanbeconvertedintoaromaticcompoundsinheatedandslightlyacidifiedaqueousmedia(PopoffandTheander, 1976),similartothesecondstageoftheKLmethod.

Nevertheless,Hatifieldetal.(1994)foundthatthecontaminationbycarbohydratesintheligninobtainedbytheKL methodcouldbeconsideredsmallenoughnottocontributesignificantlytotheresidue.Ontheotherhand,theseauthors foundthatthesyringyl:guaiacylratiosofligninresiduesobtainedbytheLignin(sa)andKLmethodsweresimilar.Therefore, thereseemstobenosignificantcontaminationwithphenoliccompoundsformedfromcarbohydratesthatcouldalterthe syringyl:guaiacylratio.

Thus,thedifferencebetweentheKLpandLignin(sa)pmethodsand,consequently,betweentheKLpandLignin(pm)p methodsisinthesolubilizationofsomeoftheligninbyaciddetergent(Hatifieldetal.,1994;Lowryetal.,1994).Inthis case,thedissolutionofthehemicellulosematrixbyaciddetergentwouldleavepartoftheligninwithoutthesupportgiven byhemicellulose,allowingitssolubilization(Lowryetal.,1994).Insupportofthisidea,thereisevidencethatKLpprovides moreaccurateestimatesofthetotallignincontentinforagesamplesthandoesLignin(sa)p,especiallyingrasses(Kondo etal.,1987;Hatifieldetal.,1994;Jungetal.,1997).

Theacetylbromide-solubleligninmethod,aspectrophotometricmethoddevelopedtoquantifylignincontentsinsmall woodsamples,isbasedonmeasurementofthesample’sabsorbanceat280nmaftersolubilizationinasolutionofacetyl bromideinaceticacid(Johnsonetal.,1961).Thismethodwasmodifiedforuseinforagesamples,whichhaveaconsiderable amountofproteinthatsignificantlyinterfereswiththemeasurementoflignincontents(Morrison,1972).Fukushimaetal. (2009)found,however,thattheeffluentfromtheaciddetergentsolutioninseveralgrassesshowedpeaksofabsorbance similartothoseofligninretainedintheaciddetergentinsolubleresidue.Hence,thelignincontentinacetylbromidewas evaluatedbasedonthecellwall,providingmorecredibleestimatesofthelignincontentofforages(IiyamaandWallis,1990; FukushimaandDehority,2000;FukushimaandHatifield,2001,2004;FukushimaandSavioli,2001;Changetal.,2008).

(14)

Theisolationofthecellwallbysequentialwashingwithwater,ethanol,chloroformandacetoneaimstocrediblyrepresent theamountofpolysaccharidesinthecellwall(FukushimaandHatifield,2004).Therefore,thispreparationofthecellwall wouldbecharacterizedbyhigherligninvalueswhencomparedtoothermethodsofisolationofcellwallcomponents,such asADF.However,ifthenon-lignincomponentsandotherphenoliccompounds,liketannins,arenotremovedduringthecell wallpreparationstep,theycanbedissolvedintheacetylbromidesolution,leadingtointerferenceduringsamplereading (Morrison,1972).

Thelackofstandardsforspectrophotometercalibrationisthemainlimitingfactorfortheroutineuseofthemethod (Saviolietal.,2000).Therefore,inarecentstudy,ligninextractedwithacetylbromideand subsequentlycorrectedfor carbohydrate,ash,waterandproteincontentswereusedtomakeauniversalstandardcurveinanattempttoshortenthe analyticalproceduretosampledigestionandspectrophotometricreadingonly(FukushimaandKerley,2011).Thisuniversal standardcurvewasusedinthisstudy.

ThelignincontentsobtainedforgrassesbytheABLcwmethodweregreaterthanwerethoseobtainedbytheLignin(sa)p method(Table4).Thisresultisexpectedgiventhepartialsolubilizationofligninduringtheaciddetergentextractionstepof theLignin(sa)pmethod,corroboratingtheresultsofotherauthors(FukushimaandDehority,2000;FukushimaandSavioli, 2001;FukushimaandHatifield,2004).

