• Nenhum resultado encontrado

Oudineta, Lior Pytowskia, Jean-Baptiste Bérardb, Elodie Nicolaub, Valérie Thiérya, Isabelle Lanneluca, Laureen Beaugearda, Grégoire Pruniera, Jackson Roberto Guedes Da Silva Almeidac, Laurent Picota, ∗

N/A
N/A
Protected

Academic year: 2019

Share "Oudineta, Lior Pytowskia, Jean-Baptiste Bérardb, Elodie Nicolaub, Valérie Thiérya, Isabelle Lanneluca, Laureen Beaugearda, Grégoire Pruniera, Jackson Roberto Guedes Da Silva Almeidac, Laurent Picota, ∗"

Copied!
11
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Original

Article

Zeaxanthin

from

Porphyridium

purpureum

induces

apoptosis

in

human

melanoma

cells

expressing

the

oncogenic

BRAF

V600E

mutation

and

sensitizes

them

to

the

BRAF

inhibitor

vemurafenib

Camille

Juin

a

,

Raimundo

Gonc¸

alves

de

Oliveira

Junior

a,c

,

Audrey

Fleury

a

,

Chloé

Oudinet

a

,

Lior

Pytowski

a

,

Jean-Baptiste

Bérard

b

,

Elodie

Nicolau

b

,

Valérie

Thiéry

a

,

Isabelle

Lanneluc

a

,

Laureen

Beaugeard

a

,

Grégoire

Prunier

a

,

Jackson

Roberto

Guedes

Da

Silva

Almeida

c

,

Laurent

Picot

a,∗

aLIttoralENvironnementEtSociétésUMR7266,CentreNationaldelaRechercheScientifique,UniversityofLaRochelle,LaRochelle,France

bLaboratoireBiotechnologiesetRessourcesMarines/LaboratoirePhysiologieetBiotechnologiedesAlgues,InstitutFranc¸aisdeRecherchepourl’ExploitationdelaMer,Nantes,France cCenterforStudiesandResearchonMedicinalPlants,FederalUniversityofSanFranciscoValley,Petrolina,PE,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16January2018 Accepted30May2018 Availableonline15June2018

Keywords: Cancer Carotenoid Melanoma Microalgae Phytoplankton Zeaxanthin

a

b

s

t

r

a

c

t

Zeaxanthin,anabundantcarotenoidpresentinfruits,vegetablesandalgaewasreportedtoexert antipro-liferativeactivityandinduceapoptosisinhumanuvealmelanomacells.Italsoinhibiteduvealmelanoma tumorgrowthandcellmigrationinnudemicexenograftmodels.Herewereportthatzeaxanthin puri-fiedfromtherhodophytePorphyridiumpurpureum(Bory)K.M.Drew&R.Ross,Porphyridiaceae,promotes apoptosisintheA2058humanmelanomacelllineexpressingtheoncogenicBRAFV600Emutation. Zeax-anthin40␮M(IC50)inducedchromatincondensation,nuclearblebbing,hypodiploidy,accumulationof cellsinsub-G1phase,DNAinternucleosomalfragmentationandactivationofcaspase-3.Westernblot analysisrevealedthatzeaxanthininducedup-regulationofthepro-apoptoticfactorsBimandBidand inhibitionofNF-␬Btransactivation.Additionally,zeaxanthinsensitizedA2058melanomacellsinvitro tothecytotoxicactivityofvemurafenib,aBRAFinhibitorwidelyusedfortheclinicalmanagementof melanoma,suggestingitspotentialinterestasdietaryadjuvantincreasingmelanomacellssensitivityto chemotherapy.

©2018SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Melanomas accountfor lessthan 2%of skincancersbut are

responsible for 80% of theirmortality (Armstrong and Kricker,

2001;Grange,2005;LeiterandGarbe,2008;MacKieetal.,2009).

Melanomacellsarecharacterizedbymutationsthatconferthem

a strong resistance to anticancer drugs-induced apoptosis and

selectiveadvantagesforcellsurvival,proliferationandmetastasis

(Locatellietal.,2013).Particularly,mutationsintheBRAF

onco-genarefoundin70%ofmalignantmelanoma(Daviesetal.,2002;

Haluskaetal.,2006;Dankortetal.,2009;Dutton-Regesteretal.,

2012;JangandAtkins, 2014)and leadtoover-activationofthe

MAPkinasepathwaythatstimulatescellproliferation.Most

anti-cancerdrugsonlydelaytheearlygrowthofmelanomatumorsbut

failtoprovidealong-termcurebecauseoftherapidacquisition

ofdrugresistance(Locatelliet al.,2013;Spagnoloet al.,2014).

∗ Correspondingauthor.

E-mail:laurent.picot@univ-lr.fr(L.Picot).

Additionally,melanomacellsdisplaypronounced

neoangiogene-sis and a highability toescape immune cell that explain why

the5-yearsurvivalrateformetastaticmelanomarangesfrom5

to10%,withamediansurvivaloflessthan8months(Marneros,

2009;Mathieuetal.,2012).Brainmetastasisarepresentin75%

ofadvancedmelanomapatientsandconstituteamajorcauseof

mortalitybecauseofthelowpermeabilityoftheblood-brain

bar-riertochemotherapeuticdrugs(Halletal.,2000).Thesearchfor

cytostatic,antimetastaticandantiangiogenicmoleculesinplants

and algaehas establishedthat carotenoidshave a great

poten-tialasnaturalantimelanomacompounds(Hashimotoetal.,2011;

Tanakaetal.,2012;Firdousetal.,2010;Gagezetal.,2012;Baudelet

etal.,2013; Reboul,2013;Chungetal.,2013; Kimetal.,2013;

Xuetal.,2015;Luetal.,2015;Chenetal.,2017).Thesepigments

havenooraltoxicity,areresorbedbyenterocytes,transportedin

bloodafterperosconsumption(Burrietal.,2001;Hashimotoetal.,

2011;Reboul,2013)and canintegratecellmembranes(Reboul,

2013;Oliveira-Junioretal.,2016)andreachtumorcellswherethey

exertcytotoxic,cytostatic,antimetastatic,anti-inflammatoryand

antiangiogenicactivities(Sugawaraetal.,2006;Gagezetal.,2012).

https://doi.org/10.1016/j.bjp.2018.05.009

(2)

© Raymond Kaas. IFREMER.

4 µm

Fig.1. PorphyridiumpurpureumstrainCCAP1380.3.©RaymondKaas.IFREMER.

Fucoxanthin,acarotenoidpresentinbrownmicroalgaeand

sea-weedsinhibitsmelanomacellsandtumorgrowthinvitroandinvivo

(Chungetal.,2013;Kimetal.,2013).Italsolimitsmelanoma

metas-tasisinmurinemodels(Chungetal.,2013;Kumaretal.,2013),

suggestingthatitalsohasaclinicalefficacyinhumans.Werecently

demonstratedthatzeaxanthin(1),anabundantcarotenoidfoundin

variousdietarysources(corn,spinach,saffron,seaweeds,

microal-gae) inhibitsthe in vitrogrowth of the highly invasivehuman

melanomacelllineA2058(Baudeletetal.,2013).Zeaxanthinalso

inducedapoptosisintwohumanuvealmelanomacelllines(SP6.5

andC918)withoutimpairingthecellviabilityofnoncanceruveal

melanocytes(Bietal.,2013;Xuetal.,2015).Zeaxanthin-induced

apoptosiswasassociated toa decreaseintheexpressionofthe

antiapoptoticproteins Bcl-2 and Bcl-xL and an increase in the

expressionoftheproapoptoticproteinsBakandBax(Bietal.,2013).

