• Nenhum resultado encontrado

Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka"

N/A
N/A
Protected

Academic year: 2021

Share "Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product "lukanka""

Copied!
11
0
0

Texto

(1)

brazilian journal of microbiology48(2017)576–586

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Technology

and

safety

assessment

for

lactic

acid

bacteria

isolated

from

traditional

Bulgarian

fermented

meat

product

“lukanka”

Svetoslav

Dimitrov

Todorov

a,∗

,

Saso

Stojanovski

b,1

,

Ilia

Iliev

c

,

Penka

Moncheva

b

,

Luis

Augusto

Nero

a

,

Iskra

Vitanova

Ivanova

a,b

aUniversidadeFederaldeVic¸osa,DepartamentodeVeterinária,CampusUFV,Vic¸osa,MinasGerais,Brazil

bSofiaUniversity“St.KlimentOhridski”,FacultyofBiology,DepartmentofGeneralandIndustrialMicrobiology,Sofia,Bulgaria cDepartmentofBiochemistryandMicrobiology,FacultyofBiology,PlovdivUniversity“PaisiiHilendarski”,Plovdiv,Bulgaria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4February2016 Accepted16February2017 Availableonline11May2017 AssociateEditor:SusanaSaad

Keywords:

Lukanka

Antibioticresistance Virulencefactors Lacticacidbacteria Bacteriocins

a

b

s

t

r

a

c

t

The present work discusses the technological and new selection criteria that should beincluded forselectinglactic acid bacteria forproductionof fermentedmeat. Lactic acidbacteriaisolatedfromBulgariantraditionalfermented“lulanka”salamiwasstudied regardingsomepositivetechnologicalparameters(growthatdifferenttemperature,pH,and proteolyticactivity).Thepresenceofgenesrelatedtothevirulencefactors,productionof biogenicamines,andvancomycinresistancewerepresentedinlowfrequencyinthestudied lacticacidbacteria.Ontheotherhand,productionofantimicrobialpeptidesandhighspread ofbacteriocingeneswerebroadlypresented.VerystrongactivityagainstL.monocytogenes

wasdetectedinsomeofthestudiedlacticacidbacteria.Inaddition,thestudiedstrainsdid notpresentanyantimicrobialactivityagainsttestedcloselyrelatedbacteriasuchas Lacto-bacillusspp.,Lactococcusspp.,Enterococcusspp.orPediococcusspp.Toourknowledgethisis thefirststudyonthesafetyandantimicrobialpropertiesoflacticacidbacteriaisolatedfrom Bulgarianlukankaobtainedbyspontaneousfermentation.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Theproductionoffermentedmeatproductsispartofthe gas-tronomichabits ofhumanculture from all continentsand

Correspondingauthorat:UniversidadeFederaldeVic¸osa,DepartamentodeVeterinária,CampusUFV,Vic¸osa,MinasGerais,Brazil.

E-mail:slavi310570@abv.bg(S.D.Todorov).

1 Presentaddress:BitolaUniversity“St.KlimentOhridski”,FacultyofVeterinaryMedicine,Bitola,FormerYugoslavianRepublic

Mace-donia.

canbetracedbacktoearliestrecordsdating from1500BC. Besidestheimprovedpreservationcharacteristicsandsafety ofthefinalproduct,fermentationprocessesplayanessential roleintheorganolepticpropertiesofmeatproducts.Thisrole

http://dx.doi.org/10.1016/j.bjm.2017.02.005

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

brazilian journal of microbiology48(2017)576–586

577

isrelatedtothepresenceandinteractionsbetweendifferent starterculturesandautochthonousmicrobiotafoundin prod-uctsofanimalorigin,differentadditivesofbothanorganicand inorganicnature,essentialoils,nondigestive supplements, fibres,andspecificmetaboliticproducts.Consumerdemands forhigh-quality,safe,nutritious,andconvenientmeat prod-uctshaveprovidedimportantinsightsintothedevelopment ofahostofprocessedmeat products,including fermented meats.Thisoffersuniqueperspectivesfortheapplicationof novelfunctionalmicrobialculturesandpromisingemerging technologies in the manufacture of fermented meats. Fer-mentedmeatproductsareuniqueandoftenrepresentedas anelementofculinaryheritageandidentity.

Differentgeographicalareasdevelopeduniquevarietiesof preservedmeatproductsthatvariedinsize,shape,texture, appearance,andflavour.1Therehasbeenarenewedinterestin

traditionalfermentedmeatproducts,mainlyinEurope,where theyhaveagreatsignificanceandeconomicimpact.2The

fer-mentationofmeatproductsisrelatedtoanumberofphysical, biochemicalandmicrobialchangesinthemuscle-based prod-uct,causedbyendogenousandmicrobialenzymaticactivities. Thetasteoffermentedmeatproductsisprimarilyduetothe presenceoflacticacidandtheproductionoflowmolecular weightflavourcompounds,suchaspeptides,freeaminoacids, aldehydes,organicacids,andamines,arisingfromthe proteo-lysisofmeat.3Naturalfermentationofmeatcanalsoaffectthe

uniformityofproducts,whichdependonthespecific composi-tionoftheso-called‘houseflora’.Forallofthesereasons,the additionofstartercultureshasbeenrecommendedforthe manufactureoffermentedmeat.Theuseofstartercultures hasbecomeincreasinglynecessaryinordertoproduceamore consistentandstableproductbyimprovingquality,reducing variabilityandenhancingtheorganolepticcharacteristicsof fermentedmeatproducts.4,5Inadditionnovelstartercultures

mayincludemicroorganismsthatgeneratehealth-promoting molecules,possessprobioticattributesorreducethelevelof biogenicamine andcholesterolcontentinfermentedmeat products.4 Inadditiontoallthese,the safetyofthestarter

culturesusedisanessentialissue.Probioticsarelive microor-ganismswhich, wheningestedinsufficientquantities,can exertsomebeneficialhealtheffectsinthehost,andare pri-marilyderivedfromBifidobacteriumandLactobacillusspecies. Additionally,somespeciesofLactococcus,Enterococcus, Saccha-romyces,and Propionibacteriumwerealsoreportedtopresent probioticcharacteristics.6Severalstudieshavedemonstrated

thefeasibilityofaddingprobioticculturestofermentedmeat productformulations.Erkkilaetal.7examinedtheabilityof

threeprobioticLactobacillusrhamnosusstrainstobeinvolved in the production of fermented dry sausage; Pennacchia etal.8 reportedtheuse ofLactobacillus plantarumand

Lacto-bacillusparacaseiasprobiotics inmeatproducts; Pediococcus acidilacticiand Lactobacillussakei also showed good survival characteristicsinfermentedsausages;bothareconsideredas beinggood probioticcandidates foruse inmeat products9;

Todorovetal.10investigatedthesafetyaspectsofLb.sakei,Lb. plantarum,andEnterococcusfaeciumstrainsisolatedfrom Por-tuguesefermentedmeatproductsinordertoapplythemas abeneficial(starter,bacteriocinproducersorprobiotics) cul-ture.Thebacteriocinsproducedbystarterculturesmayhave anadvantageforthesestrainsincompetitiveinteractionswith

thepathogenicbacteriafromthefoodmatrixandcanbe con-sideredasbeing advantageousfortheprobioticculturesas well.