Forlegumes,however,thelignincontentsobtainedwiththeABLadfandABLcwmethodsweresimilar,whereasABLcw producedlowerestimatesthanLignin(sa)p.Thispatternofresultsisdifferentfromthatobservedforgrasses(Table4)and contradictstheproposedexplanationsforthedifferencesbetweenthemethodspresentedpreviously.

Generally,lignincontentsobtainedbytheABLcwmethodwerehigherthanthoseobtainedwiththeLignin(sa)pmethod (FukushimaandDehority,2000).However,differingresultscanbefoundintheliterature(FukushimaandSavioli,2001).

Oneofthedifficultiesofquantifyinglignininacetylbromideliesinobtainingasatisfactoryspectrophotometricstandard forlignin(Savioliet al.,2000;Hatfieldand Fukushima,2005).Generally,evaluationsoflignininacetylbromideusing grasssampleshavebeenmoreintenselystudiedcomparedtoevaluationsoflegumesamples.Thesetofsamplesusedby FukushimaandKerley(2011)forauniversalstandardcurvehadonly3legumesinasetofsamplesfrom14speciesthatalso includedgrasses,treespeciesand3commerciallignins.Consideringthatthechemicalcompositionsofligninfromgrasses andlegumesdiffer(VanSoest,1994),theapparentdistortionsfoundinthisstudymayindicatethatthepredictionefficiency oftheuniversalstandardcurve(Eq.(1)),althoughapparentlyhighforgrasses,islowforlegumes.

SimplyknowingtheNDFcontentofafeedisnotenoughtogenerateinformationaboutthepotentialforinsolublefiberto beutilizedinthegastrointestinaltractinruminants.Inotherwords,twofeedscanhavesimilarNDFcontentsbutdifferent potentialsforutilization.ThisfindinglimitsinferencesbasedsolelyonNDFcontentfromanutritionalstandpoint.Knowledge ofthedegradationdynamicsofdifferentNDFsourcesintheruminalecosystemisnecessarytoincreasetheknowledgeabout effectivedigestibilityandthepotentialfortheimplementationofphysicallyrestrictiveeffectsonvoluntaryintake(Detmann etal.,2008,2009).

However,infrastructureandtimelimitationsconstraindatacollectiontocharacterizeNDFdegradationdynamics.Thus, itiscrucialtofindacharacteristicthatiscapableofgeneratinginformationthatquicklydetermines,withrelativeprecision, thecapacitiesofdifferentNDFsourcestobeutilizedbyruminants.

Becauseitisindigestibleandreducesthepotentiallydegradablefibrousfraction(Traxleretal.,1998),ligninisprimarily responsibleforthelimitationofdegradationoffibrousforagecomponents(VanSoest,1994).Thelaboratoryestimateof itsconcentrationisfastandrequireslessinfrastructurethandoinsituorinvitrostudiesofNDFdegradationdynamics. Thus,itisnecessarytoidentifywhichoftheanalyticalmethodsbestdiscriminatesforageswithregardtoNDFruminal degradationaspects.AccordingtoLowryetal.(1994),rumenfermentationcharacteristicsthatdefinethecellwallfraction thatisdeleterioustomicroorganismsaremoreimportanttotheevaluationoffeedsforruminantsthanisdefiningexact chemicalfractions.

Generally,theLignin(sa)pandLignin(pm)pestimatesweresimilarintermsoftheirrelationshipswithNDFdegradation parameters(Table6),showingbiologicallycoherentresultsconsideringthepositiveassociationsbetweenlignincontent andiNDFandLAGcontentsandthenegativeassociationsbetweenligninandkd(Table6andFigs.1and2).However,even thoughtheyareinterrelated(Table5),strongercorrelationswereobservedwiththeLignin(pm)pmethodthanwithLignin (sa)p(Table6).TheseresultsconfirmandextendthoseobtainedbyTraxleretal.(1998)andClipes(2007),whoobserved greateraccuracyofiNDFpredictionfromLignin(pm)incomparisontoLignin(sa)estimatesingrassesandlegumes.