Zeaxanthinalsoevokedthereleaseofmitochondrialcytochromec

inthecytosolandcaspase-9and-3activation(Bietal.,2013).In

thepresentreport,weperformedadditionalexperimentstofurther

elucidatethemolecularmechanismsofzeaxanthinpro-aptoptotic

activityin melanoma cells and assessed its ability to sensitize

melanomacellstoaBRAFinhibitorusedtotreatclinicalmelanoma.

WeselectedthehighlyinvasiveA2058humanmelanomacellline

asarelevantclinicalmodelexpressingtheV600EBRAFoncogenic

mutation(Dutton-Regesteretal.,2012).

Materialandmethods

Microalgaeculture,harvestandfreeze-drying

Porphyridium purpureum (Bory) K.M.Drew & R.Ross CCAP

1380.3 (bangiophyceae, rhodophyte) (Fig. 1) was grown at

120␮molm−2s−1irradiance.Cellsweregrowninfourunitsof

50-lcolumn photobioreactorswith35‰ salinityseawaterenriched

byWalnemedium(Walne,1966;Juinetal.,2015).Batchcultures

weremaintainedat20◦Cundercontinuouslightprovidedby

flu-orescentlamps(PhilipsTLD58W865)andbubbledwith0.22␮m

filteredaircontaining3%CO2(v/v).Microalgaewereharvestedafter

12–16daysofgrowthandseparatedfromtheculturemediumbya

two-stepprocess.Firststepusedaclarifierseparator(Clara20,Alfa

LavalCorporateAB,Sweden)at100lh−1,9000

×g,atroom

tem-perature.Steptwousedasoftcentrifugationat4000×g,20mn,at

4◦Ctoseparatetheslurry.Algalpastewasfreeze-driedat55C

andP<1hPa,onafreeze-dryerequippedwithaHetoLyoPro3000

condenserandaHetocoolingtrap(Thermo,France).

PurificationandcharacterizationofPorphyridiumpurpureum zeaxanthin

Porphyridiumpurpureumpigmentswereextractedin ethanol

using a mixer mill extraction process developed in our group

(Seriveetal.,2012).Zeaxanthin(1)identificationwasconfirmed

afterseparationbyanalytical RP-HPLC(Zapataetal.,2000)and

cross-checkanalysisofitspolarity,absorptionspectrum,maximal

absorptionwavelengths,bandIII/IIratioandfragmentation

pro-fileinUPLC-MSE(Royetal.,2011;Baudeletetal.,2013;Juinetal.,

2015),in comparisonwithstandardzeaxanthin (Sigma–Aldrich,

France). Purezeaxanthin wasthencollectedbypreparative

RP-HPLC (Pasquet et al., 2011)in glass vials, dried under reduced

pressure in a Buchi R-210 rotatory evaporatorat 40◦C (Buchi,

France)andstoredat−80◦Cbeforeuseincellcultureexperiments.

Cellculture

A2058(ATCC® CRL-11147TM,LGC ATCCStandards,France) is

amelanomacelllineestablishedfrommetastaticcellsremoved

fromthelymphnodeofa43yearsoldmalecaucasianpatient.It

constitutesaclinicallyrelevantmodeltoassessthecytotoxicityof

newantimelanomadrugsasitcombineshighinvasive,metastatic

andchemoresistancepotentialswithagenemutationprofileoften

encounteredinhumanmelanomas(V600EmutationinBRAFand

mutationsinthePTENandP53genes)(Dankortetal.,2009).Cells

wereroutinelygrownasmonolayers,at37◦Cina5%CO2–95%air

humidifiedatmosphere,inDMEM(Fischerscientific,France)

sup-plementedwith10%heat-inactivated(56◦C,30min)FCS(Dutscher,

France)towhichwereaddedpenicillin100Uml−1 and

strepto-mycin100␮gml−1.

DeterminationofzeaxanthinIC50inA2058melanomacells

Purifiedzeaxanthin(1)wassolubilizedinDMSOat6mM(stock

solution)anddilutedincellculturemediumtoobtain5–60␮M

solutions.ThefinalDMSOconcentrationinthecellculturemedium

waslower than 1%,tested as a negative control and validated

asanoncytotoxicconcentration.Theantiproliferativeactivityof

zeaxanthinwasdeterminedusingtheMTTassay(Sigma–Aldrich,

France)aspreviouslydescribed(Puteyetal.,2007;Baudeletetal.,

2013;Hedidietal.,2016).IC50wasdeterminedusingthefreeGraph

padPrismsoftwareusingthe“sigmoidaldoseresponse”(variable

slope)function.

Nuclearmembranemodification,chromatincondensationand DNAfragmentation

Sub-confluent A2058 melanoma cells were trypsinized and

2×105cellswereseededin6-wellplates,inafinalvolumeof3mlof

controlmediumorculturemediumcontainingzeaxanthin40␮M

(IC50)orstaurosporine2␮M.Cellsweregrownfor72hat37◦Cand

washedinPBS0.1MpH7.4,beforebeingfixedwithformaldehyde

3%for30minat37◦C.CellswerethenrinsedinPBS,permeabilized

withTritonX-1001%inPBSandstainedwithDAPI2␮gml−1for

1hat37◦C.Cellswererinsed,mountedonglassmicroscopeslides

andobservedusingaLeicaepifluorescencemicroscopeequipped

withanepifluorescenceAfilterblock(excitation340–360nm)and

(3)

AnnexinV-Cy3and6-CFDAdetectionassay

ApoptosiswasevaluatedbyusingdoublestainingwithAnnexin

V-Cy3(red) and6-carboxyfluoresceindiacetate (6-CFDA,green)

(Sigma–Aldrich®,France).Cells(5×103cells/well)wereincubated

inconventionalcultureconditionsfor24h.Then,cellsweretreated

withzeaxanthin (IC50,40␮M) for72handstaurosporine

(posi-tivecontrol,1␮M)for24h.CellswerefurtherwashedwithPBS,

suspendedinbindingbufferandstainedwithAnnexinVand

6-CFDAsolutionfor10min.DAPIsolutionwasalsoaddedtothewells

forDNAlabelling.Finally,cellswereobservedunderfluorescence

microscope(ZEISSAxioObserver).

Flowcytometricdetectionofapoptoticcells

Melanoma cells were grown in control culture medium or

treatedwithzeaxanthin40␮Mfor72hbeforebeingstainedfor

30minat37◦CinPBScontainingpropidiumiodide(PI100gml−1)

andRnaseA(100␮gml−1)(MolecularProbes,France).Cellswere

washedandsuspendedin1mlPBSbeforebeinganalyzedusing

aFACSCantollfluxcytometer(BDBiosciences,France)equipped

withanaircooledblueLASER(=488nm,20mW).Lightdiffusion

parameters(forwardandlateralscatterlights)wereoptimizedto

definethesizethresholdexcludingcellulardebrisandcellclusters

forsingle-cellfluorescenceanalysis.PIfluorescencewasmeasured

usingaFL3filter(—— 670—— nm)andanalyzedusingtheBDFACSDiva

Software(BDBiosciences,France).Distributionofmelanomacells

inthedifferentcellcyclephasesandhypodiploidywasdetermined

accordingtotheirDNAcontentasmeasuredbythefluorescence

intensityofPI:Diploidcells(2n):G0/G1phase;Replicativecells

(2n<DNAcontent<4n):SPhase;Tetraploidcells(4n):G2/Mphase;

hypodiploidcells(DNAcontent<2n):apoptoticSub-G1Phase.