LukankaisaBulgarian(sometimesspicy)salamiwhichis uniquetoBulgariancuisine.Lukankaissemi-dried,hasa flat-tenedcylindricalshape,andbrownish-redinteriorinaskin thatisnormallycoveredwithawhitefungus.Thefinal prod-uctischaracterizedashavinglowwateractivity,slightlyacid taste,andcanbestoredunderrefrigeration(duringsummer) orattheenvironmentaltemperatureinthewinterperiod.The mixofsmallpiecesofmeatandfatgivetheinterioragrainy structure.Traditionally,lukankasalamiismadeofpork,veal, andspices(blackpepper,cumin,salt),mincedtogether and stuffedintoalengthofdriedcow’sintestineascasing.After thestuffingprocess,thecylindricalsalamiishungtodryfor about40–50daysinawell-ventilatedlocation.Intheprocess ofdrying,thesalamiispressedtoacquireitstypicalflatform. Inthepreliminaryworks,morethan200isolatesofthe gen-eraLactobacilluswereisolatedduringthedifferentstagesofthe fermentationprocessofthenaturallyfermentedlukanka.12

Theisolatesweretaxonomicidentifiedby16SrRNAandthe majoritywasclassifiedasbeingrelatedtoLb.plantarum,Lb. brevisandLb.sakei.Researchintotheproductionoflacticacid, determinationofpHandscreeningforproducersof antimi-crobialswasperformed.Oneofthemostimportantrolesof

Lactobacillusstrainsinthisprocessistheiracidifying proper-tiesforthepreservationofthefinalproduct,dependingaswell onthetotalcellnumber,andoftheacidifyingpropertiesofthe particularstrains.12

Theaimofthis workwastoinvestigatebeneficial, tech-nologicalproperties,andsafetyaspectsoflacticacidbacteria (LAB)isolatedfrom “lukanka”,includinggrowthatdifferent temperature,pH,andproteolyticactivity;presenceofgenes relatedtovirulencefactors,productionofbiogenicamines, and vancomycin resistance;productionofbacteriocins and presenceofrelatedgenes.

Materials

and

methods

Strainsandmedia

Lb.plantarum(13strains:S2,S3,S5,S7,S9,S18,S20,S23,S29, S30,S35,S37,andS39),Lb.brevis(4strains:S8,S27,S36andS38) andLb.sakei(4strains:S11,S12,S13andS15)isolatedfromthe Bulgariandrysausagelukanka,producedbyspontaneous fer-mentation(withoutaddingstartercultures)werepreviously isolated,identifiedandsomeofthemcharacterizedas bac-teriocinproducersandculturedat30◦CinMRSbroth(Difco, LePontdeClaix,France).12Lactobacillusspp.,Lactococcusspp.,

Enterococcusspp.,Pediococcusspp.andL.monocytogenesstrains usedinthebacteriocinproductiontestastestmicroorganisms (Table1

)were grownon MRS(Difco) at30◦C and BHI(Difco)at 37◦C,respectively,andstoredinthepresenceof20%glycerol at−80◦C.Beforeuse,thestrainswerecultivatedatleasttwice

inMRSorBHImedia.

GrowthofLb.plantarum,Lb.brevisandLb.sakeistrainswas determinedinMRSbrothinthepresenceofNaCl(2%,4%,6.5%, 10%and18%(m/v)).Inaddition,strainswereculturedat15◦C,

(3)

578

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 576–586

Table1–AntimicrobialspectrumofactivityofselectedLABisolatedfrom“Lukanka”.

Testmicroorganisms Lb.plantarumS2 Lb.plantarumS3 Lb.plantarumS5 Lb.plantarumS7 Lb.brevisS8 Lb.plantarumS9 Lb.sakeiS11 Lb.sakeiS12 Lb.sakeiS13 Lb.sakeiS15

L.innocuaATCC33090 – – – 16 8 8 – – – – L.monocytogenes101 – – – – – – – – – – L.monocytogenes104,106, 506,520 – – – – – – – – – – L.monocytogenes211 – – – 15 8 9 – – – – L.monocytogenes302 – – – – – – – – – – L.monocytogenes409 – – – 15 – – – – – – L.monocytogenes422 – – – 12 10 10 – – – – L.monocytogenes426 – – – 7 – – – – – – L.monocytogenes603 – – – 17 – – – – – – L.monocytogenes607 – – – 13 – – – – – – L.monocytogenes703 – – – 14 – – – – – – L.monocytogenes711 – – – 16 8 9 – – – – L.monocytogenes724 – – – 14 – – – – – – L.monocytogenesATCC7644 – – – 16 8 10 – – – – L.monocytogenesScottA – – – 15 7 9 – – – –

E.faecium11en4,11en3, 13ba2,13en4,13lc23, 11en5,1lb8,S5,ST154Ch, S100,ST62BZ,ST211Ch, ET12,ET88,ET05

– – – – – – – – – –

EnterococcushiraeD105 – – – – – – – – – –

Lb.plantarumSt16Pa,ST8Sh – – – – – – – – – –

LactobacillusacidophilusLa14, Lac4,La5

– – – – – – – – – –

LactobacilluscurvatusET06, ET31,ET30

– – – – – – – – – –

LactobacillusdelbrueckiiB5, ET32

– – – – – – – – – –

LactobacillusfermentumET35 – – – – – – – – – –

LactobacillusrhamnosusLr34 – – – – – – – – – –

LactobacillussakeiATCC 15521

– – – – – – – – – –

Lactobacillussakeisubsp.

sakei2a,MK02R,D2

– – – – – – – – – –

Lactococcuslactissubsp.lactis

B1,D4,B2,B15,D3,D5, B17,R704 – – – – – – – – – – LactococcuslactisV94,V69, B16 – – – – – – – – – –

(4)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 576–586

579

Table1–(Continued)

Testmicroorganisms Lb.plantarumS18 Lb.plantarumS20 Lb.plantarumS23 Lb.brevisS27 Lb.plantarumS29 Lb.plantarumS30 Lb.plantarumS35 Lb.brevisS36 Lb.plantarumS37 Lb.brevisS38 Lb.plantarumS39