Aspreviouslydiscussed,theroleofsulfuricacidintheLignin(sa)methodistooxidizethecellulosiccomponentsofthe plantcellwallafterextractionwithaciddetergent(VanSoestandRobertson,1985),maintainingthephenoliccomponents asresidue;theroleofpotassiumpermanganateistosolubilizethephenoliccompoundsonthecellwall,alsoaftertreatment withaciddetergent,producingaresidueinwhichthecellulosiccompoundsareconcentrated.

AlthoughtheLignin(sa)andLignin(pm)methodsmayseemperfectlycomplementary,problemslieintheexact defi-nitionsofthelimitsofactionofeachofthereagents(VanSoest,1994),causingthelignincontentestimatesobtainedby thetwomethodstodiffer,asseeninthisstudy(Table4).Thegreatestdifferencebetweentheactionsofsulfuricacidand ofpotassiumpermanganatecanbeseenintheboundaryregionsbetweencellulosicandphenoliccompounds,aregionin whichthereisgreaterinhibitoryactionofligninonmicrobialdegradation(Traxleretal.,1998;Clipes,2007).

Therefore,thedifferentactionsoftheabove-mentionedreagentscanleadtoqualitativedifferentiationsinthegravimetric estimatesofthelignincontentsoffeeds.Thatis,theinhibitoryactionofthephenoliccompoundsretainedasligninandtheir extractionpeculiaritiesintheareasadjacenttocellwallcarbohydratescouldhavedifferentassociationswiththeinsoluble

(15)

-200 -100 0 100 200 -200 -100 0 100 200 Centered iNDF Residue -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 Centered kd Residue

(a)

-200 -100 0 100 200 -200 -100 0 100 200 Centered iNDF Residue -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 Centered kd Residue

(b)

-200 -100 0 100 200 -200 -100 0 100 200 Centered iNDF Residue -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 Centered kd Residue

(c)

Fig.6. OrdinaryresidualplotsagainstthecenteredpredictedvaluesofiNDF(g/kgNDF)andkd(h−1)[(a)Klasonlignincorrectedforprotein;(b)lignin determinedbyoxidationwithpotassiumpermanganateandcorrectedforprotein;(c)lignindeterminedbysolubilizationofcellulosewithsulfuricacid andcorrectedforprotein].

(16)

NDFfraction(Clipes,2007)suchthatthelignincontentsdeterminedbyLignin(pm)phaveabetterassociationwiththe insolubleNDFfractionthandothosedeterminedbyLignin(sa)p(Table6).

ThedifferencesbetweengrassesandlegumesindicatedbyLignin(sa)pandLignin(pm)pareonlyattributedtothelignin concentrationsofthesamplesbecausenospecificparameterfortheirdifferentiationwassignificant(Table6).

Ontheotherhand,therelationshipsbetweentheNDFdegradationparametersandtheKLpcontentsconsidered,in additiontothedifferencesinsampleconcentrations,aparameterrelatedtothedifferentiationoftheinterceptofthefunction forgrassesandlegumes(Table6andFig.3).ThisadditionaldiscriminationinrelationtoLignin(sa)pseemstobeassociated withthelossofthesolubleligninfractioninaciddetergent,aspreviouslydiscussed.Inthiscontext,theinclusionofan additionalparameterinthefunctionprovidedKLpwithstrongercorrelationsinrelationtoLignin(sa)p,evenconsidering theadjustmentforthenumberofparametersofthemodel(Table6).TheseresultscontradictthoseobtainedbyJungetal. (1997),whofoundsimilarcorrelationsbetweenKLandLignin(sa)andtheinvitroandinvivodigestibilityofNDF.