DNAinternucleosomalfragmentation

Aftertreatment withcontrol culture medium or zeaxanthin

40␮M,106 melanomacellswerewashedwithPBSandlysedin

400␮l lysis buffer (Tris–HCl 10mM pH 8 NaCl 150mM, EDTA

40mM,SDS1%,proteinaseK0.2mgml−1)for3hat56C.Thecell

lysatewascentrifuged(11,000×g,15min,4◦C)andtheDNA

con-tainedinthesupernatantwasextractedfor15minusingamixof

phenol/chloroform/isoamylalcohol(PCI)(25/24/1,v/v/v)atpH9.

Themixwascentrifuged(11,000×g,15min,4◦C),andtheaqueous

phasewascollectedtoprecipitateDNAusingsodiumacetate3M

in1mlabsoluteethanol(1night,−20◦C).TheprecipitatedDNA

wascentrifugated(11,000×g,30min,4◦C),thesupernatantwas

discardedandthepelletwasdried5minat60◦C.TheDNA

pel-letwassuspended in50␮lUltrapure watercontainingRNaseA

100␮gml−1 for 30minat37C. TwentymicrolitersoftheDNA

extractwereloadedandseparatedonanagarose/tris-borate-EDTA

1%gelfor30minat100V.Gelswerestainedwithethidium

bro-mide,andobservedusingaUVtransilluminator.

Caspase-3colorimetricassay

Caspase-3 activation was quantified using a commercial

assay based on the hydrolysis of Ac-DEVD-pNA (CASP3C kit,

Sigma–Aldrich,France).

Western-blot

A2058cells wereincubatedincontrolculturemedium orin

thepresenceofzeaxanthin(1)40␮Mfor72h.Thecellswere

col-lectedand lysedin a lysis buffer(HEPES 50mM pH7.4 CHAPS

5mMDTT5mM).Totalproteinswereseparatedby10%SDS-PAGE

and then transferred to a nitrocellulose membrane. The

mem-braneswereblockedwith5%(w/v)nonfatdrymilkinTBSfor1h

andchangedtoanappropriatedilutionofspecificprimary

anti-bodies against Bid,Bim,Bak,Bcl-xL, I␬B␣,NF-␬Bp65,p-NF-␬B

(Ser536),IKK␣,IKK␤and␤-actin(Ozyme,France)inmilkovernight

at4◦C.Thesecondaryantibodieswerehorseraddish

peroxidase-conjugatedanti-rabbitIgG(1:5000).Signalsweredetectedusing

theChemiDocTMimagingsystem(Biorad,France).

SensitizationofA2058melanomacellstotheBRAFinhibitor Vemurafenib

VemurafenibwasobtainedfromSelleckchem,France,diluted

toa10mMstocksolutioninPBS0.1MpH7.4,beforefurther

dilu-tionincellculturemedium.A2058cellswereincubatedfor72h

incontrolculturemediumorinthepresenceofzeaxanthin40␮M,

Vemurafenib(0.1,1and5␮M)orinamixofzeaxanthin40␮Mand

Vemurafenib(0.1,1and5␮M).Antiproliferativeactivitywas

cal-culatedusingtheMTTassayandpotentiationoftheVemurafenib

antiproliferativeactivitybyzeaxanthinwasexpressedasthe

per-centageofgrowthinhibitionincreaseascomparedtoVemurafenib

alone.

Statistics

Antiproliferativeactivityofzeaxanthinwasexpressedas

per-centagegrowthinhibition±SEMfromthreeindependentassays.

The normal distribution of absorbance data in control and

treated cells was demonstrated using the Hartley’s Fmax test

to confirm homogeneity of absorbances variances. The

statis-tical significance of proliferation differences between control

and treated cells was then investigated by an unpaired

Stu-dent’s t test, using a free online calculator developed by

Institut Pierre Louis d’Epidémiologie et de Santé publique

UMR S 1136 INSERM University Pierre et Marie Curie Paris

(http://marne.u707.jussieu.fr/biostatgv/?module=tests).

Results

PurificationofzeaxanthinfromPorphyridiumpurpureum

RP-HPLCoftheethanolicextractofP.purpureumgavea

chro-matogram containingeightmajor peaksat436nm(Fig.2).The

firstpigmentelutingasamajorpeakat24.582minwasidentified

aszeaxanthin(1)asitpresentedamedianpolaritywithmaximal

absorptionwavelengthsat452and481nm(Fig.3),aIII:IIbandratio

of29.03%(Fig.3),ahighresolutionmolecularweightof568.4294

(Fig.4)andaMSEfragmentationpatterncharacteristicof

zeaxan-thin(Fig.4)(Juinetal.,2015).

ExposuretozeaxanthininhibitstheproliferationofA2058 melanomacells

A 72h exposure to increasing concentrations of zeaxanthin

[0–60␮M]inducedadose-dependentreductioninthenumberof

A2058cellsascomparedtotheuntreatedcontrol,reaching60%

growthinhibition.TheIC50valueofzeaxanthinwasdeterminedas

40␮MusingthefreeGraphpadPrismsoftware“sigmoidaldose

response”(variableslope)function(Fig.5).

Exposuretozeaxanthinevokedcytotoxicityandnuclear fragmentationinA2058cells

A2058 cells incubated in control medium showed a regular

epithelialshape,exceptformitoticcellsexhibitingaroundshape

(4)

mAU

300 400

200

100

0

5 10 15 20 25 30 35

36.925

31.845

33.143

26.584

24.582

32.622

25.607

31.453

min Zeaxanthin Chloroph

yll

α

Chloroph

yll

α

allomers

Chloroph

yll

α

epimer

β,β

-carotene

Fig.2. RP-HPLCChromatogramofPorphyridiumpurpureumethanolextractat436nmobtainedusingtheVanHeukelemandThomasanalysis(VanHeukelemandThomas, 2001).ThepigmentprofilewasidenticaltothatpreviouslyreportedinSeriveetal.(2017).

Norm

80

60

40

20

0

300 400 452 481500 600

Band II

Band III

III:II band ratio=29.03%

700 nm

100

Fig.3.Identificationofthepigmentelutingat24.582minaszeaxanthin(1)basedonabsorptionspectrum,maximalabsorbancewavelengthsandIII:IIbandratio.

controlcellswasroundandshowednosignofDNAcondensation,

blebbingorshrinkage(Fig.6B).Thetreatmentwithstaurosporine

2␮M(nonselectivekinasesinhibitor,controlapoptosisinducer)

evokedahighcytotoxicityevidencedbycellshrinkage(Fig.6C)and

DNAcondensationinthenucleus(Fig.6D).A72htreatmentwith

zeaxanthin40␮Mhalfloweredthecelldensity,evokedrounding

ofthecells(Fig.6E)andnuclearfragmentation(Fig.6F),suggesting

ablockadeinthecellcycleandapoptosisinduction.

