• Nenhum resultado encontrado

Polyphasic characterization of bacteria obtained from upland rice cultivated in Cerrado soil

N/A
N/A
Protected

Academic year: 2021

Share "Polyphasic characterization of bacteria obtained from upland rice cultivated in Cerrado soil"

Copied!
9
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Polyphasic

characterization

of

bacteria

obtained

from

upland

rice

cultivated

in

Cerrado

soil

Lívia

Fabiana

Braga

a

,

Fênix

Araújo

de

Oliveira

a

,

Eva

Aparecida

Prado

do

Couto

a

,

Karina

Freire

d’Ec¸a

Nogueira

Santos

a

,

Enderson

Petrônio

de

Brito

Ferreira

b,∗

,

Claudia

Cristina

Garcia

Martin-Didonet

a

aUniversidadeEstadualdeGoiás(UEG),Anápolis,GO,Brazil bEmbrapaArrozeFeijão,SantoAntôniodeGoiás,GO,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received29November2016 Accepted27April2017 Availableonline5August2017 AssociateEditor:FernandoAndreote

Keywords: Oryzasativa PGPR Associativebacteria Bacterialdiversity

a

b

s

t

r

a

c

t

Thisworkaimedtocharacterize20isolatesobtainedfromuplandriceplants,basedon phe-notypic(morphology,enzymaticactivity,inorganicphosphatesolubilization,carbonsource use,antagonism),genotypicassays(16SrRNAsequencing)andplantgrowthpromotion. Resultsshowedagreatmorphological,metabolicandgeneticvariabilityamongbacterial isolates.Allisolatesshowedpositiveactivityforcatalaseandproteaseenzymesand,90% oftheisolatesshowedpositiveactivityforamylase,catalaseand,nitrogenase.Allisolates wereabletometabolizesucroseandmalicacidincontrastwithmannitol,whichwas metab-olizedonlybyoneisolate.Fortheothercarbonsources,weobservedagreatvariabilityin itsusebytheisolates.MostisolatesshowedantibiosisagainstRhizoctoniasolani(75%)and

Sclerotiniasclerotiorum(55%)and,50%ofthemshowedantibiosisagainstbothpathogens. Sixisolatesshowedsimultaneousabilityofantibiosis,inorganicphosphatesolubilization andproteaseactivity.Basedonphylogeneticanalysisofthe16SrRNAgenealltheisolates belongtoBacillusgenus.Undergreenhouseconditions,twoisolates(S4andS22)improved toabout24%,25%,30%and31%theTotalN,leafarea,shootdryweightandrootdryweight, respectively,ofriceplants,indicatingthattheyshouldbetestedforthisabilityunderfield conditions.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

PartoftheMaster’sDissertationofthefirstauthorapprovedbytheMolecularSciencePost-GraduationProgramoftheGoiásState

University.

Correspondingauthor.

E-mail:enderson.ferreira@embrapa.br(E.P.Ferreira).

https://doi.org/10.1016/j.bjm.2017.04.004

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Beneficialendophyticmicroorganismscanliveinsideplants without causing damage to the host. Among them, many bacteria colonize the intercellular spaces throughout the whole plant, including seeds.1 Intercellular spaces contain

sources of carbohydrates and minerals, such as: nitrogen, phosphorus, calcium, potassium, and chlorine, as well as othermetabolitesasorganicacids,facilitatingbacterial devel-opmentandcolonizing.2

Among several microorganisms colonizing plant tis-sues,plantgrowth-promotingrhizobacteria(PGPR)werealso found.3ThesePGPRsprovidebeneficialeffects,suchas:

min-eralnutritionimprovement,increaseonthetoleranceofbiotic andabioticstresses,rootdevelopmentpromotion,and sup-pressionofsoilbornediseases.2

Also,thesebacteriacanbeinvolvedonnitrogenfixation, inorganicphosphatesolubilization,ironcomplexation, phy-tohormonessynthesisandplantpathogencontrol,involving many enzymes on these processes.2,4 Thus, plants under

influence of PGPR can be greater, stronger, more produc-tiveandhealthier.3,5,6Besides,theassessmentofbiochemical

characteristicsinbacteriaallowsinferencesabouttheir adap-tivecapacitytotheenvironmentandabouttheplant–bacteria interaction,sinceitinvolvesseveralgenesandmechanisms, suchaschemoattractionandbiofilmformation,amongother activities.3

AssociationbetweenPGPRsandrootofriceplantshasbeen studied and many isolates showingeffects on rice growth werefound.5Theapplicationofthistechnologyonricechain

productioncanprovidebenefitsforcropgrowthandreduce productioncosts,aswellashelpingonthereductionof envi-ronmentalrisks.5,7

Furthermore, the identification and characterization of bacteriaasPGPRprovideinsightsforunderstandingthe com-positionofbacterialcommunitiesassociatedwithriceplants grownunderCerradoconditions.However,studieswithfocus ontheisolationandcharacterizationofbacteriafromCerrado soilsabletopromoteplantgrowthofuplandricearestillscarce aswellas,necessaryforthiscrop.Thus,thisstudyaimedto characterizebacterialisolatesobtainedfromricerootsbased onbiochemicalandgeneticcharacteristicsand,todetermine theirabilitytopromoteplantgrowthaimingtheiruseas inoc-ulantforuplandrice.

Material

and

methods

Bacterialisolates

Theisolatesevaluatedinthisstudywereobtainedfromrice roots by Rezende8 and are available at the Collection of

MicroorganismsandMultifunctional FungiofEmbrapaRice andBeans.

