• Nenhum resultado encontrado

Chapitre III Traçage et modélisation du cycle de l’eau

II. Tracing and modeling preferential flow in a forest soil - potential impact on nutrient leaching

5. Conclusion

Mg and Al leachingfluxes were mainly driven by the water drainage flux (Fig. 5) while the NO3leachingflux were more related to soil solution concentration.

However, ZTL concentrations may decrease with depth (Legout, 2008; Marques et al., 1996; Ranger et al., 2001) due to for example nutrient uptake, in particular because part of PF may occur along the root system. By using 10 cm depth ZTL concentrations, the nutri- ent leachingflux may be slightly overestimated. Furthermore, rapid waterflow does not imply non-equilibriumflow. Rapid exchanges may occur along preferentialow paths thus changing the chemical composition of draining water. In base poor acidic soils, such as the soil at the Breuil-Chenue site, aluminum is a predominant cation and calcium and magnesium are present in very small quantities on the CEC. It is likely that part of the calcium and magnesium in rapid flow generated in the top soil (enriched due to litter decomposition) exchanges with aluminum on the CEC. If such exchanges occur along preferentialflow paths, preferentialflow could play an important role in the spatial variability of soil nutrients.

Nevertheless, nutrient leaching is likely to fall between the bound- aries given by the two methods of nutrient leaching calculation. Partic- ular attention should be given to water drainagefluxes during the beginning (MarchApril) and the end (SeptemberOctober) of the veg- etation season, when soil temperature is still high enough to allow for microbial activity, nutrient uptake by trees is reduced and soil water content increases tofield capacity. Increased nutrient losses from the soil prole are of great interest for studying the sustainability of forest soil fertility and increased nitrate and aluminum out-fluxes are a threat to stream and river ecosystems (Dambrine et al., 1998; Guérold et al., 2000). ZTL concentrations are generally collected at a monthly time step but PF concentrations are likely to vary widely depending on the rainfall intensity generating them and need to be studied at the event scale to better understand their chemistry.

Maloszewski, P., Zuber, A., 1982. Determining the turnover time of groundwater sys- tems with the aid of environmental tracers. Journal of Hydrology 57, 207–231.

Maloszewski, P., Rauert, W., Trimborn, P., Herrmann, A., Rau, R., 1992. Isotope hydro- logical study of mean transit times in an alpine basin (Wimbachtal, Germany).

Journal of Hydrology 140, 343360.

Marc, V., Robinson, M., 2004. Application of the deuterium tracing method for the esti- mation of tree sapflow and stand transpiration of a beech forest (Fagus silvatica L.) in a mountainous Mediterranean region. Journal of Hydrology 285, 248259.

Marques, R., Ranger, J., Gelhaye, D., Pollier, B., Ponette, Q., Goedert, O., 1996. Compari- son of chemical composition of soil solutions collected by zero-tension plate lysim- eters with those from ceramic-cup lysimeters in a forest soil. European Journal of Soil Science 47, 407417.

McDonnell, J., 1990. A rationale for old water discharge through macropores in a steep humid catchment. Water Resources Research 26, 28212832.

McDonnell, J., Rowe, L., Stewart, M., 1999. A combined tracer-hydrometric approach to assess the effect of catchment scale on waterflow path, source and age. Intergrated methods in catchment hydrology-Tracer, remote sensing and new hydrometric techniques (Proceedings of IUGG 99 symposium HS4), pp. 265–273 (IAHS Publ.

no. 258, Birmingham).

Meinzer, F.C., Brooks, J.R., Domec, J.C., Gartner, B.L., Warren, J.M., Woodruff, D.R., Bible, K., Shaw, D.C., 2006. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant, Cell & Environment 29, 105–114.

Ptak, T., Piepenbrink, M., Martac, E., 2004. Tracer tests for the investigation of heteroge- neous porous mediaflow and stochastic modelling offlow and transporta re- view of some recent developments. Journal of Hydrology 294, 122–163.

Ranger, J., Turpault, M.-P., 1999. Inputoutput nutrient budgets as a diagnostic tool for sustainable forest management. Forest Ecology and Management 122, 139154.

Ranger, J., Marques, R., Jussy, J.-H., 2001. Forest soil dynamics during stand develop- ment assessed by lysimeter and centrifuge solutions. Forest Ecology and Manage- ment 144, 129145.

Ranger, J., Allie, S., Gelhaye, D., Pollier, B., Turpault, M.P., Granier, A., 2002. Nutrient budgets for a rotation of a Douglas-fir plantation in the Beaujolais (France) based on a chronosequence study. Forest Ecology and Management 171, 316.