Consideringthecorrelationcoefficientsadjustedforthenumberofparametersinthemodel,theLignin(pm)pandKLp estimateswereequallystronglyassociatedwiththeNDFdegradationparameters(Table6).Thesemethodsshowedhigher lignincontentsthanLignin(sa)pdid(Table4).Inthiscontext,thehigherlignincontentsestimatedbytheKLpandLignin (pm)pmethodsmaycontainelementsthathaveasignificantroleinthedegradationofinsolublefiber,whichwouldnotbe quantifiedinLignin(sa)p,thusjustifyingtheweakercorrelationsobservedwiththismethod(Table6).

Theresidualevaluationofgravimetricmethodsdoesnotrevealpatternsthatgiveevidenceofmodelunder-specification orheterogeneousvarianceandtherewerenosystematictrend(P>0.05)ofordinaryresidues(P>0.05;Fig.6).Theresidual plotwasslightlymorehomogeneousforKLpcomparedtoLignin(sa)pandLignin(pm)p,whichseemstoreflectthemodel discriminationwithregardgrassesandlegumes(Table6).Actually,thedatasetevaluatedinthisworkwouldnotbe con-sideredcompletelyadequatetosuggestanaccuratemodeltopredictNDFdegradationparameters.However,theevidences presentedinTable6andFig.6indicatethatKLpshouldbeconsideredwhenfurthermodelswillbeadjustedtoestimate suchcharacteristicsfromlignincontents.

Generally,withtheexceptionoftherelationshipbetweenABLadfandiNDF,therewerenoassociationsbetweenthelignin contentsobtainedbythespectrophotometricmethodsandtheNDFdegradationparameters(Table6andFigs.4and5).This findingisreinforcedbythelackofcorrelationbetweenthelignincontentsobtainedbythesemethodsandthegravimetric methods(Table5).

Recentresearchontheevaluationofsolublelignininacetylbromidehasraisedthepossibilityofobtainingmoreaccurate estimatesoflignincontentinfeedbyminimizingtheinterferencebyothercompounds,mainlyusingthecellwallasa baseindetrimenttotheaciddetergentinsolubleresidue(FukushimaandDehority,2000;FukushimaandHatifield,2004; Fukushimaetal.,2009).

Insomestudies,thecorrelationsbetweentheABLcwcontentsandinvitrodigestibilityofDMorothercellwall compo-nentswerestrongerthanwerethoseobtainedwithLignin(sa)orLignin(pm)(FukushimaandDehority,2000;Fukushima andHatifield,2004).However,inthesestudies,thespectrophotometricstandardswereobtainedindependentlyforeach evaluatedmaterialratherthanusingtheuniversalstandardcurveproposedbyFukushimaandKerley(2011)andadopted inthisstudy.

AccordingtoFukushimaandDehority(2000),theligninextractedfromaforagesamplecannotbeutilizedasa stan-dardfortheanalysisofsamplesobtainedfromdifferentspeciesorforagesatdifferentstagesofmaturation.Empirical regressionequations,likethatproposedbyFukushimaandKerley(2011),arepopulation-dependent.Thesemodelsare basedexclusivelyonexperimentalinformationratherthanonatheoreticalorbiologicalbasis.Therefore,evenwithgood dataadjustment,themodelmustbeconsideredtobespecifictotheconditionsinwhichthedatawereobtained,andits predictivevaluewillbelimited(ForbesandFrance,1993).

Therefore,consideringpreviousinformation(FukushimaandDehority,2000;FukushimaandHatifield,2004),thelack ofassociationbetweenthelignincontentsdeterminedbyABLadfandABLcwmayberelatedtotheinefficiencyofstandard curvepredictionsuggestedbyFukushimaandKerley(2011).Thisfindingconfirmsthattheevaluationofsolubleligninin acetylbromideisrestrictedbytheneedtoobtainspecificstandardsforeachtypeofmaterialevaluated.

5. Conclusions

ThelignincontentsobtainedbytheKlasonmethod,bycellulosesolubilizationinsulfuricacidandbyoxidationwith potassiumpermanganatepresentproteincontamination.Therefore,proteincorrectionissuggested,particularlyforthe Klasonligninmethod.Legumesproducemoreprominentproteincontaminationthandograsses.