ZeaxanthininducesapoptosisinA2058cells

Toevaluatetheeffectofzeaxanthinoncelldeath,double

flu-orescencestainingwithAnnexinVand6-CFDAwasperformedto

differentiateliveandapoptoticcells.6-CFDAisusedtomeasure

viability.Inthissense,livecellswillonlystainwith6-CF(green),

cellsinearlyapoptosiswillstainbothwithAnnexinV(red)and

6-CF(green),andcellsinlateapoptosiswillonlystainwithAnnexin

VandDAPI.After72hoftreatment,zeaxanthin40␮Mincreased

thenumber ofAnnexinVand 6-CFDAdouble-stainedcells, and

AnnexinVandDAPIstainedcellscomparedtocontrol,indicating

enhancementofapoptosis(Fig.7).Asimilarresultwasobserved

forstaurosporine(1␮M),aknownpro-apoptoticagent.

Exposuretozeaxanthinevokedcaspase-3activation,

internucleosomalfragmentationandhypopolyploidyinA2058 cells

Activationofcaspase-3isconsideredasacentraleventfor

inte-gratingpro-apoptoticstimuliandactivatingdownstreameffector

caspasesandDNAsesduringcancercellapoptosis.Thebasal

activ-ityofcaspase-3waslowinA2058cellsgrownfor72hincontrol

cellculturemedium (Fig.8).Treatmentwithzeaxanthin 40␮M

for72hinducedaverysignificantincreaseincaspase-3activity

(Studentttest,p<0.01),asdemonstratedbyhydrolysisofthe

spe-cificchromogenicsubstrateAc-DEVD-pNA(Fig.8).Treatmentwith

staurosporine2␮m,usedasapositivecontrolforcaspase-3

acti-vation,inducedahighlysignificantincreaseincaspase-3activity

(Studentttest,p<0.001).

Asone of the main consequences of caspase-3 activation is

thesubsequentDNAfragmentationbycaspase-activatedDNases,

(5)

100

100 476.3641

477.3517

568.4217

567.4088

569.4084 569.4305 568.4294

1:TOF MS ES+ 9.42e5

5.91e4 2: TOF MS ES+

0

0 440

440

480

480

500

500

520

520

540

540

560

560

580

580

600

600 m/z

m/z 460

460

%

%

Fig.4. MSEfragmentationpatternofzeaxanthin(1)isolatedfromPorphyridiumpurpureum.

60

40

20

0

0 20 40 60

Zeaxanthin concentration (µM)

(% control,2000 cells g

ro

wn f

or 72h)

Gro

wth inhibtion of A2058 melanoma cells

Fig.5. GrowthinhibitionofA2058cellinthepresenceofzeaxanthin(1).A2058 cellsweregrownfor72hinacellculturemediumcontainingincreasing concen-trationsofzeaxanthin.Theantiproliferativeactivityofzeaxanthinwasobservedfor concentrationssuperiorto5␮MandIC50wasdeterminedas40␮M.

fragmentationinA2058cellstreatedwithzeaxanthin.Evaluationof

cellcycleprogressionbyflowcytometryrevealedtheappearance

ofasub-G1cellpopulationafterexposuretozeaxanthin40␮M,

characteristicofdyingcells(Fig.9).Quantificationusingtheflux

cytometersoftwareindicatedthat2.9±0.4%ofcontrolcellswerein

sub-G1phaseincomparisonwith23.6±3.7%inzeaxanthin-treated

cells.

Agarose gel electrophoresis confirmed the internucleosomal

fragmentation ofDNA extracted from A2058cells treated with

zeaxanthin40␮Morstaurosporine2␮M(Fig.10),demonstrating

theactivationofcaspase-activatedDNasebyzeaxanthin.

Zeaxanthinstimulatestheexpressionofthepro-apoptoticfactors BimandBidandinhibitsthenucleartranslocationofNF-Bin A2058melanomacells

It was previously reported that zeaxanthin decreased the

expression of antiapoptotic proteins (Bcl-2 and Bcl-xL) and

increasedtheexpressionofproapoptoticproteins(BakandBax)

in zeaxanthin-treated uveal melanoma cells (Bi et al., 2013).

To complete the identification of signaling pathways involved

in zeaxanthin-induced apoptosis of melanoma cells (Bi et al.,

2013), theexpression of pro-apoptotic,anti-apoptotic and

pro-inflammatoryfactorswereinvestigatedbywestern-blotanalysis.

Zeaxanthin 40␮M respectively induced a high and moderate

expression increase of the pro-apoptotic factors Bim and Bid

(Fig.11)thatcouldbeinvolvedintheonsetofapoptosis.The

expres-sionofthepro-apoptoticfactorBakwasunchanged.Thelevelof

phosphorylatedNF-␬Bp65(Ser536)wasdecreasedwhileI␬B␣and

Ikk␣wereup-regulated,indicatingthatzeaxanthininhibitedthe

nucleartranslocationofNF-␬Bandsubsequentlydown-regulated

theexpressionofpro-inflammatorygenes.Ikk␤and

unphosphory-latedNF-kBexpressionswereunchanged(Fig.11).

Zeaxanthinpotentiatestheantiproliferativeactivityof VemurafenibinA2058melanomacells

Toassessthecapacityofzeaxanthintopotentiatethegrowth

(6)

A

B

D

F

20 µm 20 µm 20 µm

E

C

100 µM

100 µM

100 µM

Fig.6.CytotoxicityandnuclearfragmentationinA2058cellsexposedtozeaxanthin40␮M.A2058cellsweregrownfor72hinacontrolcellculturemedium(AandB)orin amediumcontainingstaurosporine2␮M(CandD)orzeaxanthin40␮M(EandF).Treatmentwithstaurosporinevokedcellroundingandchromatincondensation(Cand D)whilezeaxanthinevokedcellrounding(E),chromatincondensationandnuclearfragmentation(F).

6-CFDA

Staurospor

ine

z

eaxanthin

Control (A2058)

Annexin V DAPI Merge

Fig.7.ZeaxanthininducesapoptosisofA2058melanomacells.AnnexinV(red)and 6-CFDA(green)doublestainingofapoptoticcellswasexaminedbyfluorescence microscopy.A2058cellsinearlyapoptosisshowedbothgreenandredstains;A2058 cellsinlateapoptosisshowedredandbluestains;andcontrol(untreated)cells stainedgreenonly.Cellstreatedwithzeaxanthin(40␮M,for72h)orStaurosporine (1␮M,for24h)wereconsideredinearlyorlateapoptosiscomparedtocontrol.Scale bar:50␮m.

clinicaltreatmentofmetastaticmelanoma,A2058melanomacells

weretreatedfor72hwithzeaxanthin40␮M,vemurafenib5␮Mor

thecombinationofbothmolecules.ControlA2058cellsexhibited

aregularepithelialmorphologyandbecamesub-confluentin72h

(Fig.12A),withahighproportionofmitoticcellsindicatingahigh

proliferationrate.Zeaxanthin40␮Minduceda reductionincell

density,cellshrinkage,DNAcondensationevidencedbythe

obser-vationofnucleargranulationsand appearanceofapoptoticcells

(blackarrows)(Fig.12B).Vemurafenib5␮Mhadadrasticeffect

onA2058cellproliferationandmorphology,evidencedbyalow

celldensity,cellbodyshrinkage,cellthinningandDNA

conden-sationwiththepresenceof nucleargranulations(Fig.12C).The

morphologyofcellstreatedwiththecombinationofzeaxanthin

and vemurafenibwas similarto thatobserved withthe

vemu-rafenibtreatmentalone (Fig.12D). As compared tothecontrol

cellculturemedium,zeaxanthin40␮Minduced44.1±6.4%growth

inhibition, vemurafenib 0.1␮M10.40±2.12, 1␮M 32.74±2.71,

and5␮M67.3±7.7%growthinhibitionand thecombination of

both48.38±3.98,58.48±3.80and74.5±6.2%growthinhibition,

respectively.Thuszeaxanthin40␮Minduceda37.98,25.75and

10.7%increaseoftheantiproliferativeactivityofvemurafenib0.1,

1and5␮M,respectively(Fig.12E).Thisvaluewasintherangeof

calculatedstandarddeviationsofantiproliferativeactivities.