MorphologicalcharacterizationandGramcoloringassays

Morphologicalcharacterizationwas performedaccordingto Vermelhoetal.9basedonshape,border,surface,consistence

andelevationofthecolonies.Gramcoloringwasperformed accordingtoLouvetetal.10

Biochemicalassays

All biochemicaltrialswereperformedonacompletely ran-domizeddesignintriplicateunderlaboratoryconditions.For theevaluationofcarbonsourcesuse(maleicacid,malicacid, nicotinic acid,d-arabinose,d-fructose, d-glucose,mannitol, mio-inositol, sucroseand sorbitol),each isolatewas inocu-latedinPetridishescontainingsolidKingBmediumadded witheachdifferentcarbonsourcesandincubated(28◦C;2d). Afterincubation,wecheckedoutthegrowthoftheisolates accordingtoHungriaetal.11

The activity of the enzymes citrate lyase and urease wasmeasuredthroughqualitativeassaysbyinoculatingthe isolates on solid Simmons citrate and urea medium and observing the blue and red colors of the culture medium, respectively.9 Nitrate reductase and nitrogenase enzymes

werequalitativelyassayedinsemi-solidmedium.12Catalase

activitywasassayedaccordingtoVermelhoetal.9 For

amy-laseandproteaseactivities,weobservedtheformationofa translucid haloaroundthe colonies,formedbytheisolates inoculatedonM9solidmediumcontaining1%ofstarchand 2%ofmilkprotein,respectively.13Cellulaseactivitywas

deter-minedaccordingtoCattelanetal.14

Solubilizationofinorganicphosphateassaywasperformed using three replicates. Solubilization abilitywas confirmed based on the observation of a translucid halo around the coloniesformedbytheisolatesinoculated onNBRI-P15 and

Pikovskayamedium.16

Antagonistictest

Theantagonisticabilityoftheisolateswasperformedusing three replicates,underin vitroconditions againstthefungi

Sclerotinia sclerotiorum and Rhizoctonia solanion Petri dishes containingBDAmediumaccordingtoHammamietal.17

Clusteringanalysisoftheisolatesbasedon morpho-physiologicaldata

Morphological, enzymatic activity, carbon source use and antibiosis datawere transformed into abinary matrix and submitted to cluster analysis performed by the software NTSYSpc®23usingUPGMAasgroupingalgorithmandJaccard

assimilaritycoefficient.

16SrRNAgenesequencinganalysis

Based on the clustering analysis of the isolates based on morpho-physiologicaldata11isolates(S2,S4,S6A,S17,S22, S26,S29,S37,S41,S63andS105)wereselectedfor16SrRNA gene sequencing. The DNA of the isolates was obtained accordingtoLaranjoetal.18The16SrRNAgenewas

ampli-fiedbyPCRusingtheprimersY1andY3.18,19Theamplicons

were purifiedandusedonthe sequencingreaction accord-ing toLaranjoet al.18Sequences coding forthe partial16S

rRNAgeneoftheisolatesS2,S4,S6A,S17,S22,S26,S29,S37, S41,S63andS105wasobtainedandwhensubmittedtothe

(3)

GenBank database (www.ncbi.nlm.nih.gov) received the accession numbers KX855959.1, KX855958.1, KX197211.1, KX197210.1,KX855960.1,KX197209.1,KX855957.1,KX197208.1, KX197214.1,KX197206.1andKX197207.1,respectively.

Evaluationofplantgrowthpromotion

Based on genotypic characterization, four isolates were selectedtobeevaluatedundergreenhouseconditionsas com-pared to a no-inoculated treatment (NI). Seeds of rice cv. Aimoréwere sownin8Lpotsfilled withsoiland arranged inarandomblockdesignwithfourreplicates.Atsowingtime, seedswereinoculatedwithpeat-basedinoculantcontaining 1×108cellg−1ofeachisolateandreferencestrain.Riceplants

wereharvestedat40daysafteremergence(DAE)todetermine leafarea(LA),rootvolume(RV),rootdryweight(RDW),shoot dryweight(SDW)accordingtoFerreira20,21 and,thetotalN

(N-Total)usingtheKjedahlmethod,asdescribedbySilvaand Queiroz.22

Dataanalysis

For the 16S rRNA-based phylogeny study, the sequences obtained were submitted to NCBI BLAST against a non-redundant nucleotide database for getting homologous sequences.24 Sequences showingdegree of similarity were

aligned using the CLUSTAL W program.25 The

evolution-aryhistory wasinferred byusing themaximum likelihood method,26withtreeconsensusbeinginferredfrom500

repli-cates using bootstrap.27 All positions containing gaps and missing data were eliminated. There were a total of 1312 positionsinthefinaldataset.Evolutionaryanalyseswere con-ductedinMEGA6.28

Dataobtainedfromthegreenhouseexperimentwere sub-jected toanalysis ofvariance.When F was significant,the Scott–Knotttestofmeanswasappliedwitha5%probability usingSISVARstatisticalsoftware.

Results

Analysisbasedonthemorphologicalcharacteristicsofthe iso-latesresulted infour differentgroups(A, B,Cand D). The groupswerecomposedby5,9,2and4isolates,respectively

(Table1).IsolatesofgroupsAandBshowthesame

morpho-logicalcharacteristics,exceptforGramcoloration,bywhich theisolatesofgroupAareGram−,whileisolatesofgroupBare Gram+.Similarly,isolatesofthegroupCareGram−,and iso-latesofgroupDareGram+.Additionally,isolatesofgroupsA andBshowdifferentmorphologicalcharacteristicscompared toisolatesofgroupsCandD(Table1).