Ranger, J., Andreux, F., Bienaimé, S., Berthelin, J., Bonnaud, P., Boudot, J.P., Bréchet, C., Buée, M., Calmet, J., Chaussod, R., Gelhaye, D., Gelhaye, L., Gérard, F., Jaffrain, J., Lejon, D., Le Tacon, F., Lévêque, J., Maurice, J., Merlet, D., Moukoumi, J., Munier- Lamy, C., Nourrisson, G., Pollier, B., Ranjard, L., Simonsson, M., Turpault, M.P., Vairelles, D., Zeller, B., 2004. Effet des substitutions d'essence sur le fonctionnement organo-minéral de l'écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif de Breuil-Morvan), Rapportnal contrat INRA-GIP Ecofor 2001–24, No. INRA 1502A. INRA Biogéochimie des Ecosystèmes Forestiers (UR 1138), 54280 Champenoux.

Rawlins, B.G., Baird, A.J., Trudgill, S.T., Hornung, M., 1997. Absence of preferentialow in the percolating waters of a coniferous forest soil. Hydrological Processes 11, 575–585.

Schar, C., Vidale, P.L., Luthi, D., Frei, C., Haberli, C., Liniger, M.A., Appenzeller, C., 2004.

The role of increasing temperature variability in European summer heatwaves.

Nature 427, 332–336.

Seyfried, M.S., Rao, P.S.C., 1987. Solute transport in undisturbed columns of an aggre- gated tropical soil: preferentialflow effects. Soil Science Society of America Journal 51, 14341444.

Sidle, R.C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., Shimizu, T., 2000. Strom- ow generation in steep forested headwaters: a linked hydrogeomorphic para- digm. Hydrological Processes 14, 369385.

Simon, T., 2007. Characterisation of soil organic matter in long-term fallow experiment with respect to the soil hydrophobicity and wettability. Soil and Water Research 2, 96103.

Simon, T., Javurek, M., Mikanova, O., Vach, M., 2009. The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil and Tillage Research 105, 4448.

Simunek, J., Jarvis, N.J., van Genuchten, M.T., Gardenas, A., 2003. Review and compari- son of models for describing non-equilibrium and preferentialflow and transport in the vadose zone. Journal of Hydrology 272, 1435.

Šimůnek, J.,Šejna, M., Saito, H., Sakai, M., van Genuchten, M.T., 2008. The Hydrus-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media. Version 4.0, HYDRUS Software Series, 3. Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, p. 315.

Starr, M., 1999. WATBAL: a model for estimating monthly water balance components, in- cluding soil wateruxes. In: Kleemola, S., Forsius, M. (Eds.), 8th Annual Report 1999.

UN ECE ICP Integrated Monitoring: The Finnish Environment (pp. 325:321–325).

Stone, W.W., Wilson, J.T., 2006. Preferentialow estimates to an agricultural tile drain with implications for glyphosate transport. Journal of Environmental Quality 35, 1825–1835.

Stumpp, C., Maloszewski, P., 2010. Quantification of preferentialflow andflow hetero- geneities in an unsaturated soil planted with different crops using the environ- mental isotope delta(18)O. Journal of Hydrology 394, 407–415.

Tsuboyama, Y., Sidle, R.C., Noguchi, S., Hosoda, I., 1994. Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resources Research 30, 879890.

Turton, D.J., Barnes, D.R., Navar, J.D., 1995. Old and new water in subsurfaceflow from a forest soil block. Journal of Environmental Quality 24, 139146.

Uchida, T., Kosugi, K., Mizuyama, T., 2001. Effects of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments. Hydrological Processes 15, 21512174.

van der Heijden, G., Legout, A., Nicolas, M., Ulrich, E., Johnson, D.W., Dambrine, E., 2011.

Long-term sustainability of forest ecosystems on sandstone in the Vosges Moun- tains (France) facing atmospheric deposition and silvicultural change. Forest Ecol- ogy and Management 261, 730740.

Viville, D., Ladouche, B., Bariac, T., 2005. Isotope hydrological study of mean transit time in the granitic Strengbach catchment (Vosges massif, France): application of the FlowPC model with modied input function. Hydrological Processes 20, 1737–1751.

Waddington, J.M., Roulet, N.T., Hill, A.R., 1993. Runoff mechanisms in a forested groundwater dsicharge wetland. Journal of Hydrology 147, 37–60.

Williams, A.G., Dowd, J.F., Scholeeld, D., Holden, N.M., Deeks, L.K., 2003. Preferential ow variability in a well-structured soil. Soil Science Society of America Journal 67, 1272–1281.

Wilson, K.B., Hanson, P.J., Mulholland, P.J., Baldocchi, D.D., Wullschleger, S.D., 2001. A com- parison of methods for determining forest evapotranspiration and its components:

sap-flow, soil water budget, eddy covariance and catchment water balance. Agricul- tural and Forest Meteorology 106, 153168.

22 G. van der Heijden et al. / Geoderma 195–196 (2013) 12–22

Apport du multi-traçage isotopique (2H, 15N, 26Mg et 44Ca) à la connaissance des flux d’éléments minéraux dans les écosystèmes forestiers

Annexe

88

Chapitre III : Traçage et modélisation du cycle de l’eau

Enrichissement isotopique en deutérium mesuré dans les solutions du sol collectées aux différentes profondeurs (0cm, 10cm, 15cm, 30cm et 60cm). Les enrichissements isotopiques sont exprimés en déviation (‰) par rapport au ratio isotopique de référence (SMOW). Les valeurs manquantes indiquent les dates pour lesquelles le volume collecté par le lysimètre était insuffisant pour l’analyse isotopique.