L.innocuaATCC33090 – 10 – – – 16 – 17 14 – 17 L.monocytogenes101 – – – – – – – – 17 – 18 L.monocytogenes104,106, 506,520 – – – – – – – – – – – L.monocytogenes211 – – – – – 10 – 11 15 – 17 L.monocytogenes302 – 8 – – – 9 – 7 – – – L.monocytogenes409 – – – – – – – – 12 – 13 L.monocytogenes422 – – – – – 8 – 7 10 – 12 L.monocytogenes426 – – – – – – – – – – – L.monocytogenes603 – – – – – 8 – 9 16 – 17 L.monocytogenes607 – – – – – 11 – 12 10 – 8 L.monocytogenes703 – – – – – 7 – 7 – – – L.monocytogenes711 – – – – – 9 – – 11 – 14 L.monocytogenes724 – – – – – 13 – 12 10 – 11 L.monocytogenesATCC7644 – 9 – – – 14 – 15 17 – 18 L.monocytogenesScottA – – – – 17 – 16 16 – 17

E.faecium11en4,11en3, 13ba2,13en4,13lc23, 11en5,1lb8,S5,ST154Ch, S100,ST62BZ,ST211Ch, ET12,ET88,ET05

– – – – – – – – – – –

EnterococcushiraeD105 – – – – – – – – – – –

Lb.plantarumSt16Pa,ST8Sh – – – – – – – – – – –

LactobacillusacidophilusLa14, Lac4,La5

– – – – – – – – – – –

LactobacilluscurvatusET06, ET31,ET30

– – – – – – – – – – –

LactobacillusdelbrueckiiB5, ET32

– – – – – – – – – – –

LactobacillusfermentumET35 – – – – – – – – – – –

LactobacillusrhamnosusLr34 – – – – – – – – – – –

LactobacillussakeiATCC 15521

– – – – – – – – – – –

Lactobacillussakeisubsp.

sakei2a,MK02R,D2

– – – – – – – – – – –

Lactococcuslactissubsp.lactis

B1,D4,B2,B15,D3,D5, B17,R704 – – – – – – – – – – – LactococcuslactisV94,V69, B16 – – – – – – – – – – –

PediococcuspentosaceusET34 – – – – – – – – – – –

(5)

580

brazilian journal of microbiology48(2017)576–586

25◦C,37◦C,40◦Cand50◦CinMRSbroth.Theabilityofthe studiedstrainstodevelopinthemediumatdifferentinitial pH(pH3.0–pH5.0)wasmonitoredduringtheircultivationin MRS,aswellastheirgrowthcapabilityonacetateagarwith pH5.4(Sigma–Aldrich,Co,St.Luis,MO,USA).

Growthat37◦CinMRSbroth(recommendedoptimal con-ditionsforLAB)wasacceptedasbaselinecriteriaandreferred as“copious”.When growth parametersofinvestigatedLAB werelowerthan30%comparedtooptimal(copious),a bac-terialgrowthwasdefinedas“moderate”.Growthparameters lowerthan70%comparedtobaselinewerereferredas “abun-dant”.

Detectionofproteoliticactivity

SDS-PAGEwasusedfordeterminationoftheproteolitic activ-ityoftheinvestigatedstrains.

Productionofenzymes

Theenzymaticactivityofthestudiedwasdeterminedusing APIZYMstrips(bioMérieux,Marcy-l’Etoile,France)according tothemanufacturer’sinstructions.The20(1controland19 differentsubstrates,Table2)variantsfromtheAPIZYMstrips wereinoculated with24-h-oldculturesgrownonMRSagar (Difco),andthenincubatedat30◦Cfor4h.Theevaluationof theactivitywasgradedfrom0to5usingtheAPIZYMcolour reactionchartaccordingtotheintensityofcolourationand manufacturer’sinstructions.

Antibacterialactivity

Selectedmicroorganismswerescreenedforbacteriocin pro-ductionusingthe agar-spot-testmethodagainstapanelof testmicroorganisms,includingvariousstrainsofListeriaspp.,

Enterococcusspp.,andLactobacillusspp.(Table2).13Strainswere

growninMRSbrothfor24hat30◦C,cell-freesupernatantwas obtainedaftercentrifugation(6000g,10min, 4◦C),followed bycorrectionofpH to6.0–6.5 with1MNaOH and thermal treatmentfor10minat80◦C.Tenmicrolitersofpreviously preparedmaterialwerespottedonthesurfaceofMRSorBHI containing1%agar,inseminatedwithoneofthepreviously mentionedtestmicroorganisms(Table1)atanapproximate concentrationof106CFU/ml,andincubatedfor24hatan

opti-maltemperatureforthetestmicroorganism(30◦Cor37◦C).

Screeningforpresenceofbacteriocingenes

Total DNA was isolated from the selected microorganisms usingZRFungal/BacterialDNAKit(ZymoResearch,Irvine,CA, USA)accordingtothemanufacturer’sinstructions.DNAwas submittedto PCRreactionsto detect genesresponsible for codificationofthefollowingbacteriocins:nisin,pediocin PA-1,curvacinA, plantaricinS,plantaricin NC8,plantaricin W, sakacinG,sakacinT␣,sakacinT␤andsakacinX(Table3).14–19

ThePCR reaction was preparedusing primers at 10pM/␮L andconditionsasdescribedpreviously,adjustingthe anneal-ingtemperatureaccordingtothespecificationoftheprimers used.14–19 The amplified products were separated by

elec-trophoresisonagarosegelsin0.5×TAEbuffer.Agarosegels

werestainedin0.5×TAEbuffercontaining0.5␮g/mlethidium bromide(Sigma).

Characterizationofvirulencepotential

Theselectedmicroorganismsweretestedfortheharbouring ofvirulencegenesgelE(gelatinase),hyl(hyaluronidase),asa1

(aggregation substance), esp (enterococcal surface protein),

cylA (cytolisin),efaA(endocarditisantigen),ace(adhesionof collagen),vanAandvanB(bothrelatedtovancomycin resis-tance),andgenesforaminoaciddecarboxylases:hdc1andhdc2

(bothrelatedtohistidinedecarboxylase),tdc(tyrosine decar-boxylase), andodc(ornithinedecarboxylase)(Table3),using the PCRprotocolsofMartin-Plateroet al.20, Vankerckhoven

etal.21andRivasetal.22.Theamplifiedproductswere

sepa-ratedbyelectrophoresison0.8–2%(w/v)agarosegelsin0.5× TAEbuffer.Gelswerestainedin0.5×TAEbuffercontaining 0.5␮g/mlethidiumbromide.