The results of carbon source use and enzyme activ-ity showed a great metabolic diversity amongthe isolates

(Table2).

Allthe isolateswereable touse sucroseandmalicacid ascarbonsource,whileonlytheisolateS22wasabletouse mannitol.Also,45%and35%oftheisolateswereabletouse fructoseandmio-inositol,respectively.Besides,theisolateS22 wasabletousenineofthetencarbonsourcesevaluated,while theisolateS97usedjusttwoofthesesources(Table2).

G1 0.40 0.50 0.60 0.70 Jaccard coefficient 0.80 0.90 1.00 S2 S5 S4 S8A S35 S37 S39 S29 S41 S32 S6 S25 S26 S97 S6A S105 S8B S22 S17 S63 G2 G3 G4 G5 G6

Fig.1–Consensusdendrogramobtainedbycombiningthe morphological,enzymaticactivity,carbonsourceuseand antibiosisdataamong20endophyticisolatesobtained fromuplandriceplants.Dendrogramwasgeneratedbythe algorithmUPGMAandsimilaritymatrixobtainedfromthe useofJaccardcoefficient.

Alltheisolatesshowedcatalaseactivity,while90%ofthe isolatesshowedamylase,phosphataseandnitrogenase activ-ity. TheisolatesS8A, S22,S35 and S105showed activityof sevenenzymes,andisolatesS5andS19 showedactivityof

four(Table2).

For the phosphate solubilization assay, only the results obtainedfromthePikovskayamediumareshown,sincewe didnotobservegrowthoftheisolatesintheNBRI-Pmedium. About 75% ofthe isolateswere abletosolubilize inorganic phosphate(Table3).TheseisolatesshowedaSIofabout111% inaverage, withthe greatestvaluesbeen observedfor iso-latesS2(133.86%)andS5(133.6%).IsolatesS8bandS63did notpresentsolubilizationability.

ThegeneralmeanobservedforPEIwasabout1.92.Six iso-lates(S6,S4,S29,S17,S37andS2) showedPEIgreater than 2,whiletheisolateS105showed thesmallestvalueforPEI

(Table3).

OntheantibiosisassaysagainstS.sclerotiorum,11isolates were able toinhibitthe growth ofthe fungi,whileagainst

R.solani14 isolatesinhibitedthefungigrowth.Besides, the isolatesS6A,S25,S26,S29,S32,S35,S37,S41,S97andS105 showedantibiosisagainstbothfungi(Table3).

Thesimilarityanalysisbasedonmorphological character-istics, enzymatic activity,carbon sourceuse and antibiosis assayrevealedsixclustersformationat60%ofsimilarity, indi-catinggreatdiversityamongthe20isolatesregardingthese traits(Fig.1).

TheisolateS63,ongroupG6,showeda40%similarityto the otherisolates,followedbytheisolatesofthe groupG1. Thegreatestsimilaritywasabout90%,observedbetweenthe isolatesS5andS37.Theseisolatesgroupedwithothereight isolatesongroupG2(Fig.1).

The16SrRNAgenesequencinganalysisrevealedthatall theevaluatedisolatesshowedhighsimilaritywiththegenus

Bacillusascomparedwithotherplantgrowth-promoting gen-era(Fig.2).

ThephylogenyanalysisconsideringonlythegenusBacillus

showedthattheisolatesS6A,S17,S26,S37andS22areclosely relatedwiththestrainsEGE-B-Li-6andSt05ofB.subtilisand

(4)

Table1–MorphologicalcharacteristicsonKingBmediumofendophyticisolatesobtainedfromriceplants.

Groups Isolate Shape Border Surface Consistence Elevation Gram

A S2 I W R D F − A S4 I W R D F − A S6A I W R D F − A S39 I W R D F − A S97 I W R D F − B S5 I W R D F + B S6 I W R D F + B S8A I W R D F + B S8B I W R D F + B S17 I W R D F + B S32 I W R D F + B S35 I W R D F + B S37 I W R D F + B S105 I W R D F + C S41 C S G A H − C S25 C S G A H − D S22 C S G A H + D S26 C S G A H + D S29 C S G A H + D S63 C S G A H +

I,irregular;C,circular;W,wrinkled;S,smooth;R,rough;G,gentle;D,dry;A,aqueous;F,flat,H,high.

Table2–Metaboliccharacteristicsofendophyticisolatesobtainedfromriceplants.

Evaluations Isolates S2 S4 S5 S6 S6A S8A S8B S17 S22 S25 S26 S29 S32 S35 S37 S39 S41 S63 S97S105 Carbonsources Sucrose + + + + + + + + + + + + + + + + + + + + Glucose + + + + + + + + + + + + + + + + + + − − Fructose − − − − − − + − + + − − − − − − − − − + Mannitol − − − − − − − − + − − − − − − − − − − − Sorbitol − − − + − − + + + − − − − − − − − + − + Mio-inositol + + + − − + + − − − − − − + + + − − − − Arabinose − − − − + − + + + − − − − − − − − + − + Maleicacid + + + + − − − − + − − − − − − − − + − − Nicotinicacid − − + − − − + + + + − − − − − − − − − − Malicacid + + + + + + + + + + + + + + + + + + + + Enzymeactivity Cellulase + − + − + + + − + − − − − − − − − − + + Amylase + + + + + + + + + + − + + + + + + − + + Protease + + + + + + + + + + + + + + + + + + + + Phosphatase + + + + + + − + + + + + + + + + + − + + Urease + − − − − − − − − − − − + − − − + + − − Nitrogenase + + − + + + + + + + + + + + + + + + − + Reductasenitrate − + − + + + + − + + + − + + + − − − + + Citratelyase − + − − − + − + + − + + − + − − − + + − Catalase + + + + + + + + + + + + + + + + + + + +