Webetterestablishedrelationshipsbetweenligninandtheparametersofruminaldegradationofneutraldetergentfiber usingtheestimatesproducedbytheKlasonmethodandbyoxidationinpotassiumpermanganate.

Acknowledgments

TheauthorswishtothanktheConselhoNacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq),theFundac¸ãode AmparoàPesquisadoEstadodeMinasGerais(FAPEMIG-PPM),andtheINCTCiênciaAnimalforfinancialsupport.

(17)

References

AssociationofOfficialAnalyticalChemistry(AOAC),1990.OfficialMethodsofAnalysis,15thed.AOACInternational,Arlington.

Chang,X.F.,Chandra,R.,Berleth,T.,Beatson,R.P.,2008.Rapid,microscale,acetylbromide-basedmethodforhigh-throughputdeterminationoflignin contentinArabidopsisthaliana.J.Agric.FoodChem.56,6825–6834.

Clipes,R.C.,2007.Evaluationofparameterstoestimatethedegradationpotentialoffibrousandnitrogenouscompoundsintropicalgrasses.D.S.Thesis. UniversidadeEstadualdoNorteFluminense,CamposdosGoytacazes(inPortuguesewithEnglishabstract).

Detmann,E.,ValadaresFilho,S.C.,2010.Ontheestimationofnon-fibrouscarbohydratesinfeedsanddiets.Arq.Bras.Med.Vet.Zootec.62,980–984. Detmann,E.,Paulino,M.F.,ValadaresFilho,S.C.,2008.Avaliac¸ãonutricionaldealimentosoudedietas?Umaabordagemconceitual.In:Proceedingsof2nd

InternationalSymposiumonBeefCattleProduction,Vic¸osa,Brazil,pp.21–52.

Detmann,E.,Paulino,M.F.,Mantovani,H.C.,ValadaresFilho,S.C.,Sampaio,C.B.,Souza,M.A.,Lazzarini,I.,Detmann,K.S.C.,2009.Parameterizationofruminal fibredegradationinlow-qualitytropicalforageusingMichaelis–Mentenkinetics.Liv.Sci.126,136–146.

Draper,N.,Smith,H.,1966.AppliedRegressionAnalysis.JohnWilleyandSons,NewYork.

Ellis,W.C.,Matis,J.H.,Hill,T.M.,Murphy,M.R.,1994.Methodologyforestimatingdigestionandpassagekineticsofforages.In:FaheyJr,G.C.(Ed.),Forage Quality,Evaluation,andUtilization.AmericanSocietyofAgronomy,Madison,pp.682–756.

Eskin,N.A.M.,Henderson,H.M.,Townsend,R.J.,1971.BiochemistryofFoods.AcademicPress,NewYork.

Forbes,J.M.,France,J.,1993.Introduction.In:Forbes,J.M.,France,J.(Eds.),QuantitativeAspectsofRuminantDigestionandMetabolism.CABInternational, Wallingford,pp.1–12.

Fukushima,R.S.,Dehority,B.A.,2000.Feasibilityofusingligninisolatedfromforagesbysolubilizationinacetylbromideasastandardforligninanalyses. J.Anim.Sci.78,3135–3143.

Fukushima,R.S.,Hatifield,R.D.,2001.Extractionandisolationofligninforutilizationasastandardtodetermineligninconcentrationusingtheacetyl bromidespectrophotometricmethod.J.Agric.FoodChem.49,3133–3139.

Fukushima,R.S.,Hatifield,R.D.,2004.Comparisonoftheacetylbromidespectrophotometricmethodwithotheranalyticalligninmethodsfordetermining ligninconcentrationinforagesamples.J.Agric.FoodChem.52,3713–3720.

Fukushima,R.S.,Kerley,M.S.,2011.Useofligninextractedfromdifferentplantsourcesasstandardsinthespectrophotometricacetylbromidelignin method.J.Agric.FoodChem.,doi:10.1021/jf104826n.