Results

and

discussion

Acidificationability,growthatdifferenttemperatures,pH andNaCllevels

TheabilityofLABtoacidifyisoneofthemostimportant tech-nologicalcharacteristicsforpotentialstarterculturesinthe meatindustry.TheloweringofthepHoftheLABcaninhibit the growthofalargenumber ofpathogenic orundesirable microorganismsthatcausespoilageoffermentedmeat prod-ucts,andcanimprovethehygienicpropertiesandstorageof thefinalproducts.Ontheotherhand,apHof5.1–5.3hasa positiveeffectonthehumidityofthefermentedmeat prod-uctsand accelerates the maturation process.Theobtained resultsshowthatalltestedstrains,exceptforLb.plantarum

S23andLb.brevisS36,havegoodacidformationability.The range of the acidifying ability for the studied strains was foundtobefrompH4.03topH5.2.Foracorrect fermenta-tionprocessintheproductpHmustreachvaluesneartothe isoelectricpointoffibrilarproteins.Proteolyticreactionsthat occurduringfermentationofrawsausageshavebeenstudied extensively.Primarily,meatproteinsare degradedinto pep-tidesbyendogenous enzymesduringfermentationofmeat products.Sincemostbacteria(e.g.,lactobacilli)grownin fer-mented meat productshaveonlyweak proteolyticactivity, thedegradationofproteinsisnotgreatlyaffectedby bacte-ria.However,LABinfluenceproteindegradationbycausinga decreaseinpH,whichresultsinincreasedactivityofmuscle proteases.Moreimportantly,thepeptidesgeneratedby mus-cleproteolysiscanbetakenupbybacteriathatfurthersplit themintracellularlyintoaminoacidsandmayconvertthem toaromacomponents.

The pH value and acidity are typical indicators of fer-mented meat products.23 Beforedrying, mostdrysausages

have similar acid activity. In somespontaneous fermenta-tionprocessespHvaluesfrom5.1to5.5andaconcentration of lactic acid of 0.3%to 0.9% have been reported.24

Natu-ral LAB microbiota, particularly well adapted to these dry sausages,ischaracterizedbyahighacidifyingpotential.For the properfunctioningoffermentation,thepHatthetime

(6)

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 576–586

581

Table2–APIZYMenzymaticprofileofLABisolatedfrom“Lukanka”.

Enzymes Lb.plantarumS2 Lb.plantarumS3 Lb.plantarumS5 Lb.plantarumS7 Lb.brevisS8 Lb.plantarumS9 Lb.sakeiS11 Lb.sakeiS12 Lb.sakeiS13 Lb.sakeiS15

Alkalinephosphatase 2 2 0 0 2.5 0 0 0 0 0 Esterase(C4) 2 1 0 0 0.5 0 0 2 2 2 Esteraselipase(C8) 1.5 0.5 2 0 0 0 0 0 0 0 Lipase(C14) 0.5 0 2 2 0 2 0 0 0 0 Leucinearylamidase 0 5 0 0 5 2 0 2 2 2 Valinearylamidase 5 1 5 5 1 5 5 5 5 5 Cystinearylamidase 1 5 4 4 5 4 3 4 5 5 Trypsin 5 0 0 3 0 3 0 0 2 2 ␣-Chymotrypsin 0 0 0 0 0 0 0 0 0 0 Acidphosphatase 0 3.5 0 0 4 0 0 0 0 0 Naphitol-AS-BI-phosphohydrolase 4 2 3 4 3 4 3 3 3 3 ␣-Galactosidase 2 1 4 4 0.5 4 4 4 4 4 ␤-Galactosidase 0.5 4 0 0 4 0 0 0 0 0 ␤-Glucuronidase 4 0 5 4.5 0 5 4 4 4 2 ␣-Glucosidase 0 4 0 0 4.5 0 0 0 0 0 ␤-Glucosidase 4.5 3.5 3 3 5 4 3 2 0 0 N-acetyl-␤-glucosaminidase 3.5 5 5 5 5 5 5 0 0 0 ␣-Mannosidase 5 0 5 5 0 5 5 0 0 0 ␣-Fucosidase 0 0 0 0 0 0 0 0 0 0

Enzymes Lb.plantarumS18 Lb.plantarumS20 Lb.plantarumS23 Lb.brevisS27 Lb.plantarumS29 Lb.plantarumS30 Lb.plantarumS35 Lb.brevisS36 Lb.plantarumS37 Lb.brevisS38 Lb.plantarumS39

Alkalinephosphatase 1 0 0 3 0 0 0 1 2 3.5 0 Esterase(C4) 1 2 2 2 1 2 2 2 1 1 1 Esteraselipase(C8) 1 2 2 1.5 2 2 2 2 2 0.5 0.5 Lipase(C14) 1 2 2 0 2 2 2 1 0 0 0 Leucinearylamidase 1 2 2 5 2 2.5 2 2 1 5 1 Valinearylamidase 5 5 5 2.5 5 5 5 5 5 1 5 Cystinearylamidase 4 4 4 5 4 4 4 4 4 5 4 Trypsin 3 3 3 3 0 3 3 3 3 0 3 ␣-Chymotrypsin 0 0 0 0 0 0 0 0 0 0 0 Acidphosphatase 0 0 0 4 0 0 0 0 0 3.5 0 Naphitol-AS-BI-phosphohydrolase 4 4 4 4 4 4 4 4 4 2 3 ␣-Galactosidase 4 5 5 3 4 5 4 4 4 2 3 ␤-Galactosidase 0 0 0 4 0 0 0 0 0 4 0 ␤-Glucuronidase 4 5 5 4.5 4 5 5 4 4 0 2 ␣-Glucosidase 0 0 0 3.5 0 0 0 0 0 4 0 ␤-Glucosidase 4 4 4 3 5 4 3 3 3 5 3 N-acetyl-␤-glucosaminidase 5 5 5 4 5 5 5 5 5 5 5 ␣-Mannosidase 5 5 5 0 5 5 5 5 5 0 0 ␣-Fucosidase 0 0 0 0 0 0 0 0 0 0 0

(7)

582

b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 8 (2 0 1 7) 576–586

Table3–Presenceofbacteriocingenesandgenesrelatedtovirulencefactors,productionofbiogenicaminesandvancomycinresistanceinLABisolatedfrom “Lukanka”.

Lb.plantarumS2 Lb.plantarumS3 Lb.plantarumS5 Lb.plantarumS7 Lb.brevisS8 Lb.plantarumS9 Lb.sakeiS11 Lb.sakeiS12 Lb.sakeiS13 Lb.sakeiS15

Bacteriocingenes CurvacinA Nisin + + PediocinPA1 PlantaricinW PlantaricinNC8 + PlantaricinS SakacinG SakacinT␣ SakacinT␤ + + + + + + + + + + SakacinX + + + + + + + + +

Genesrelatedtovirulencefactors,productionofbiogenicaminesandvancomycinresistance

VancomicinB + +

VancomicinA

Gelatinase

Enterococcocalsurfaceprotein

Hystidinedecarboxilase(2setsof primers) Hyaluronidase + + Aggregationsubstance Cytolisin Endocarditisantigen Tyrosinedecarboxylase + + + + + + + + + +

Adhesionofcollagenprotein

Ornithinedecarboxilase + + + + + + + + +

Lb.plantarumS18 Lb.plantarumS20 Lb.plantarumS23 Lb.brevisS27 Lb.plantarumS29 Lb.plantarumS30 Lb.plantarumS35 Lb.brevisS36 Lb.plantarumS37 Lb.brevisS38 Lb.plantarumS39