B.methylotrophicus,respectively,whiletheisolatesS2andS41 areclosely relatedwithdifferentstrainsofB. methylotrophi-cusandB.valezensis.Ontheotherhand,theisolatesS63and S105clusteredwiththestrainFBZ42ofB.valezensis.Also,the isolateS29showedhighsimilaritywithB.vallismortisandB. amyloliquefaciens.Thisanalysisalsorevealedthattheisolate S4isanoutgroup,showinglowsimilaritywiththedifferent strainsofthegenusBacillus.EvenbelongingtoBacillusgenus (Fig.2)andshowing98%ofidentityontheBLASTanalysiswith thestrainSL8ofB.amyloliquefaciens,thespecieofthisisolate isstilluncertainneedingfurtherstudiestoitsdetermination (Fig.3).

Based on the results of the phylogenetic analysis, the isolates S4, S22, S29 and S105 were chosen to be evaluated as plant growth promoters under greenhouse conditions. Results showed a clear effect of the isolates on the root development of upland rice plants cv. Aimor é(Fig.4).

Theplantgrowthpromotionabilityoftheisolateswasalso observedoverrootdryweight(RDW),leafarea(LA),shootdry weight(SDW)andtotalN(N-Total)accumulatedontheshoots ofriceplantsasobservedinTable4.TheisolatesS4andS22 promotedhighervaluesofRDW,LA,SDWandN-Totalas com-paredtoNItreatment(Table4).

(5)

Table3–Solubilizationindex(SI)forinorganicphosphateassayedinPikovskayamedium,proteaseenzymaticindex (PEI)andantibiosisassaysagainstSclerotiniasclerotiorum(Ss)andRhizoctoniasolani(Rs)ofendophyticisolatesobtained fromriceplants.Meanvaluesofthreereplicates.

Isolate SI(%) PEI Antibiosis

Ss Rs S2 133.86(±16.9) 2.03(±0.15) − − S4 126.94(±13.7) 2.52(±0.22) − + S5 133.60(±14.5) 1.98(±0.04) − − S6 130.56(±4.8) 3.04(±0.06) − + S6A 116.78(±9.8) 1.88(±0.18) + + S8A 119.63(±2.8) 1.57(±0.10) − − S8B 0 1.88(±0.05) − − S17 117.10(±7) 2.21(±0.22) − + S22 131.02(±7.9) 1.67(±0.01) + − S25 129.17(±19) 1.91(±0.17) + + S26 114.95(±4.3) 1.96(±0.13) + + S29 123.15(±11.2) 2.36(±0.15) + + S32 119.39(±10) 1.96(±0.34) + + S35 120.20(±6.1) 1.61(±0.13) + + S37 117.78(±1.9) 2.19(±0.07) + + S39 116.06(±5.3) 1.96(±0.13) − − S41 128.52(±5.7) 1.89(±0.07) + + S63 0 1.57(±0.10) − + S97 116.74(±8.4) 1.73(±0.07) + + S105 126.52(±9.1) 1.35(±0.08) + +

Table4–Effectofdifferentisolatesontheleafarea(LA),rootdryweight(RDW),shootdryweight(SDW)andtotalN (N-Total)ofuplandricecv.Aimoréascomparedtoano-inoculatedtreatment(NI).Meanvaluesoffourreplicates.

Treatments RDW(gplant−1) LA(cm2plant−1) SDW(gplant−1) N-Total(mgplant−1)

S4 3.57a 678.63a 6.88a 217.48a S22 2.79a 601.01a 5.92a 218.02a S29 2.01b 462.35b 4.46b 161.72b S105 2.05b 561.68a 5.44a 219,06a NI 2.16b 475.15b 4.45b 164.87b CVa(%) 8.95 8.08 7.55 7.90

ValuesfollowedbythesameletterwithineachcolumnarenotsignificantlydifferentbytheSkott–Knotttest(p<0.05).

a CV=coefficientofvariation.

Discussion

The morphological analysis revealed four different mor-phological groups with the prevalence ofisolates showing irregularshape,wrinkledborderandGram+bacteriaaswell

(Table1).ThegenusBacillussp.comprisesGram+bacteriaand

severalspeciesofthisgenusshowcolonymorphologyquite similartothosefoundinthisstudy.29

All isolateswere able touse sucrose and malicacid as acarbonsource(Table2).Theabilitytometabolizesucrose indicatesthat theseisolateshaveenzymeinvertase,which catalysesthehydrolysisofsucrose,allowingthoseisolatesto usethiscompoundasanenergysource.30Malate,theionized

formofmalicacid,isasecondpreferredcarbonsourceforB. subtilis.31

Wealsofoundtheenzymeamylaseinmostoftheisolates

(Table2).Amylasesarewidelydistributedinbacteriaandfungi

andareclassifiedbytheactionofexoenzymes,endoenzymes andenzymedebranching.4

Bacteriautilizecitratethroughtheenzymecitratelyase. Inaddition,those bacteriacanproduceother organicacids

derivatives,whichcanactchelatingaluminumand phospho-rusmolecules.32Inourstudy,amongthepositivebacteriafor

citratelyaseonlyonedidnotshowthecapacitytosolubilize inorganicphosphate,indicatingthatfortheotherbacteriaa synergybetweentheseactivitiesmayoccur.