Discussion

Advancedmelanomahaveabadprognosisasmostmolecules

usedincancerchemotherapyareineffectiveinkillingmetastatic

melanomacellswhichareconstitutivelyoradaptativelyresistant

to pro-apoptotic drugs. The developmentof targeted therapies

usingBRAFinhibitorshassignificantlyimprovedthetreatmentof

metastaticmelanomasastheV600EBRAFoncogenicmutationis

foundinmorethan70%ofclinicalcases.Howevermostpatients

eventuallydevelopresistancemechanismsthatultimatelyleadto

therapeuticimpasses. In this view,many researchprojectsaim

toidentifynaturalmoleculeswithcytostatic,antimetastaticand

(7)

8

7

5 6

4

3

2

1

∗∗

∗∗∗

0

Control Zeaxanthin Staurosporine

40 µM 2 µM

A

C-DEVD-pNA h

ydrolysis per 10

6 cells (

µ

mol.min

-1)

Fig.8. Zeaxanthininducescaspase-3activationinA2058melanomacells.A2058cellsweregrownfor72hinacontrolcellculturemediumorinamediumcontaining zeaxanthin40␮Morstaurosporine2␮M(positivecontrolforapoptosisinduction).

900

700

800

600

500

400

300

200

100

102 103 104 105

0

Control cell culture medium

Zeaxanthin 40 µM

IP fluorescence

900

700

800

600

500

400

300

200

100

102 103 104 105

0

Number of A2058 cells

Sub-G1

Sub-G1

G0

G0 G1 S

G1 S G2/M

G2/M

Fig.9.CellcycleanalysisofA2058cellsgrownfor72hincontrolcellculturemedium(A)orcellculturemediumcontainingzeaxanthin40␮M(B).Themajorityofcontrolor treatedcellswereinthequiescence(G0)orpre-replicative(G1)phases.Zeaxanthininducedtheappearanceofasub-G1peak,characteristicofhypodiploidiccellsundergoing celldeaths.

andcouldbeusedtopotentiatetheefficiencyofchemotherapy

andimmunotherapyandslowtheemergenceofresistance

mech-anisms(Craggetal., 1997;Caltagirone etal.,2000; Nilesetal.,

2003;Mesquitaetal.,2009;VanGoietsenovenetal.,2010;Pasquet

etal.,2011;Ahmadetal.,2013;Zhangetal.,2014;Alqathamaand

Prieto,2015;Mirzaeietal.,2016).Manycarotenoidsmeetallthese

activities,astheydisplayhighcytotoxicityintumorcellsfrom

var-ioushistologicalorigins,includingchemoresistantmelanomacell

lines,andexertsignificantantitumoralactivityinvivoby

(8)

10000 pb

MW - Zea stau

3000 pb

1000 pb

500 pb

Fig.10.AgarosegelelectrophoresisofDNAextractedfromA2058cellsincubatedfor 72hintheabsence(−)orpresenceofzeaxanthin40␮M(zea)orstaurosporine2␮M (stau).Observationofasmearinthezeaxanthinandstaurosporinelanesrevealed theactivationofcaspase-activatedDNasesandinternucleosomalfragmentationof DNAinapoptoticcells.

Kumaretal.,2013;Chenetal.,2017).Moreover,mostcarotenoids

havenooraltoxicityanddonotweakentheimmunesystem(Chew

and Park, 2004;Pechinskii and Kuregyan,2014; Ghodratizadeh

etal.,2014).Microalgaeconstituteanoptimalsourcetoproduce

carotenoidsforpharmaceuticalapplicationsastheycombinethe

advantagesofsynthesizingthewidechemodiversityofcarotenoids,

withhighproductionyields,withouttheneedoffreshwater,

agri-culturalsurfacesorpesticidestobegrown(Mimounietal.,2012).

Selection of hyper-producing strains combined tooptimization

oftheirgrowthconditions and purificationprocesses allowthe

recoveryofhighamountsofcarotenoidsdevoidofchemicalsor

endotoxins.Inthepresentreport,wedemonstratethat

zeaxan-thin,anabundantcarotenoid presentinmicroalgae,thatcanbe

easily obtained in high amounts from the rhodophyte P.

pur-pureum,inducesapoptosisinhumanmelanomacells expressing

theoncogenicBRAFV600Emutationandpotentiatesthe

antipro-liferativeactivityofvemurafenib,aBRAFinhibitorusedinpatients

withadvancedmetastaticmelanomas.Zeaxanthin(1)was

previ-ouslyreportedtohavenooraltoxicityanddecreasetheincidence

of variouscancers afteroral ingestion(Thurnhamand Howard,

2013;Xuetal.,2013).Itwasalsoreportedtoexertpro-apoptotic

activity in humanuveal melanoma cells (SP6.5 and C918) and

limit uveal melanoma invasivity without impairing the

viabil-ity of non canceruveal melanocytes (Xu et al.,2015; Bi et al.,

2013).InA2058melanomacells,zeaxanthinIC50wasdetermined

as40␮M,aconcentrationinducingcellrounding,chromatin

con-densation,nuclearfragmentation,hypodiploidy,cellapoptosisin

early and late stages, accumulation of cells in sub-G1 phase,

DNAinternucleosomalfragmentationand activationof

caspase-3.Zeaxanthin-inducedapoptosiswasaccompaniedbyinhibition

ofNF-␬Bandup-regulationofthepro-apoptoticfactorsBimand

Bid,demonstratingtheinvolvementofthemitochondrialsignaling

pathwayinapoptosistriggering,aspreviouslyreportedinuveal

melanomamodels(Bietal.,2013).Theobservationthat

zeaxan-thinwasabletomoderatelypotentiatetheinvitroantiproliferative

activityofvemurafenibisapromisingresultofourstudyasit

sug-gestsitspotentialinterestasanutritionaladjuvantincreasingthe

sensitivityoftumorcellstoBRAFinhibitors.Bypotentiatingthe

antiproliferativeeffectofBRAFinhibitors,zeaxanthinmayallowto

decreaseBRAFinhibitorseffectivedoses,limittheiradverseeffects

inpatientsanddelaytheemergenceofresistancemechanisms(Chu

etal.,2012;Zimmeretal.,2012;Anforthetal.,2015;Welshand

Corrie,2015).Themolecularmechanismsinvolvedinthisincrease

ofsensitivityaswellaspreclinicalandclinicalrelevanceof

com-bining carotenoidswithBRAFinhibitorswillhave tobefurther

Ctrl

ß-action

ß-action pNF-kB NF-kB kDa

kDa

kDa

37

37 87 85 37 39 70 70

30

25

25

20

(Ser 536)

IkBα

Ikkα

Ikkβ

β-action Bcl-XL

Bim

Bak

Bid

Ctrl

Ctrl

Zea Zea

Zea

(9)

A

B

C

D

E

90

80

70

60

50

40

30

20

10

0

Control Zea

+ 37.98%

+ 25.74%

+ 10.70%

% Gro

wth inhibition at 72 h

(2000 A2058 cells)