Fukushima,R.S.,Savioli,N.M.F.,2001.Correlationbetweeninvitrocellwalldigestibilityandthreeanalyticalmethodsforquantifyinglignin.R.Bras.Zootec. 30,302–309(inPortuguesewithEnglishabstract).

Fukushima,R.S.,Kerley,M.S.,Porter,J.H.,Kallenbach,R.,2009.Theacetylbromideligninmethodtoquantifylignincontentin.In:Proceedingsof46th MeetingofBrazilianSocietyofAnimalScience,Maringá,Brazil(eletronicproceedings;inPortuguesewithEnglishabstract).

Hatfield,R.,Fukushima,R.S.,2005.Canligninbeaccuratelymeasured?CropSci.45,832–839.

Hatifield,R.D.,Jung,H.G.,Raplh,J.,Buxton,D.R.,Weimer,P.J.,1994.ComparisonoftheinsolubleresiduesproducedbytheKlasonligninandaciddetergent ligninprocedures.J.Agric.FoodChem.65,51–58.

Henriques,L.T.,Detmann,E.,Queiroz,A.C.,ValadaresFilho,S.C.,Leão,M.I.,Paulino,M.F.,2007.Fractionsofcellwallnitrogenouscompoundsintropical forages.Arq.Bras.Med.Vet.Zootec.59,258–263(inPortuguesewithEnglishabstract).

Iiyama,K.,Wallis,A.F.,1990.Determinationoflignininherbaceousplantsbyanimprovedacetylbromideprocedure.J.Sci.FoodAgric.51,145–161. Johnson,D.B.,Moore,W.E.,Zank,L.C.,1961.Thespectrophotometricdeterminationoflignininsmallwoodsamples.Tappi44,793–798.

Jung,H.G.,Allen,M.S.,1995.Characteristicsofplantcellwallsaffectingintakeanddigestibilityofforagesbyruminants.J.Anim.Sci.73,2774–2790. Jung,H.G.,Varel,V.H.,1988.Influenceofforagetypeonruminalbacterialpopulationsandsubsequentinvitrofiberdigeston.J.DairySci.71,1526–1535. Jung,H.G.,Vogel,K.P.,1986.Influenceofligninondigestibilityofforagecellwallmaterial.J.Anim.Sci.62,1703–1712.

Jung,H.G.,Mertens,D.R.,Payne,A.J.,1997.CorrelationofaciddetergentligninandKlasonligninwithdigestibilityofforagedrymatterandneutraldetergent fiber.J.DairySci.80,1622–1628.

Kondo,T.,Mizuno,K.,Kato,T.,1987.Somecharacteristicsofforageplantlignin.Jpn.Agric.Res.Quart.21,47–52.

Licitra,G.,Hernandez,T.M.,VanSoest,P.J.,1996.Standardizationofproceduresfornitrogenfractionationofruminantfeeds.Anim.FeedSci.Technol.57, 347–358.

Lowry,J.B.,Conlan,A.C.,Shlink,A.C.,Mcsweeney,C.S.,1994.Aciddetergentdispersibleligninintropicalgrasses.J.Sci.FoodAgric.65,41–49. McDougall,E.I.,1949.Studiesonruminalsaliva.1.Thecompositionandoutputofsheep’ssaliva.J.Biochem.43,99–109.

Mertens,D.R.,2002.Gravimetricdeterminationofamylase-treatedneutraldetergentfiberinfeedswithrefluxinginbeakersorcrucibles:collaborative study.J.AOACInt.85,1217–1240.

Morrison,I.M.,1972.Improvementsintheacetylbromidetechniquetodetermineligninanddigestibilityanditsapplicationtolegumes.J.Sci.FoodAgric. 23,1463–1469.

Pell,A.N.,Schofield,P.,1993.Computerizedmonitoringofgasproductiontomeasureforagedigestioninvitro.J.DairySci.76,1063–1073.

Popoff,T.,Theander,O.,1976.Formationofaromaticcompoundsfromcarbohydrates.IV.Chromonesfromreactionofhexuronicacidsinslightlyacid, aqueoussolution.ActaChem.Scand.30,705–710.