Amongtheisolates,tenofthemshowedactivityfornitrate reductase and nitrogenase, and three for urease activity

(Table2).Theseenzymes aredeterminingfactorsrelatedto

biological nitrogen fixationand nitrogenmetabolism.2 The

presenceoftheseenzymesindicatesthattheseisolatesshow metabolicpathwaysinvolvedinNassimilationand,thusthey cancontributetoplantgrowth.7

Ontheotherhand,onlytwoisolatesdidnotshowinorganic phosphate solubilizationcapacity(Table3).Besides,among thebacteriastudiedinthisstudy,thehighestinorganic phos-phatesolubilizationindex(SI)wasabout 134%.Severalsoil bacteriacansolubilizeinorganicphosphateandprovidePfor plantgrowth,increasingPutilizationefficiency.33Bacterialike

PseudomonasandAcetobactercanshowSIof260%and483%, respectively.34

On studies with bacteria isolated from Brazilian soils, theaverageSIwas170.5%andthebacteriaLMG1222,which

(6)

73 100 100 100 100 100 60 99 0.02 S63(KX197206.1) S2(KX855959.1) S105(KX197207.1) S4(KX855958.1) S6A(KX197211.1) S41(KX197214.1) S17(KX197210.1) S37(KX197208.1) S22(KX855960.1) S26(KX197209.1) S29(KX855957.1) Bacillus valezensis FZB42 (KX898131.1)

Bacillus valezensis GEN11 (KU245537.1) Bacillus methylotrophicus St05 (JN700065.1)

Bacillus methylotrophicus NS 1-29 (HQ831404.1)

Bacillus methylotrophicus IHB B 7249 (KJ767354.1)

Bacillus methylotrophicus SL 8 (KP058543.1)

Rhizobium tropici CIAT899 (NC020059.1)

Bradyrhizobium japonicum GMC438 (AB741460.1) Azospirillum amazonense NBRC 107773 (AB682665.1)

Azospirillum brasilense Gr54 (FR667893.1) Azospirillum lipoferum NBRC 102290 (AB681746.1)

Burkholderia amabifaria L3 (LN889999.1) Pseudomonas fluorescens N07 (FJ972536.1) Pseudomonas putida HR5.1 (FN395007.1) Bacillus vallismortis A7-8 (JF496368.1) Bacillus amyloliquefaciens HR62 (JF700435.1) Bacillus subtilis EGE-B-1i-6 (JF926531.1)

Bacillus subtilis pspsg (KU956005.1) Bacillus valezensis G-5 (KY021155.1)

Fig.2–Maximumlikelihoodphylogenyofthe16SrRNAgeneshowingtherelationshipsamongendophyticisolates obtainedfromriceplants(inbold)withdifferentgeneraofplantgrowth-promotingrhizobacteria.GenBankaccession numbersareshowninparentheses.Bar,20ntsubstitutionsper1000nt.

belongstothegenusBurkholderiawasthemostefficient,with aSIof251%.35ThemeanSIobservedforthetestedisolatesin

thisstudywas122.9%,withthehighestvaluesaround133% forisolatesS2andS5(Table3).

Anotherimportanttoolforplantgrowth-promoting bacte-riaistheir abilityto produceproteases.The productionof proteasebybacteriaisoftenstudiedandhasgreatimportance forindustrial use and on the understanding ofthe activi-tiesoccurringinthesoilenvironment.3AccordingtoOliveira

etal.,13bacteriashowingproteaseenzymaticindex(PEI)≥2

areconsideredgoodproteaseproducers.

Ourresultsrevealed fivegoodproteaseproducers

bacte-ria(Table 3). IsolateS6 showed PEI about 3, which isvery

close to the PEI values showed by Bacillus megaterium and

Corynebacteriumrenale(3.1and4.3,respectively)isolatedfrom

Jacarandadecurrensplants,isolatedfromsoilsofthestateof Goiás,Brazil.36

The enzymatic diversitydisplayed byendophytic bacte-riaisolatedfromuplandricegrowninCerradoindicatesthat it is possibleto developa strategyto benefitthe selection of microorganismsas biofertilizers, improving their poten-tialasplantgrowthpromotersforricecrop.Thus,thegreater theextentofenzymaticpathwayspresentedbythe microor-ganisms,thegreaterwillbethegeneratedbenefit.Also,the successoftheplant–bacteriuminteraction andcompetition withothermicroorganismsfavorstheestablishmentofthose microorganismsinsuchenvironments.3

Theabilityof endophyticbacteria strainstogrow using carbon sourcepresent insoiland plantsassubstrate indi-catestheirabilitytosurviveandcompeteintheenvironment. Organicacidssuchasmaleicandnicotinicacidcanalsobe exudedbytherootsofplants,playinganimportantrolein theselectionoftheassociatedmicrobiota.Nicoticandmaleic acids showed suppressive effect over most of the studied

(7)

B. subtilis EGE-B-1i-6 (JF926531.1) 66 63 96 0.002 B. subtilis pspsg (KU956005.1) B. methylotrophicus St05 (JN700065.1) B. methylotrophicus NS 1-29 (HQ831404.1) B. valezensis GEN11 (KU245537.1)

B. valezensis FZB42 (KX898131.1) B. methylotrophicus IHB B 7249 (KJ767354.1) B. valezensis G-5 (KY021155.1) B. vallismortis A7-8 (JF496368.1) Bacillus amyloliquefaciens HR62 (JF700435.1) B. methylotrophicus SL 8 (KP058543.1) S6A(KX197211.1) S17(KX197210.1) S26(KX197209.1) S37(KX197208.1) S2(KX855959.1) S41(KX197214.1) S63(KX197206.1) S105(KX197207.1) S29(KX855957.1) S4 (KX855958.1) S22(KX855960.1)

Fig.3–Maximumlikelihoodphylogenyofthe16SrRNA geneshowingtherelationshipsamongendophyticisolates obtainedfromriceplants(inbold)withBacillussp.

referencestrains.GenBankaccessionnumbersareshown inparentheses.Bar,2ntsubstitutionsper1000nt.