Vemurafenib

Vemurafenib Vemurafenib

5 µM 1 µM

0.1 µM

Zea Zea Zea

50 µm

Fig.12. ZeaxanthinsensitizesA2058melanomacellstotheBRAFinhibitorvemurafenib.TwothousandsA2058melanomacellsweregrownfor72hincontrolcellculture medium(A),mediumcontainingzeaxanthin40␮M(B),vemurafenib5␮M(C),oramixofzeaxanthin40␮Mandvemurafenib5␮M(D).Zeaxanthininduceda37.98,25.75 and10.70%increaseoftheantiproliferativeactivityofvemurafenib0.1,1and5␮M,respectively(E).

explored,asthisstrategycouldextendthedurationof

chemother-apyefficiency.In summary,thisstudyconfirms thepotentialof

zeaxanthintolimitthegrowthofchemoresistantmelanomacells,

confirmsthemajorinterestofphytoplanktoncarotenoidsas

natu-ralanticancermoleculesdevoidoforaltoxicity,andsuggestsforthe

firsttimetheinterestofcombiningacarotenoidtoBRAFinhibitors

topotentiatetheirchemotherapeuticefficiencyinmelanomacells.

Authors’contributionandresponsibility

JBBandENproducedP.purpureumbiomass.CJ,RGOJ,AF,CO,LPy,

IL,GPandLPperformedthepigmentextraction,purification,cell

culture,western-blotandapoptosisexperiments.CJperformedthe

HRMSanalysis.LBandCJperformedthefluxcytometryanalysis.LP

designedtheexperiments,interpretedthedata,directedthestudy

andwrotethemanuscriptincollaborationwithVTandJRGDSA.LP

takesresponsibilityfortheintegrityofthework,frominceptionto

finishedarticle.

Ethicaldisclosures

Protectionofhumanandanimalsubjects. Theauthorsdeclare

thatnoexperimentswereperformedonhumansoranimalsfor

thisstudy.

Confidentialityofdata. Theauthorsdeclarethatnopatientdata

appearinthisarticle.

Righttoprivacyandinformedconsent.Theauthorsdeclarethat

(10)

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

WearegratefultotheFrenchcancerleague(Comité17dela

LigueNationalecontreleCancer)forfinancialsupportandtothe

Poitou-CharentesregionforCJ’sPhDgrant.Wealsothankthe

“Can-céropôleGrandOuest,axeValorisationdesproduitsdelameren

cancérologie”forscientificsupport.LPisgratefultotheBrazilian

SocietyofPharmacognosyforitskindinvitationtotheXthBrazilian

SymposiumofPharmacognosyinPetrolinainSeptember2015.We

thankDrRaymondKaasfromIFREMERforhiskindpermissionto

usethemicrophotographyofPorphyridiumpurpureumandAntoine

Bonnet(PlatformfortheHighResolutionAnalysisofBiomolecules,

UniversityofLaRochelle,France)forexcellenttechnicalassistance

withHRMS.

References

Ahmad,I.,Muneer,K.M.,Tamimi,I.A.,Chang,M.E.,Ata,M.O.,Yusuf,N.,2013. Thy-moquinonesuppressesmetastasisofmelanomacellsbyinhibitionofNLRP3 inflammasome.Toxicol.Appl.Pharmacol.270,70–76.

Alqathama,A.,Prieto,J.M.,2015.Naturalproductswiththerapeuticpotentialin melanomametastasis.Nat.Prod.Rep.32,1170–1182.

Anforth,R.,Carlos,G.,Clements,A.,Kefford,R.,Fernandez-Pe ˜nas,P.,2015. Cuta-neousadverseeventsinpatientstreatedwithBRAFinhibitor-basedtherapies formetastaticmelanomaforlongerthan52weeks.Br.J.Dermatol.172,239–243. Armstrong,B.K.,Kricker,A.,2001.TheepidemiologyofUVinducedskincancer.J.

Photochem.Photobiol.B63,8–18.

Baudelet,P.H.,Gagez,A.L.,Bérard,J.B.,Juin,C.,Bridiau,N.,Kaas,R.,Thiéry,V.,Cadoret, J.P.,Picot,L.,2013.AntiproliferativeactivityofCyanophoraparadoxapigments inmelanoma,breastandlungcancercells.Mar.Drugs11,4390–4406. Bi,M.C.,Rosen,R.,Zha,R.Y.,McCormick,S.A.,Song,E.,Hu,D.N.,2013.Zeaxanthin

inducesapoptosisinhumanuvealmelanomacellsthroughBcl-2family pro-teinsandintrinsicapoptosispathway.Evid.Based.Complement.Alternat.Med., http://dx.doi.org/10.1155/2013/205082.

Burri,B.J.,Neidlinger,T.R.,Clifford,A.J.,2001.Serumcarotenoiddepletionfollows first-orderkineticsinhealthyadultwomenfednaturallylowcarotenoiddiets. J.Nutr.131,2096–2100.

Caltagirone,S.,Rossi,C.,Poggi,A.,Ranelletti,F.O.,Natali,P.G.,Brunetti,M.,Aiello,F.B., Piantelli,M.,2000.Flavonoidsapigeninandquercetininhibitmelanomagrowth andmetastaticpotential.Int.J.Cancer87,595–600.

Chen,Y.T.,Kao,C.J.,Huang,H.Y.,Huang,S.Y.,Chen,C.Y.,Lin,Y.S.,Wen,Z.H.,Wang, H.M.D.,2017.AstaxanthinreducesMMPexpressions,suppressescancercell migrations,andtriggersapoptoticcaspasesofinvitroandinvivomodelsin melanoma.J.Funct.Foods31,20–31.

Chew,B.P.,Park,J.S.,2004.Carotenoidactionontheimmuneresponse.J.Nutr.134, 257S–261S.

Chu,E.Y.,Wanat,K.A.,Miller,C.J.,Amaravadi,R.K.,Fecher,L.A.,Brose,M.S., McGet-tigan,S.,Giles,L.R.,Schuchter,L.M.,Seykora,J.T.,Rosenbach,M.,2012.Diverse cutaneoussideeffectsassociatedwithBRAFinhibitortherapy:a clinicopatho-logicstudy.J.Am.Acad.Dermatol.67,1265–1272.

Chung,T.W.,Choi,H.J.,Lee,J.Y.,Jeong,H.S.,Kim,C.H.,Joo,M.,Choi,J.Y.,Han,C.W.,Kim, S.Y.,Choi,J.S.,Ha,K.T.,2013.Marinealgalfucoxanthininhibitsthemetastatic potentialofcancercells.Biochem.Biophys.Res.Commun.439,580–585. Cragg,G.M.,Newman,D.J.,Snader,K.M.,1997.Naturalproductsindrugdiscovery

anddevelopment.J.Nat.Prod.60,52–60.