89

n°1 n°2 n°3 n°1 n°2 n°3 n°1 n°2 n°3 n°4 n°1 n°2 n°3 n°4 n°1 n°2 n°3 n°4

06/04/2010 -73.8 -65.8 -79.0 -78.2 -76.4 -81.4 -60.8 -56.6 -50.6 -51.9 -72.4

07/04/2010 20873.7 228.9 53444.0 24349.8 359.0 -70.9 -61.9 -66.9 -76.9 -77.1 -63.7 -76.5 -73.2

08/04/2010 15287.4 10743.9 11665.7 7714.8 6987.3 -78.5 -65.3 -77.8 -79.0 -77.3 -61.6 -73.8 -62.8 -58.7 -52.9 -67.6 -66.6

09/04/2010 -66.9 -67.1 -64.5 -55.9 -71.6 -71.2

10/04/2010 -75.0 -64.7 -46.1 -54.9 -77.3 -66.3 895.8 -56.2 -62.5 -54.3 -69.5 -67.7

13/04/2010 2530.2 3786.7 11011.5 6484.3 7279.8 -62.1 -51.2 -73.3 -63.1 -65.7 -60.8 2447.9 -36.6 -64.8 -58.3 -71.8 -69.1

14/04/2010 -63.9 -38.2 336.5 -75.2 -58.8 -53.4 2391.9 -65.4 -60.0 -72.4 -67.7

20/04/2010 2530.2 7551.5 10577.5 5448.9 7516.0 1387.8 46.4 2575.9 -44.6 -50.0 -59.4 3089.5 -31.4 -65.1 -62.2 -74.0 -67.0

04/05/2010 5608.6 6567.5 1229.0 5087.2 7219.1 2011.5 241.7 681.3 2337.1 29.3 60.8 2600.4 -31.1 -70.7 -67.8 -70.4 -69.8

18/05/2010 5479.6 456.5 576.6 1659.6 1117.9 823.0 2823.8 792.3 1049.6 4134.8 427.7 267.9 1992.8 76.3 -71.7 -71.0 9.5 -69.2

15/06/2010 256.9 134.2 98.3 310.4 193.9 150.3 2370.1 1113.5 4398.2 3326.7 2191.6 544.9 638.6 821.3 -72.9 -65.8 190.8 -62.4

15/07/2010 34.9 15.6 21.2 32.1 24.0 25.6 945.4 452.1 3562.9 1214.4 1372.4 640.2 163.1 607.0 -39.5 -41.1 1102.1 -45.2

10/08/2010 10.2 5.0 2.4 12.0 -1.6 -3.2 644.9 353.1 2718.9 569.3 516.1 108.0 146.5 32.4 0.1 1537.9 -37.3

07/09/2010 2.2 -11.3 -20.7 -23.9 510.2 1367.6 573.6 47.1 14.0 1450.8 -34.0

04/10/2010 -16.4 -32.5 -20.6 -24.9 -28.9 143.0 406.3 608.9 520.5 656.3 -21.1 -5.0 41.0 11.7 1459.2 -37.6

04/11/2010 -30.3 -46.4 -38.7 -25.0 -26.1 -37.3 -0.3 11.3 311.7 81.2 303.5 429.6 -29.5 -31.3 196.8 13.1 1561.3 -22.7

07/12/2010 -34.2 -97.2 -76.8 -50.6 -86.0 -5.5 -30.9 467.0 29.0 81.5 201.0 -54.3 -35.5 516.3 234.7 1219.4 -5.5

03/01/2011 -43.3 -64.1 -69.4 -69.1 -68.2 -57.5 -75.9 -58.2 -46.4 28.5 -72.2 -25.5

25/01/2011 -39.0 -65.9 -26.8 -70.0 -77.6 -71.0 -62.1 -67.3 -81.8 -72.5 -7.8 -57.4 -80.6 -56.3 2.2 18.0 155.9 -60.6

22/02/2011 -46.3 -62.7 -71.8 -68.1 -66.4 -64.3 -77.2 -70.2 -68.7 -74.6 -81.0 -60.3 -36.3 -41.2 -59.7 -65.1

22/03/2011 -41.3 -62.9 -63.0 -62.1 -68.6 -56.2 -76.4 -72.7 -70.4 -75.2 -74.8 -64.2 -49.7 -57.6 -71.5 -71.5

19/04/2011 -55.8 -45.5 -45.5 -57.8 -54.8 -55.6 -62.6 -51.4 -71.0 -66.1 -68.9 -71.4 -60.0 -59.8 -54.4 -63.3 -73.8 -72.6

Date Répétition Répétition Répétition Répétition Répétition

Plaques lysimétriques (0cm) Plaques lysimétriques (10cm) Bougies poreuses (15cm) Bougies poreuses (30cm) Bougies poreuses (60cm)

90