S29 NI S22 S105 S4

Fig.4–Rootdevelopmentofuplandricecv.Aimoréas affectedbyendophyticisolatesobtainedfromriceplants.

isolates(Table2),whichcorroboratesthefindingsofFernandes Junioretal.4

Among the evaluated bacteria, 55% and 70% showed antibiosis against S. sclerotiorum and R. solani, respectively

(Table 3). Antibiosis may be triggered by many processes,

includingcompetitionandproductionofmetabolites.37

Iso-lates S4, S6, S22, S25, S29 and S105 showed antibiosis, solubilizationofinorganicphosphateandproteaseactivities

(Table3).AccordingtoParketal.,38thesolubilizationof

inor-ganicphosphateandproteaseactivitymaybeinvolvedinthe antibiosisactivity ofbacteria againstfungi. These bacteria

showedaveryclosesimilaritybasedontheirmorphological andenzymaticactivity,carbonsourceuseandantibiosisdata. Isolates S4,S6,S25 andS29 sharedabout62% ofsimilarity ongroupG2;isolatesS22andS105about65%ofsimilarityon groupG4.ThesimilaritybetweengroupsG2andG4wasabout 52%(Fig.1).

Mostoftheisolatesevaluatedinthisstudy,especiallyS4 and S22,show differentmechanisms involvedinthe plant growthpromotion,besidesthepresenceofenzymesactivity relatedtoadaptationtodifferentenvironmentalconditions,as thoseofCerrado.Inthisway,theresultsofthisstudyrepresent agreatscientificcontributionsincemanymetabolicpathway andactionmechanismscanbestudiedfromafewnumberof isolates.Besides,thecontributionfromtheagriculturalpoint ofviewishighlypromisingfortheBrazilianCerradobecause therearenonebiologicalproductsregisteredfortheupland ricecrop.

Thephylogeneticanalysisofthe16SrRNAgene sequenc-ing,performedfor11isolatesrevealedthatallofthembelong to the genus Bacillus (Fig. 2). The isolate S4 showed low similarity with the different Bacillus spp., remainingas an undefined specie (Fig. 3). The presenceof the genus Bacil-lus associated to rice plants in Brazil was also reported,39

but never with the presence of the B. amyloliquefaciens

species, as observed inthis study.In a study that investi-gated the associatedmicrobiota withtomato, thepresence of B. amyloliquefaciens was related with antibiosis against pathogens.40However,manyotherfactors,suchassoiltype andplantgenotypemayinfluencethisplant–microorganism association.39,41

In our study, the best results for plant growth promo-tion under greenhouse conditions were observed for the isolates S4 and S22 (Table 4). As reported before, these isolatesshowdifferenttraitsrelatedtoplantgrowth promo-tion,suchasantibiosis,solubilizationofinorganicphosphate and protease activity. The isolate S22 increased root dry weight,leafarea,shootdryweightandN-Totalaccumulated on rice shoots in about 23%, 21%, 25% and 24%, respec-tively,ascomparedtononinoculatedtreatment.Considering thesesameparameters, theisolateS4,anunknownspecie, promoted an increase of about 40%, 30%, 35% and 24%, respectively(Table4).

TheBrazilianCerrado isaverychallengingenvironment for cultivated plants, like rice, due to its soil and climate characteristics.Cerradosoilsaregenerallyacidand poorin nutrients,42whiletherainfallregimeiswelldefined,witha

rainyseasonfromOctobertoAprilandadryseasonfromMay toSeptemberwithanaverageannualrainfallof1460mm.43

Then,theuseofmicroorganismsasinoculantshowingagreat variabilityoftraitsrelatedwiththegrowthpromotionofplants isaveryimportantapproachtoimprovetheestablishmentof ricecropsintheBrazilianCerrado,sinceplantsunder influ-ence ofPGPRcanbegreater,stronger,moreproductiveand healthier.3,5,6

Theseresultspointoutforfurtherstudiesonthespecie identificationoftheisolateS4.Also,theisolatesS4andS22 mustbetestedfortheiragronomicefficiencyunderfield con-ditions,aimingtostatetheirpotentialofuseasinoculantfor rice.

(8)

Conclusions

Thisstudyrevealsgreatmorphological,metabolicandgenetic variabilityamongbacterialisolatesobtainedfromuplandrice cultivatedintheCerradoregionofthestateofGoiás.Those bacteriashowmanyenzymesactivityrelatedtoadaptationto differentenvironmentalconditions,asthoseofCerrado.All theisolatesbelongtothegenusBacillusandexhibitatleast onemechanismassociatedtoplantgrowthpromotion.Under greenhouseconditionstheisolatesS4andS22showedhigh plantgrowthpromotion,indicatingthattheyshouldbetested forthisabilityunderfieldconditions.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

TheauthorsthankCAPES,EmbrapaRiceandBeansandINCT onBiologicalNitrogenFixationforthefinancialsupport.The Department of Biochemistry and Molecular Biology at the FederalUniversityofParaná andGoiás StateUniversity for researcherexchange(BIP).

r

e

f

e

r

e

n

c

e

s

1.LiuY,ZuoS,XuL,ZouY,SongW.Studyondiversityof

endophyticbacterialcommunitiesinseedsofhybridmaize

andtheirparentallines.ArchMicrobiol.2012;194:1001–1012.