Savioli,N.M.,Fukushima,R.S.,Lima,C.G.,Gomide,C.A.,2000.Yieldandspectrophotometricpatternofligninextractedfromcellwall,neutraldetergent fiberoraciddetergentfiber.R.Bras.Zootec.29,988–996(inPortuguesewithEnglishabstract).

Theander,O.,Westerlund,E.A.,1986.Studiesondietaryfiber.3.Improvedproceduresforanalysisofdietaryfiber.J.Agric.FoodChem.34,330–336. Traxler,M.J.,Fox,D.G.,VanSoest,P.J.,Pell,A.N.,Lascano,C.E.,Lanna,D.P.D.,Moore,J.E.,Lana,R.P.,Vélez,M.,Flores,A.,1998.Predictingforageindigestible

NDFfromligninconcentration.J.Anim.Sci.76,1469–1480.

VanMilgen,J.,Murphy,L.L.,Berger,L.L.,1991.Acompartmentalmodeltoanalyzeruminaldigestion.J.DairySci.74,2515–2529.

VanSoest,P.J.,1963.Symposiumonnutritionandforageandpastures:newchemicalproceduresforevaluatingforages.J.Anim.Sci.22,838–845. VanSoest,P.J.,1967.Developmentofcomprehensivesystemoffeedanalysesandapplicationtoforages.J.Anim.Sci.26,119–128.

VanSoest,P.J.,1994.NutritionalEcologyoftheRuminant,2nded.CornellUniversityPress,Ithaca. VanSoest,P.J.,Robertson,J.B.,1985.AnalysisofForagesandFibrousFoods.CornellUniversityPress,Ithaca.

VanSoest,P.J.,Wine,R.H.,1968.Thedeterminationofligninandcelluloseinacid-detergentfibrewithpermanganate.J.Assoc.Off.Anal.Chem.51,780–785. Vieira,R.A.M.,Pereira,J.C.,Malafaia,P.A.M.,Queiroz,A.C.,1997.Theinfluenceofelephantgrass(PennisetumpurpuremSchum.Mineirovariety)growthon

thenutrientkineticsintherumen.Anim.FeedSci.Technol.66,197–210.

Whitehead,D.L.,Quicke,G.V.,1964.Acomparisonofsixmethodsofestimatingligniningrasshay.J.Sci.FoodAgric.15,417–422. Whitmore,F.W.,1982.Lignin-proteincomplexincellwallsofPinuselliottii:aminoacidconstituents.Phytochemistry21,315–318.

Referências

Documentos relacionados

(de 2005). Apresenta-se este volume dividido em 5 partes, 4 blocos de ensaios e um comentário final, a cargo de Miguel Vale de Almeida. Uma introdução, da autoria da

Poderia Platão, hipoteticamente, gostar de cinema? Se a pergunta se refere ao cinema ficcional, a resposta é fácil: não! O cinema ficcional é representação de acções humanas,

Sabendo que estes parâmetros estão definidos para lâmpadas fluorescentes de radiação UV, que são lâmpadas que só emitem um tipo de radiação e com um só comprimento

Por fim, tendo em vista o material destacado no quadro e as considerações sobre os elementos que não foram abordados nas partituras, mas que podem ser aplicados em ambos os

Estatísticas relativas à sociedade de informação onde é mencionado que existe actualmente um número significativo de utilizadores da Internet, quer por parte de fornecedores quer

Principle component analysis (PCA) of fiber traits including: Acid Soluble Lignin (Acidsolig), Acid Insoluble Lignin (Acidinsolig), Acetyl, Arabinan, Glucan, Holocellulose,

Neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose, hemicellulose, lignin, indigestible dry matter (iDM), indigestible neutral detergen fiber (iNDF) and

Mean content of dry matter (DM), mineral matter (MM), crude protein (CP), insoluble neutral detergent fiber (NDF), insoluble acid detergent fiber (ADF), lignin and