Bacteriocingenes CurvacinA Nisin + PediocinPA1 PlantaricinW PlantaricinNC8 PlantaricinS SakacinG SakacinT␣ SakacinT␤ + + + + + + + + + + + SakacinX + + + + + +

Genesrelatedtovirulencefactors,productionofbiogenicaminesandvancomycinresistance

VancomicinB +

VancomicinA

Gelatinase +

Enterococcocalsurfaceprotein

Hystidinedecarboxilase(2setsofprimers)

Hyaluronidase

Aggregationsubstance

Cytolisin

Endocarditisantigen

Tyrosinedecarboxylase + + + + + + + + + + +

Adhesionofcollagenprotein + +

(8)

brazilian journal of microbiology48(2017)576–586

583

offilling shouldreach 4.6–5.1,avalueclose tothe isoelec-tricpointoffibrillarproteins.31Positivetechnologicalaspects

ofacidification,besidestheinhibitionofpathogenic microor-ganismsandfasterdryingoftheproduct,are theimproved texturethroughthedenaturationandcoagulationofproteins, theactivationofmuscleproteasesandtheformationofthered colourofthesausagebystimulatingtheformationofnitrite andnitrozomioglobulin.25

Theabilityofstudiedstrainstodevelopinthemediumat differentinitialpH(pH3.0–pH5.0)wasmonitoredduringtheir cultivationinMRSmedium,alongwiththeirgrowthcapability onacetateagar.Thelargemajorityofthestrainsisolatedfrom thedrylukankasausagewereabletogrowonacetateagar. FromthestudiedstrainsonlyLb.plantarumS7andLb.brevis

S8havegoodgrowthunderacidicconditions(pH3.3)(datanot shown).Formost(Lb.plantarumS7,S18andS29,Lb.brevisS8, S36andS38)pH4.0wasmorefavourable.Allstrainsgrewvery wellintheneutralandweaklyalkalineregion,andwiththe exceptionofstrainsLb.plantarumS23andLb.brevisS38,have verylowgrowthinhighalkalineconditions(pH9.6).Someof thestrainswerecharacterizedbyaverynarrowpHrangeof growth(Lb.plantarumS2,S3andS7growwellonlyataninitial pHof7.0–7.5).Lb.plantarumS7haveawidepHrange,growing intherangeof3.3–8.5).Lb.brevisS38hastheabilitytogrow intheentirepHrangeinvestigated(pH4.0–9.6).Manyofthe strainsinvestigated(withthe exceptionofLb.plantarumS3, S18andS37)werenotabletogrowatpH8.5and9.6.

Theabilityoftheculturestogrowinaparticular temper-aturerangeisanimportantphysiologicalcharacteristicused fortheidentificationofLAB.Forthispurpose,isolatesgrown attemperaturesof15◦C,25◦C,37◦C,40◦C,and 50◦C were studied.Almostallstrainstestedhadgood(copious)growthat 37◦C(withtheexceptionofLb.plantarumS3andLb.brevisS36), moderategrowthat40◦C(withtheexceptionofthestrainsLb. plantarumS2andS3andLb.brevisS36),andweakgrowthat 50◦C(excludingLb.plantarumS3).ThegrowthofLb.plantarum

S37wasabundantathightemperatures.At25◦Cmoststrains haveabundantgrowth.Approximatelyhalfofthestrainsdid notgrowat15◦C.Lb.plantarumS29 andS39had verygood growthcharacteristicsoverawidetemperaturerange.

The resistance of LAB to the concentration of NaCl in themiddlevariesandisanimportantcharacteristicoftheir speciesdifferentiation.Furthermore,stabilityandgrowthin increasingconcentrationsofsaltareimportanttechnological characteristicsoftheLABoffermentedmeat(s).Inthisstudy, theabilityoftheLABtogrowhasbeenexaminedinthegrowth mediumsupplementedwith2%,4%,6.5%,10%,and18%NaCl. Thegrowthofmoststrainswasabundantintheconcentration ofNaClintherangeof2–6.5%.At10%concentrationofNaCl, manystrainshadmoderateandabundantgrowth,butsome (Lb.brevis S27and Lb.plantarumS29)grew poorly,and only

Lb.brevisS36didnotdevelop.Inthepresenceof18%NaClall strainspresentedpoorgrowth.

Technologicalpropertiesofsodiumchloridearerelatedto itseffectontheflavour,textureandshelflifeofmeat prod-ucts.Insearchofhealthierfermentedfoodproducts,inmost cases a salt content of over 2% can be markedly lowered without substantial sensory deterioration or technological problemsleadingtoeconomicallosses.Sodiumchloride con-tentdownto1.4%incookedsausagesand1.75%inleanmeat

productsisconsideredtobeenoughtoproduceaheat-stable gelwithacceptableperceived saltinessaswell asfirmness, water-bindingandfatretention.However,aparticular prob-lemwithlow-saltmeatproductsisthatnotonlytheperceived saltiness,butalsotheintensityofthecharacteristicflavour canbeaffected.Increasedmeatproteincontent(i.e.leanmeat content) inmeat products reducesthe perceived saltiness. Fromthetechnologicalpointofview,therequiredsalt con-tentforacceptablegelstrengthdependsontheformulation oftheproduct.However,whenphosphatesareaddedorthe fatcontentishigh,lowersaltadditionsprovideamorestable gelthaninnon-phosphateandinlow-fatproducts.Small dif-ferencesinsaltcontentatthe2%leveldonothaveamarked effectontheshelflifeoftheproducts.Byusingsaltmixtures, usuallyNaCl/KCl,theintakeofsodium(NaCl)canbefurther reduced.11

Proteolyticactivity

The strains cultured in milk and analyzed by SDS-PAGE, showed differentprofiles related tothe proteolyticactivity. Theperformed analysisdetermined that thetested strains hydrolysedhighmolecularweightproteinsofthemilkwith varyingcapacity.Theresidueamountsofk-caseinand␣, ␤-casein were below50% withinthe majority ofthe strains. Lowmolecularweightproteinsofthemilkwerealso hydrol-ysedbymostofthestudiedstrains.Itshouldbenotedthat somestrainshydrolysed␤-lactoglobulincompletely. Accord-ingtopreviouslyreporteddata,theLABhavearelativelylow proteolyticactivity againstmyofibrillar proteins.23However,

somestrainsofLb.casei, Lb.plantarum,Lb.curvatus,andLb. sakeicontributedsignificantlytothehydrolysisof sarcoplas-micproteins,aswellastothesubsequentdecompositionof thepeptidestofreeaminoacids.23Furthermore,somestrains

ofLb.sakei,Lb.curvatus,andLb.plantarumshowedthe pres-enceofleucineandvalineaminopeptidases,whichcontribute tothebreakdownofproteinsand peptides.Inthiscontext, aminoacid release, attributedtoprecursors,is responsible fortheflavourofthe finalproduct.11All theseresults

indi-cate thatmilkproteinsmaybeusedas amodelsystemto establishtheproteolyticactivityofstrains.Theanalysisof pro-teolysisinthemanufactureoffermentedsausages,screening forproteinases,peptidases,andaminopeptidasesduringthe selectionofstartersshouldberecommendedaspartofthe screeningfornewstartercultureswithbeneficialproperties.