2.GamaleroE,GlickBR.Mechanismsusedbyplant

growth-promoting.In:MaheshwariDK,ed.Bacteriain

Agrobiology:PlantNutrientManagement.Berlin/Heidelberg:

Springer-Verlag;2011:17–46.

3.KiersztynB,SiudaW,ChróstRJ.Persistenceofbacterial

proteolyticenzymesinlakeecosystems.FEMSMicrobiolEcol.

2012;80:124–134.

4.FernandesJuniorPI,LimaAA,PassosSR,etal.Phenotypic

diversityandamylolyticactivityoffastgrowingrhizobia

frompigeonpea[Cajanuscajan(L.)MILLSP.].BrazJMicrobiol.

2012;43:1604–1612.

5.IsawaT,YasudaM,AwasakiH,MinamisawaK,ShinozakiS,

NakashitaH.Azospirillumsp.strainB510enhancesrice

growthandyield.MicrobesEnviron.2010;25:58–61.

6.JiSH,GururaniMA,ChunS-C.Isolationandcharacterization

ofplantgrowthpromotingendophyticdiazotrophicbacteria

fromKoreanricecultivars.MicrobiolRes.2014;169:83–98.

7.IkedaAC,BassaniLL,AdamoskiD,etal.Morphologicaland

geneticcharacterizationofendophyticbacteriaisolated

fromrootsofdifferentmaizegenotypes.MicrobEcol.

2013;65:154–160.

8.RezendeSS.Bactériasdiazotróficas:isolamento,diversidadee

caracterizac¸ãoemplantasdoarroznocerradodeGoiás.Trabalho

deConclusãodeCurso(Graduac¸ãoemFarmácia)–

UEG-UnCET;2007.

9.VermelhoAB,PereiraAF,CoelhoRRR,Souto-PadrónT.

PráticasdeMicrobiologia.RiodeJaneiro:GuanabaraKoogan; 2006.

10.LouvetJ-N,AttikG,DumasD,PotierO,PonsM-N.

SimultaneousGramandviabilitystainingonactivated

sludgeexposedtoerythromycin:3DCLSMtime-lapse

imagingofbacterialdisintegration.IntJHygEnvironHealth.

2011;214:470–477.

11.HungriaM,VargasMAT,SuhetAR,PeresJRR.Fixac¸ão

biológicadonitrogênionasoja.In:AraújoRS,HungriaM,

eds.Microorganismosdeimportânciaagrícola.Brasília:

Embrapa-SPI;1994:9–89.

12.DöbereinerJ,BaldaniVLD,BaldaniJI.Comoisolareidentificar

bacteriasdiazotroficasdeplantas.Brasilia,DF:EMBRAPA-SPI;

1995:60pp.

13.OliveiraNA,OliveiraLA,AndradeJS,ChagasJúniorAF.

Atividadeenzimáticadeisoladosderizóbianativosda

amazôniacentralcrescendoemdiferentesníveisdeacidez.

CiêncTecnolAliment.2006;26:204–210.

14.CattelanA,HartelP,FurhmannF.Screeningforplantgrowth

promotingrhizobacteriatopromoteearlysoybeangrowth.

SoilSciSocAmJ.1999;63:1670–1680.

15.NautiyalCS.Anefficientmicrobiologicalgrowthmediumfor

screeningphosphatesolubilizingmicroorganisms.FEMS

MicrobiolLett.1999;170:265–270.

16.PikovskayaRI.Mobilizationofphosphorousinsoilin

connectionwithvitalactivityofsomemicrobialspecies.

Mikrobiologya.1948;17:362–370.

17.HammamiI,HsounaAB,HamdiN,GdouraR,TrikiMA.

Isolationandcharacterizationofrhizospherebacteriaforthe

biocontrolofthedamping-offdiseaseoftomatõesinTunisia.

CRBiol.2013;336:557–564.

18.LaranjoM,MachadoJ,YoungJPW,OliveiraS.Highdiversity

ofchickpeaMesorhizobiumspeciesisolatedinaPortuguese

agriculturalregion.FEMSMicrobiolEcol.2004;48:101–107.

19.YoungJPW,DownerHL,EardlyBD.Phylogenyofthe

phototrophicRhizobiumstrainBTAi1bypolymerasechain

reaction-basedsequencingofa16SrRNAgenesegment.J

Bacteriol.1991;173:2271–2277.

20.FerreiraEPB,BarbosaLHA,KnuppAM,etal.Identificationof

highnodulationefficiencyamongwildgenotypesof

commonbeans.AnnuRepBeanImprovCoop.2010;53:170–171.

21.FerreiraEPB,StoneLF,DidonetAD.Greenmanurespecies

andsowingtimeeffectsontheagronomicperformanceof

commonbean.AgronJ.2013;105:1721–1727.

22.SilvaDJ,QueirozAC.Análisedealimentos:métodosquímicose

biológicos.3rded.Vic¸osa,MG:UFV;2006,235pp.

23.RolfJ.NTSYS-PC:NumericalTaxonomyandMultivariateAnalysis System,Version1.4.NewYork:Exeter;1988.

24.AltschulSF,GishW,MillerM,MyersEW,LipmanDJ.Basic

localalignmentsearchtool.JMolBiol.1990;215:403–410.

25.ThompsonJD,GibsonTJ,PlewniakF,JeanmouginF,Higgins

DG.TheCLUSTALXWindowsinterface:flexiblestrategies

formultiplesequencealignmentaidedbyqualityanalysis

tools.NucleicAcidsRes.1997;25:4876–4882.