Dankort,D.,Curley,D.P.,Cartlidge,R.A.,Nelson,B.,Karnezis,A.N.,Damsky,W.E.,You, M.J.,DePinho,R.A.,McMahon,M.,Bosenberg,M.,2009.Braf(V600E)cooperates withPtenlosstoinducemetastaticmelanoma.Nat.Genet.41,544–552. Davies,H.,Bignell,G.R.,Cox,C.,Stephens,P.,Edkins,S.,Clegg,S.,Teague,J.,Woffendin,

H.,Garnett,M.J.,Bottomley,W.,Davis,N.,Dicks,E.,Ewing,R.,Floyd,Y.,Gray,K., Hall,S.,Hawes,R.,Hughes,J.,Kosmidou,V.,Menzies,A.,Mould,C.,Parker,A., Stevens,C.,Watt,S.,Hooper,S.,Wilson,R.,Jayatilake,H.,Gusterson,B.A.,Cooper, C.,Shipley,J.,Hargrave,D.,Pritchard-Jones,K.,Maitland,N.,Chenevix-Trench,G., Riggins,G.J.,Bigner,D.D.,Palmieri,G.,Cossu,A.,Flanagan,A.,Nicholson,A.,Ho, J.W.C.,Leung,S.Y.,Yuen,S.T.,Weber,B.L.,Seigler,H.F.,Darrow,T.L.,Paterson,H., Marais,R.,Marshall,C.J.,Wooster,R.,Stratton,M.R.,Futreal,P.A.,2002.Mutations oftheBRAFgeneinhumancancer.Nature417,949–954.

Dutton-Regester,K.,Irwin,D.,Hunt,P.,Aoude,L.G.,Tembe,V.,Pupo,G.M., Lana-gan,C.,Carter,C.D.,O’Connor,L.,O’Rourke,M.,Scolyer,R.A.,Mann,G.J.,Schmidt, C.W.,Herington,A.,Hayward,N.K.,2012.Ahigh-throughputpanelfor identi-fyingclinicallyrelevantmutationprofilesinmelanoma.Mol.CancerTher.11, 888–897.

Firdous,A.P.,Sindhu,E.R.,Ramnath,V.,Kuttan,R.,2010.Anti-mutagenicand anti-carcinogenicpotentialofthecarotenoidmeso-zeaxanthin.AsianPac.J.Cancer Prev.11,1795–1800.

Gagez,A.L.,Thiery,V.,Pasquet,V.,Cadoret,J.P.,Picot,L.,2012.Epoxycarotenoidsand cancer.Curr.Bioact.Compd.8,109–141.

Ghodratizadeh,S.,Kanbak,G.,Beyramzadeh,M.,Dikmen,Z.G.,Memarzadeh,S., Habibian,R.,2014.Effectofcarotenoid␤-cryptoxanthinoncellularandhumoral immuneresponseinrabbit.Vet.Res.Commun.38,59–62.

Grange,F.,2005.Epidemiologyofcutaneousmelanoma:descriptivedatainFrance andEurope.Ann.Dermatol.Venereol.132,975–982.

Hall,W.A.,Djalilian,H.R.,Nussbaum,E.S.,Cho,K.H.,2000.Long-termsurvivalwith metastaticcancertothebrain.Med.Oncol.17,279–286.

Haluska,F.G.,Tsao,H.,Wu,H.,Haluska,F.S.,Lazar,A.,Goel,V.,2006.Genetic alter-ationsinsignalingpathwaysinmelanoma.Clin.CancerRes.12,2301s–2307s. Hashimoto,T.,Ozaki,Y.,Mizuno,M.,Yoshida,M.,Nishitani,Y.,Azuma,T.,Komoto,

A.,Maoka,T.,Tanino,Y.,Kanazawa,K.,2011.Pharmacokineticsoffucoxanthinol inhumanplasmaaftertheoraladministrationofkombuextract.Br.J.Nutr.107, 1–4.

Hedidi,M.,Erb,W.,Bentabed-Ababsa,G.,Chevallier,F.,Picot,L.,Thiéry,V.,Bach,S., Ruchaud,S.,Roisnel,T.,Dorcet,V.,Mongin,F.,2016.SynthesisofN-pyridylazoles usingadeprotometalation-iodolysis-N-arylationsequenceandevaluationof theirantiproliferativeactivityinmelanomacells.Tetrahedron72,6467–6476. Jang,S.,Atkins,M.B.,2014.TreatmentofBRAF-mutantmelanoma:theroleof

vemu-rafenibandothertherapies.Clin.Pharmacol.Ther.95,24–31.

Juin,C.,Bonnet,A.,Nicolau,E.,Bérard,J.B.,Devillers,R.,Thiéry,V.,Cadoret,J.P.,Picot, L.,2015.UPLC-MSEprofilingofphytoplanktonmetabolites:applicationtothe identificationofpigmentsandstructuralanalysisofmetabolitesinPorphyridium purpureum.Mar.Drugs13,2541–2558.

Kim,K.N.,Ahn,G.,Heo,S.J.,Kang,S.M.,Kang,M.C.,Yang,H.M.,Kim,D.,Roh,S.W.,Kim, S.K.,Jeon,B.T.,Park,P.J.,Jung,W.K.,Jeon,Y.J.,2013.Inhibitionoftumorgrowth invitroandinvivobyfucoxanthinagainstmelanomaB16F10cells.Environ. Toxicol.Pharmacol.35,39–46.

Kumar,S.R.,Hosokawa,M.,Miyashita,K.,2013.Fucoxanthin:amarinecarotenoid exertinganti-cancereffectsbyaffectingmultiplemechanisms.Mar.Drugs11, 5130–5147.

Leiter,U.,Garbe,C.,2008.Epidemiologyofmelanomaandnonmelanomaskincancer –theroleofsunlight.In:Sunlight,Vitam.DSki.Cancer.Springer,NewYork,NY, pp.89–103.

Locatelli,C.,Filippin-Monteiro,F.B.,Creczynski-Pasa,T.B.,2013.Recentadvancesin thebiology,therapyandmanagementofmelanoma.InTech.

Lu,M.,Zhang,Y.,Zhao,C.,Zhou,P.,Yu,L.,2015.Analysisandidentificationof astax-anthinanditscarotenoidprecursorsfromXanthophyllomycesdendrorhousby high-performanceliquidchromatography.Z.Naturforsch.C65,489–494. MacKie,R.M.,Hauschild,A.,Eggermont,A.M.M.,2009.Epidemiologyofinvasive

cutaneousmelanoma.Ann.Oncol.20(Suppl.6vi),1–7.

Marneros,A.G.,2009.Tumorangiogenesisinmelanoma.Hematol.Oncol.Clin.North Am.23,431–446.

Mathieu,V.,deLassalle,E.M.,Toelen,J.,Mohr,T.,Bellahcène,A.,Van Goietsen-oven,G.,Verschuere,T.,Bouzin,C.,Debyser,Z.,DeVleeschouwer,S.,VanGool, S.,Poirier,F.,Castronovo,V.,Kiss,R.,Feron,O.,2012.Galectin-1inmelanoma biology and related neo-angiogenesis processes. J. Invest. Dermatol. 132, 2245–2254.

Mesquita,M.L.,Paula,J.E.,Pessoa,C.,Moraes,M.O.,Costa-Lotufo,L.V.,Grougnet, R.,Michel,S.,Tillequin,F.,Espindola,L.S.,2009.Cytotoxicactivityof Brazil-ianCerradoplantsusedintraditionalmedicineagainstcancercelllines.J. Ethnopharmacol.123,439–445.

Mimouni,V.,Ulmann,L.,Pasquet,V.,Mathieu,M.,Picot,L.,Bougaran,G.,Cadoret, J.P.,Morant-Manceau,A.,Schoefs,B.,2012.Thepotentialofmicroalgaefor theproductionofbioactivemoleculesofpharmaceuticalinterest.Curr.Pharm. Biotechnol.13,2733–2750.