Enzymeactivities

InTable2theactivitiesoftheenzymescorrelatedwith car-bohydratecatabolismareshownandtheydifferconsiderably. ␤-GalactosidaseactivitywasexhibitedbyonestrainofLb. plan-tarum(S3)andthreestrainsofLb.brevis(S8,S27andS38).In contrast,themajorityofthestrainsexhibit␣-galactosidase activity (24 strains). Almost all strains have ␤-glucosidase activity (except forLb. sakei S13 and S15), whilethe num-ber ofstrains with ␣-glucosidase activity was considerably lower. The results for ␣-galactosidase, ␤-glucuronidase, ␣-mannosidase,andN-acetyl-␤-glucosaminidaseactivity,found inthemajorproportionofstrains,confirmedthoseobtained fromPapamanolietal.11.Theacidtasteoffermentedmeat

(9)

584

brazilian journal of microbiology48(2017)576–586

products,whichiscorrelated totheacid content,isoneof thecomponentsoftheoveralltaste.26Metabolismduring

fer-menteddrysausageripeningisacomplexinteractionbetween residualenzymeactivityofthemuscleand/orfattissueand bacterialmetabolism.

Withrespectto lipolyticactivity for the strainsisolated fromlukanka,ourstudieshaveshownthatallstrainshavea verylowactivity.Thesedataareconsistentwiththereferred tointhe work byMontel et al.26 According toVestergaard

etal.,27thelipolysisofmeatproductsismainlyduetomuscle

lipaseandphospholipase,whilebacteriallipasesshowvery littleactivityintermsoffermentedproducts.28

The degradation of amino acids to volatile molecules playedan importantrole in determiningthe characteristic tasteofdrysausages.StudiesbyMonteletal.26showedthat

thealdehydes,alcoholsandacidsderivedfromthebreakdown ofleucine,valine,phenylalanineandmethionine havevery lowvalues.Theexaminedactivityofvalinearylamidaseand cysteine arylamidase detectedwhenusing APIZYM forthe majorityofstrainsinourstudywashigh(Table2).Theactivity ofleucinearylamidaseisrelativelylowformoststrains,while forsomestrainsofLb.plantarum(S2,S5,andS7)andL.sakei

(S11)wasnotdetected.Acidphosphataseandalkaline phos-phataseactivitieswere notexhibitedbymostofthetested strains,butallfourLb.brevishavegoodalkalineactivity.

Spectrumofantimicrobialactivity

ThestudiedLABwereevaluatedfortheirantimicrobial activ-ityusingtheagar-spot-testagainstapaneloftestorganisms (Table1).Cell-freesupernatantsobtainedfromLb.plantarum

(BS7, BS9, BS20, BS30, BS37 and BS39) and Lb. brevis (BS8, BS36)(adjustedtopH6.0–6.5)inhibitedthegrowthofseveral strainsbelongingtoL.monocytogenes.However,noneofthe otherbacteriaincludedinthemicroorganismpaneltestwas affected(Table1).Thisnarrowspectrumofbacteriocinactivity wasrevealedasbeinguniqueforLactobacillusspp.Infact,most ofthebacteriocinsdescribedforLactobacillusspp.werefound tobeactiveagainstamuchbroaderrangeofmicrobial gen-eraandspecies.19However,itisimportanttoemphasizethat

theverystrongactivityagainstL.monocytogenesexhibitedby BS7,BS30,BS36,BS37andBS39strainscouldhavesignificant applicationinthebiopreservationoffermentedfoodproducts. However,tobenotactiveagainstvariousLABandtoinhibit variousL.monocytogenessuggestsaverygoodpotentialforthis bacteriocin(s)orappropriateLABtobeusedinthe biopreser-vationofvariousfoodproductswhileatthesametimenot affectingtheappliedstartercultures.

Screeningforpresenceofbacteriocingenes

OnthebasisofthePCRreactionsperformedtargetingnisin, pediocinPA-1,curvacinA,plantaricinS,plantaricinNC8, plan-taricinW,sakacinG,sakacinT␣,sakacinT␤andsakacinX, someofthetestedstrainsgeneratedpositiveresults(Table3). Thesequenceofthegeneratedampliconswas100% identi-caltothetargetedbacteriocingenes.Allthestrainsproduced positiveresultsforthepresenceofsakacinT␤,howevernone ofthemgeneratedevidencesforthepresenceofsakacinT␣. ItisimportanttorefertothefactthatsakacinT␣andsakacin

T␤arepartofthetwo-bacteriocincomplex,andthepresence ofbothpeptideisrequiredfortheactivityofamaturepeptide system.17 Carryingonlyoneoftherequiredgenesfor

two-peptidebacteriocinsismostprobablyrelatedtothefactthat primarysolicitationofsakacinT␤inthelifecircleofthetested strainsisnotanantimicrobialanddefenceprotein,but prob-ablyhasadifferentrole.Recentlyraisedthehypothesisthat someofthepolypeptidesproducedbytheLABhasaregulatory function,butbecauseofthesharedsimilaritytosome antimi-crobialpeptidestheyexhibitsomeantimicrobialactivityas well.29,30

Weneedtopointoutanotherfact:someofthetestedLAB hasgeneratedantibacterialactivity basedonthe agar-spot-testmethod,butwecannotdetectthepresenceofthetested bacteriocingenes(Tables1and3)andviceversa.Ithasbeen previouslyreportedthatspecificLABstrainscancarrymore thanonebacteriocingene,butcannotexpresssomeofthem.31

However,additionalexperimentsonbacteriocinpurification, andtheamino-acidsequenceoftheexpressedbacteriocin(s) isrequiredinordertoconfirmtheexpressionofthedetected bacteriocingene(s).Fromthisperspective,itseemsimportant topointoutthattheapplicationofdifferentapproachesfor thecharacterizationofabacteriociniscrucial.Veryfrequently authorsreportonnewbacteriocinidentificationmerelybased onthedeterminationofthepresenceofgene(s)for bacterio-cin(s)production.32,33Albanoetal.34verifiedthepresenceof

pediocin PA-1 genesintwodifferentstrains ofP. acidilactici

isolatedfrom“Alheira.”However,theevidencesforthe expres-sionofthesebacteriocinswerenotreportedandthestudied bacteriocinshavebeenonlypresumedtobeexpressed.32–34

Thepurificationofthebacteriocinfollowedbymass spectrom-etryandpartialorcompleteaminoacidsequencingisproof thatthegenesareactuallybeingexpressed.35Moreover,Poeta

et al. showed that some bacteriocin-producer strains may carryseveralgenesforbacteriocinproductionand, depend-ingongrowthconditions,theycouldexpressoneoranother gene.31Asaconsequence,reportsbasedonlyonthedetection

oridentification ofbacteriocingenesneedtobeconsidered with high scepticism and results should be accepted only whenadditionalresearchandsufficientevidenceof bacterio-cinproductionandexpressionismadeavailable.