26.TamuraK,NeiM,KumarS.Prospectsforinferringverylarge

phylogeniesbyusingtheneighbor-joiningmethod.ProcNatl

AcadSciUSA.2004;101:11030–11035.

27.FelsensteinJ.Confidencelimitsonphylogenies:anapproach

usingthebootstrap.Evolution.1985;39:783–791.

28.TamuraK,StecherG,PetersonD,FilipskiA,KumarS.MEGA6:

molecularevolutionarygeneticsanalysisversion6.0.MolBiol

Evol.2013;30:2725–2729.

29.RealpeME,HernándezCA,AgudeloCI.Especiesdelgénero

Bacillus:morfologíamacroscópicaymicroscópica.Biomédica.

2002;22:106–109.

30.ReidSJ,AbrattVR.Sucroseutilisationinbacteria:genetic

organisationandregulation.ApplMicrobiolBiotechnol.

2005;67:312–321.

31.KleijnRJ,BuescherJM,ChatL,JulesM,AymerichS,SauerU.

Metabolicfluxesduringstrongcarboncataboliterepression

bymalateinBacillussubtilis.JBiolChem.2010;285:1587–1596.

32.MaillouxRJ,LemireJ,KalyuzhnyiS,AppannaV.Anovel

(9)

Pseudomonasfluorescensexposedtoaluminumtoxicity.

Extremophiles.2008;12:451–459.

33.BhattacharyyaPN,JhaDK.Plantgrowth-promoting

rhizobacteria(PGPR):emergenceinagriculture.WorldJ

MicrobiolBiotechnol.2012;28:1327–1350.

34.JosephS,JishaMS.Bufferingreducesphosphatesolubilizing

abilityofselectedstrainsofbacteria.WorldJAgricSci.

2009;5:135–137.

35.MarraLM,OliveiraSM,SoaresCRFS,MoreiraFMS.

Solubilizationofinorganicphosphatesbyinoculantstrains

fromtropicallegumes.SciAgric.2011;68:603–609.

36.CarrimAJI,BarbosaEC,VieiraJDG.Enzymaticactivityof

endophyticbacterialisolatesofJacarandadecurrensCham.

(Carobinha-do-campo).BrazArchBiolTechnol.

2006;49:353–359.

37.CavaglieriL,OrlandoJ,RodriguezMI.BiocontrolofBacillus

subtilisagainstFusariumverticillioidesinvitroandatthe

maizerootlevel.ResMicrobiol.2005;156:748–754.

38.ParkK-H,LeeC-Y,SonH-J.Mechanismofinsoluble

phosphatesolubilizationbyPseudomonasfluorescensRAF15

isolatedfromginsengrhizosphereanditsplant

growth-promotingactivities.LettApplMicrobiol.

2009;49:222–228.

39.BeneduziA,PeresD,VargasLK,Bodanese-ZanettiniMH,

PassagliaLMP.Evaluationofgeneticdiversityandplant

growthpromotingactivitiesofnitrogen-fixingbacilliisolated

fromricefieldsinSouthBrazil.ApplSoilEcol.2008;39:

311–320.

40.AlmoneafyAA,XieGL,TianWX,XuLH,ZhangGQ,Ibrahim

M.CharacterizationandevaluationofBacillusisolatesfor

theirpotentialplantgrowthandbiocontrolactivitiesagainst

tomatobacterialwilt.AfrJBiotechnol.2012;11:7193–7201.

41.FerreiraEPB,DusiAN,XavierGR,RunjanekNG.Rhizosphere

bacterialcommunitiesofpotatocultivarsevaluatedthrough

PCR-DGGEprofiles.PesqAgropecBras.2008;43:605–612.

42.AmorimPH,BatalhaM.Soilcharacteristicsofa

hyperseasonalcerradocomparedtoaseasonalcerradoanda

floodplaingrassland:implicationsforplantcommunity

structure.BrazJBiol.2006;66:661–670.

43.SilvaSC,HeinemannAB,PazRLF,AmorimAO.Meteorological

InformationforResearchandAgriculturalPlanningRegardingthe Year2009andtheMunicipalityofSantoAntôniodeGoiás,GO.

SantoAntôniodeGoiás,Brazil:EmbrapaRiceandBeans;

Referências

Documentos relacionados

2) Os motivos invocados, embora em detalhe se refiram a reorganização de estruturas, estratégias de redução de custos, dificuldades de colocação dos produtos no mercado, a

Dessa maneira, ao expor os indivíduos anônimos no telejornal com um tipo de cidadania passiva, colocando as fontes oficiais como as únicas autoridades de fala

The probability of attending school four our group of interest in this region increased by 6.5 percentage points after the expansion of the Bolsa Família program in 2007 and

Grierson assumiu em três pontos os princípios fundamentais para o cinema documental: deve ser explorada como nova e vital forma de arte, a capacidade do cinema para chegar

Conclusões • O estudo dos 136 casos de dengue em crianças internadas menores de 15 anos permitiu identificar o padrão clínico e laboratorial nessa faixa etária, com predomínio

After the integration phase, a detailed analysis of the purchasing processes was made, separating them in two groups that are described in chapter 3: the first as being

The gliricidia cultivated in the greenhouse were evaluated for the following: plant height, the number of branches, shoot and root dry mass matter, root length and

Bacteria were isolated from all wounds and 41 bacterial isolates could be identified based on culture of the materials collected by punch biopsy; 53.66% of the isolates