Mirzaei,H.,Naseri,G.,Rezaee,R.,Mohammadi,M.,Banikazemi,Z.,Mirzaei,H.R., Salehi,H.,Peyvandi,M.,Pawelek,J.M.,Sahebkar,A.,2016.Curcumin:anew candidateformelanomatherapy?Int.J.Cancer139,1683–1695.

Niles,R.M.,McFarland,M.,Weimer,M.B.,Redkar,A.,Fu,Y.M.,Meadows,G.G.,2003. Resveratrolisapotentinducerofapoptosisinhumanmelanomacells.Cancer Lett.190,157–163.

Oliveira-Junior,R.G.,Thiéry,V.,Sergent,O.,Chevanne,M.,Picot,L.,2016.Could fucox-anthininteractionwithlipidraftsmediateitscytotoxicityincancercells?J. Oceanogr.Mar.Res.4,144.

Pasquet,V.,Morisset,P.,Ihammouine,S.,Chepied,A.,Aumailley,L.,Berard,J.B., Serive,B.,Kaas,R.,Lanneluc,I.,Thiery,V.,Lafferriere,M.,Piot,J.M.,Patrice,T., Cadoret,J.P.,Picot,L.,2011.Antiproliferativeactivityofviolaxanthinisolated frombioguidedfractionationofDunaliellatertiolectaextracts.Mar.Drugs9, 819–831.

Pechinskii,S.V.,Kuregyan,A.G.,2014.Theimpactofcarotenoidsonimmunity (Review).Pharm.Chem.J.47,509–513.

Putey,A.,Joucla,L.,Picot,L.,Besson,T.,Joseph,B.,2007.Synthesisoflatonduine derivativesviaintramolecularHeckreaction.Tetrahedron63,867–879. Reboul,E.,2013.AbsorptionofvitaminAandcarotenoidsbytheenterocyte:focus

ontransportproteins.Nutrients5,3563–3581.

Roy,S.,Llewellyn,C.,Egeland,E.,Johnsen,G.(Eds.),2011. Phytoplankton Pig-ments:Characterization,ChemotaxonomyandApplicationsinOceanography (Cambridge Environmental Chemistry Series).Cambridge University Press, Cambridge,pp.728–822,http://dx.doi.org/10.1017/CBO9780511732263.032. Serive,B.,Kaas,R.,Bérard,J.B.,Pasquet,V.,Picot,L.,Cadoret,J.P.,2012.Selectionand

optimisationofamethodforefficientmetabolitesextractionfrommicroalgae. Bioresour.Technol.124,311–320.

(11)

newcarotenoidsandporphyrinscharacteristicofdistinctstrainsandtaxonomic groups.PLOSONE12,e0171872.

Spagnolo,F.,Ghiorzo,P.,Queirolo,P.,2014.OvercomingresistancetoBRAFinhibition inBRAF-mutatedmetastaticmelanoma.Oncotarget5,10206–10221. Sugawara,T.,Matsubara,K.,Akagi,R.,Mori,M.,Hirata,T.,2006.Antiangiogenic

activ-ityofbrownalgaefucoxanthinanditsdeacetylatedproduct,fucoxanthinol.J. Agric.FoodChem.54,9805–9810.

Tanaka, T., Shnimizu, M., Moriwaki, H., 2012. Cancer chemoprevention by carotenoids.Molecules17,3202–3242.

Thurnham,D.I.,Howard,A.N.,2013.Studiesonmeso-zeaxanthinforpotential toxi-cityandmutagenicity.FoodChem.Toxicol.59,455–463.

VanGoietsenoven,G.,Hutton,J.,Becker,J.P.,Lallemand,B.,Robert,F.,Lefranc, F.,Pirker,C.,Vandenbussche,G.,VanAntwerpen,P.,Evidente,A.,Berger,W., Prévost,M.,Pelletier,J.,Kiss,R.,Kinzy,T.G.,Kornienko,A.,Mathieu,V.,2010. TargetingofeEF1AwithAmaryllidaceaeisocarbostyrilsasastrategytocombat melanomas.FASEBJ.24,4575–4584.

VanHeukelem,L.,Thomas,C.,2001.Computer-assistedhigh-performanceliquid chromatographymethoddevelopmentwithapplicationstotheisolationand analysisofphytoplanktonpigments.J.Chromatogr.A910,31–49.

Walne,P.,1966.Experimentsinthelarge-scalecultureofthelarvaeofOstrea edulis(L.).In:Fish.Investig.Ser.II.LondonHerMajesty’sStation.Off.,pp.iii. 53.

Welsh,S.J.,Corrie,P.G.,2015.ManagementofBRAFandMEKinhibitortoxicitiesin patientswithmetastaticmelanoma.Ther.Adv.Med.Oncol.7,122–136. Xu,X.,Zhang,L.,Shao,B.,Sun,X.,Ho,C.T.,Li,S.,2013.Safetyevaluationof

meso-zeaxanthin.FoodControl32,678–686.

Xu,X.L.,Hu,D.N.,Iacob,C.,Jordan,A.,Gandhi,S.,Gierhart,D.L.,Rosen,R.,2015.Effects ofzeaxanthinongrowthandinvasionofhumanuvealmelanomainnudemouse model.J.Ophthalmol.,http://dx.doi.org/10.1155/2015/392305.

Zapata,M.,Rodriguez,F.,Garrido,J.,2000.Separationofchlorophyllsandcarotenoids frommarinephytoplankton:anewHPLCmethodusingareversedphaseC8 columnandpyridine-containingmobilephases.Mar.Ecol.Prog.Ser.195,29–45. Zhang,L.,Wei,Y.,Zhang,J.,2014.Novelmechanismsofanticanceractivitiesofgreen teacomponentepigallocatechin-3-gallate.AnticancerAgentsMed.Chem.14, 779–786.

Imagem

Fig. 1. Porphyridium purpureum strain CCAP 1380.3. © Raymond Kaas. IFREMER.
Fig. 2. RP-HPLC Chromatogram of Porphyridium purpureum ethanol extract at 436 nm obtained using the Van Heukelem and Thomas analysis (Van Heukelem and Thomas, 2001)
Fig. 4. MS E fragmentation pattern of zeaxanthin (1) isolated from Porphyridium purpureum.
Fig. 6. Cytotoxicity and nuclear fragmentation in A2058 cells exposed to zeaxanthin 40 ␮M
+4

Referências

Documentos relacionados

Dessa forma, entendido como um campo favorável à criatividade, o processo de produção musical, como um todo, pode ser observado a partir do modelo de um sistema complexo com

Synchronous cell cultures were obtained by collecting cell samples (10 ml) from a single 30-day-old cell suspension culture (3 g cells/50 ml culture medium - stationary phase), in

(A) Calcium level in cell culture supernatant in comparison with osteogenic medium, (B) Calcium level in cell culture pellet, (C) Alkaline phosphatase activity and (D) Total

The accumulation of Abrams cells treated with ENFX or CPFX in the S and G 2 /M phase of the cell cycle with concomitant induction of apoptotic cell death is in agreement with

Average concentration of nitric oxide (NO) in the culture medium of HTC cells exposed to 500.. m g/mL of L3 or LNO3 for

Cell cycle arrest induced by different M-edds complexes of K562 and PBMC cells after 1 h treatments (mean ± S.D.) in complete RPMI

Segundo Ballou (2001), a logística busca agregar valores ao cliente através de fatores como forma, tempo, lugar e posse, que basicamente garantem a colocação do produto