Screeningforphysiologicalandgenetictraitrelatedto virulencefactor,biogenicaminesandantibioticresistance

Despitebeingveryrelevantinfoodisolatesandwellaccepted asGRASmicroorganisms,theverificationofvirulencefactors inLactobacillusspp.bybio-molecularproceduresisnecessary duetotheriskofgenetictransfer,sincethesegenesare usu-allylocatedinconjugativeplasmids.36Interestingly,fromall

the screenedgeneticsequencesrelatedtoseveralvirulence factors,biogenic aminesand antibioticresistance(Table3), onlyPCRtargetingvancomycinB(in3from21testedisolates), gelatinase(in1from21testedisolates),hyaluronidase(in2 from21testedisolates),tyrosinedecarboxylase(in21from21 testedisolates),ornithinedecarboxilase(in2from21tested isolates)andadhesionofcollagenprotein(in2from21tested isolates)genesgeneratedpositiveresults.VanBgenesconfer resistancetovariousconcentrationsofvancomycinonlyand havebeendescribedinvariousLAB.37

(10)

brazilian journal of microbiology48(2017)576–586

585

Thepresenceofthevirulencefactorsisanimportantpoint inthesafetyevaluationofLABwithapotentialapplicationas functionalstrains(probioticorstartercultures).Evenifthese virulencefactorshavebeendescribedasplayingaroleinthe pathogenicityofthe Enterococcusspp., we needtoconsider theirpresenceinfunctionalLABwithhighprecision.The sce-narioofhorizontalgenetransferisaveryhighpossibilityin themixedmicrobialpopulationandweneedtobeawareof thisfact.

Conclusions

FactorssuchasthephysiologicalstateofLABasstarters,the physicalconditionsofripeningandstorage(e.g.temperature, pH, sodium chloride), chemical composition of the matrix (acidity,availablecarbohydratecontent,wateractivity,etc.) andthepossibleinteractionofthestartercultureswith probio-ticand/orothermicroorganismsoccurringnaturallyoradded tothesystemofthestudiedmeatproducthavetobe consid-eredwhendevelopnewfunctionalfermentedfoodproducts.

Somemetabolitessuchasantimicrobialpeptidescanplaya roleinLABperformancesandmetabolism,affectingnotonly microbialsafety,butalsothetotalpopulationandthe ecol-ogyoffermentedmeatproducts.Verystrongactivityagainst

L.monocytogeneswasdetectedforsomeofthestudiedLAB. Inaddition, thestudiedstrainsdidnotpresentany antimi-crobial activity against tested closely related bacteria, and frequentlyusedasstartercultures,suchasLactobacillusspp.,

Lactococcusspp.,Enterococcusspp.orPediococcusspp.Studied LAB presented low levels of presenceof virulence factors, includingantibiotic resistanceandbiogenic aminesrelated genesandmaybeconsideredassafe,inadditiontopositive technologicalcharacteristicsforproductionoffermentedfood productssuchasacidificationproperties,survivalatincreased NaClconcentrations,productionoftechnologicallyimportant enzymesandproteoliticactivity.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorswouldliketoacknowledgeCNPq313852/2013-8 andCNPq401140/2014-8projectsforprovidingfinancial sup-portinadditiontosupportfromCAPESandFAPEMIG.

r

e

f

e

r

e

n

c

e

s

1.MooreJE.Gastrointestinaloutbreaksassociatedwith fermentedmeats.MeatSci.2004;67:565–568.

2.VignoloG,FontanaC,FaddaS.Semidryanddryfermented sausages.HandbookMeatProc.2010;5:379–398.

3.ClaeysE,DeSmetS,BalcaenA,RaesK,DemeyerD. QuantificationoffreshmeatpeptidesbySDS-PAGEin relationtoageingtimeandtasteintensity.MeatSci. 2004;67:281–288.

4.LeroyF,VerluytenJ,deVuystL.Functionalmeatstarter culturesforimprovedsausagesfermentation.IntJFood Microbiol.2006;106:270–285.

5.AndrighettoC,ZampeseL,LombardiA.RAPD-PCR

characterizationoflactobacilliisolatedfromartisanalmeat plantsandtraditionalfermentedsausagesofVenetoregion (Italy).LettApplMicrobiol.2001;33:26–30.

6.ZhangY,LiuJ-Z,HuangJ-S,MaoZ-W.Genomeshufflingof PropionibacteriumshermaniiforimprovingvitaminB12 productionandcomparativeproteomeanalysis.JBiotechnol. 2010;148:139–143.

7.ErkkilaS,PetejaE,EerolaS,LillebergL,Mattila-SandholmT, SuihkoM-L.Flavourprofilesofdrysausagesfermentedby selectednovelmeatstartercultures.MeatSci.

2001;58:111–116.

8.PennacchiaC,ErcoliniD,BlaiottaG,PepeO,MaurielloG, VillaniF.SelectionofLactobacillusstrainsfromfermented sausagesfortheirpotentialuseasprobiotics.MeatSci. 2004;67:309–317.

9.RavytsF,VuystLD,LeroyF.Bacterialdiversityand functionalitiesinfoodfermentations.EnginLifeSci. 2012;12:356–367.

10.TodorovSD,FrancoBDGM,WiidIJ.Invitrostudyofbeneficial propertiesandsafetyoflacticacidbacteriaisolatedfrom Portuguesefermentedmeatproducts.BenefMicrob. 2013;5:351–366.

11.PapamanoliE,TzanetakisN,LitopoulouE,KotzekidouP. CharacterizationoflacticacidbacteriaisolatedfromGreek dry-fermentedsausageinrespectoftheirtechnologicaland probioticproperties.MeatSci.2013;65:859–867.

12.StojanovskiS,DimovSG,IvanovaI,VassilevD.Assessment ofcelldensityandacidifyingpropertiesvariationof forty-twoLactobacillusstrainsisolatedfrom“Lukanka” sausage.BiotechnolBiotechnolEq.2010;24:708–711.

13.TodorovSD.BacteriocinproductionbyLactobacillusplantarum AMA-KisolatedfromAmasi,aZimbabweanfermentedmilk productandstudyofadsorptionofbacteriocinAMA-Kto Listeriaspp.BrazJMicrobiol.2008;38:178–187.

14.RemingerA,EhrmannMA,VogelRF.Identificationof bacteriocin-encodinggenesinLactobacillibyPolymerase ChainReaction(PCR).SystemApplMicrobiol.1996;19:28–34.

15.TodorovSD,WachsmanM,ToméE,etal.Characterisationof anantiviralpediocin-likebacteriocinproducedby

Enterococcusfaecium.FoodMicrobiol.2010;27:869–879.

16.TodorovSD,RachmanC,FourrierA,etal.Characterizationof abacteriocinproducedbyLactobacillussakeiR1333isolated fromsmokedsalmon.Anaerobe.2011;17:23–31.

17.MacwanaSJ,MurianaPM.A“bacteriocinPCRarray”for identificationofbacteriocin-relatedstructuralgenesinlactic acidbacteria.JMicrobiolMeth.2012;88:197–204.

18.KrugerMF,BarbosaMS,MirandaA,etal.Isolationof bacteriocinogenicstrainofLactococcuslactissubsp.lactisfrom Rocketsalad(ErucasativaMill.)andevidencesofproduction ofavariantofnisinwithmodificationintheleader–peptide. FoodControl.2013;33:467–476.

19.MuruaA,TodorovSD,VieiraADS,MartinezRCR,Cenci ˇcA, FrancoBDGM.Isolationandidentificationof

bacteriocinogenicstrainofLactobacillusplantarumwith potentialbeneficialpropertiesfromdonkeymilk.JAppl Microbiol.2013;114:1793–1809.

20.Martin-PlateroAM,ValdiviaE,MaquedaM,Martinez-Bueno M.Characterizationandsafetyevaluationofenterococci isolatedfromSpanishgoats’milkcheeses.IntJFoodMicrobiol. 2009;132:24–32.

21.VankerckhovenV,VanAutgaerdenT,VaelC,etal. DevelopmentofamultiplexPCRforthedetectionofasa1, gelE,cylA,esp,andhylgenesinenterococciandsurveyfor virulencedeterminantsamongEuropeanhospitalisolatesof Enterococcusfaecium.JClinMicrobiol.2004;42:4473–4479.

(11)

586

brazilian journal of microbiology48(2017)576–586

22.RivasP,AlonsoJ,MoyaJ,deGorgolasM,MartinellJ,Guerrero MLF.Theimpactofhospital-acquiredinfectionsonthe microbialetiologyandprognosisoflate-onsetprosthetic valveendocarditis.Chest.2005;128:764–771.

23.SanzY,FaddaS,VignoloG,AristoyM-C,OliverG,ToldraF. HydrolysisofmusclemyofibrillarproteinsbyLactobacillus curvatusandLactobacillussake.IntJFoodMicrobiol. 1999;53:115–125.

24.CapitaR,Llorente-MarigomezS,PrietoM,Alonso-CallejaC. Microbiologicalprofiles,pHandtitratableacidityofchorizo andsalchichon(TwoSpanishdryfermentedsausages) manufacturedwithostrich,deer,orporkmeat.JFoodProtect. 2006;69:1183–1189.

25.HugasM,MonfortJM.Bacterialstarterculturesformeat fermentation.FoodChem.1997;59:545–554.

26.MontelMC,MassonF,TalonR.Bacterialroleinflavour development.MeatSci.1998;49:111–123.

27.VestergaardCS,SchivazappaC,VirgiliR.Lipolysisin dry-curedhammaturation.MeatSci.2000;55:1–5.

28.DemeyerD,RaemaekersM,RizzoA,etal.Controlof bioflavourandsafetyinfermentedsausages:firstresultsofa Europeanproject.FoodResInt.2000;33:171–180.

29.RodaliVP,LingalaVK,KarlapudiAP,IndiraM,

VenkateswaruluTC,JohnBabuD.Biosynthesisandpotential applicationofbacteriocins.JPureApplMicrobiol.

2013;7:2933–2945.

30.KjosM,OppegardC,DiepDB,etal.Sensitivityoftwo-peptide bacteriocinlactocinGindependentonUppP,anenzyme involvedincell-wallsynthesis.MolMicrobiol.

2014;92:1177–1187.

31.PoetaP,CostaD,Rojo-BezaresB,etal.Detectionof antimicrobialactivitiesandbacteriocinstructuralgenesin faecalenterococciofwildanimals.MicrobiolRes.

2007;162:257–263.

32.DeKwaadstenietM,FraserT,vanReenenCA,DicksLMT. BacteriocinT8,anovelclassIIasec-dependentbacteriocin producedbyEnterococcusfaeciumT8,isolatedfromvaginal secretionsofchildreninfectedwithhuman

immunodeficiencyvirus.ApplEnvironMicrobiol. 2006;72:4761–4766.

33.DeKwaadstenietM,tenDoeschateK,DicksLMT.

CharacterizationofthestructuralgeneencodingnisinF,a newlantibioticproducedbyaLactococcuslactissubsp.lactis isolatedfromfreshwatercatfish(Clariasgariepinus).Appl EnvironMicrobiol.2008;74:547–549.

34.AlbanoH,TodorovSD,vanReenenCA,HoggT,DicksLMT, TeixeiraP.Characterizationofabacteriocinproducedby Pediococcusacidilacticiisolatedfrom“Alheira”,afermented sausagetraditionallyproducedinPortugal.IntJFood Microbiol.2007;116:239–247.

35.ZendoT,NakayamaJ,FujitaK,SonomotoK.Bacteriocin detectionbyliquidchromatography/massspectrometryfor rapididentification.JApplMicrobiol.2008;104:499–507.

36.EatonTJ,GassonMJ.MolecularscreeningofEnterococcus virulencedeterminantsandpotentialforgeneticexchange betweenfoodandmedicalisolates.ApplEnvironMicrobiol. 2001;67:1628–1635.

37.KilicA,DemirayT,SaracliMA,etal.Bacteriological characterizationofvancomycin-resistantenterococciin pediatrichospitalinTurkey.AnnMicrobiol.2004;54:543–551.

Referências

Documentos relacionados

The aim of this study is to examine the relationship between working capital management and firms’ performance, under three assumptions: in a general overview of the

Se comparados com as empresas, os sindicatos possuem uma cultura organizacional um tanto quanto diferente, mas peculiar devido ao fato de ter algumas características

RESUMO A premência da educação e formação de adul- tos (EFA) em Portugal, conjugada com a entrada num período (2007-2013) abrangido por um novo programa operacional, aconselha

Dúvida não pode haver, portanto, de que nas modernas parcerias do Estado com o Terceiro Setor, assemelhadas que são a contratos de prestação de serviços, a prestadora — uma

Desta investigação histórica pode concluir-se que o culto ao Senhor Santo Cristo dos Milagres, imagem do Mosteiro de Nossa Senhora da Esperança, em Ponta Delgada, ultrapassou depressa

Os participantes preencheram um questionário sociodemográfico, a Escala de Traços de Personalidade Borderline para Adolescentes (ETPB-A), a Escala Multidimensional

O presente plano de implementação da consulta de enfermagem ao doente oncológico do pulmão em contexto ambulatório surge no âmbito do projeto de intervenção inserido no Curso

Em alguns locais não existia uma correta diferenciação nem locais próprios para lixo (Figura 32). Figura 32 - Plástico de proteção de planos magnéticos espalhado no chão Figura