• Nenhum resultado encontrado

3.4 Proof of the Carleman estimate in a neighborhood of the interface

3.4.2 Estimate in the region G

Here, we place ourselves in the region G, and prove a Carleman estimate for uG,j, and conse- quently for ΞGv.

We introduce a microlocal cut-off functionχG F ∈C

c (M+), 0≤χG F ≤1, satisfying χG F = 1 on a neighborhood of supp(χG),

χGF = 1 on a neighborhood of supp(χG F). (3.75) We choose ζ2 ∈Cc(0, X0) such that 0≤ζ2≤1,ζ2 = 1 on a neighborhood of supp(ζ1) (withζ1 defined in (3.61)), and such that ˜ζj = 1 on supp( φj1

ζj2) where ζj2(x0, y) =ζ2(x0j(y). As in (3.63) we set

χG F,j = ˜ζj φj1 χG F,

and we define the associated tangential pseudo-differential operator ΞG F by ΞG F = P

jJ

ΞG F,j, with ΞG F,jjOpTG F,j) φj1

ζj2, j∈J,

Note that the local symbol (see Proposition 3.45) of ΞG F in each chart is equal to one in the support of that of ΞG.

We recall that the functionζ=ζ(xn)∈C

c ([0,2ε)) satisfiesζ(0) = 1 on [0, ε).

Making use of the Calder´on projector technique forPϕ,jr and of the standard Carleman techniques forPϕ,jl , we obtain the following partial estimate.

Proposition 3.28. Suppose that the weight functionϕsatisfies the properties listed in Section 3.3.1.

Then, for all δ0 >0, there exist C >0 andh0 >0 such that, for all0 < δ ≤δ0 and0 < h≤h0, vr/l ∈Cc((0, X0)×S×[0,2ε))andvs∈Cc((0, X0)×S)satisfying (3.47), we have

Gvrk21+h|ΞGvr|xn=0+|21+h|DxnΞGvr|xn=0+|20≤C

kPϕrvrk20+h2kvrk21+h4|Dxnvr|xn=0+|20

, (3.76)

3.4. Proof of the Carleman estimate in a neighborhood of the interface 121 and

hkΞGvlk21+h|ΞGvl|xn=0+|21+h|DxnΞGvl|xn=0+|20

≤C 1 + δ2 h2

kζPϕrvrk20+h2G Fvrk21+h4|Dxnvr|xn=0+|20+h4kvrk21+h3|vs|21

+C

kPϕlvlk20+h2kvlk21+h|θϕl|212

h|θrϕ|20+h|θϕr|21+h|Θsϕ|20

. (3.77)

Proof. The function uG,j, defined in (3.64), satisfies (TC,j), with • = G. On the “r” side, the root configuration described in Lemma 3.24 (and represented in Figure 3.3) allows us to apply the Calder´on projector technique used in [LR97, LR10]. According to [LR10, Remark 2.5] and using Eqs. (2.59), (2.60), and (2.61) therein, applied withvd replaced here byvjr, we have

kurG,jk1+h120(urG,j)|1+h121(urG,j)|0.kPϕ,jr vrjk0+hkvjrk1+h2|Dxnvjr|xn=0+|0, (3.78) which is a local version of (3.76).

Let us now explain how such local estimates can be patched together to yield (3.76). Concerning the first term on the left hand-side of (3.78), and using the definition of Sobolev norms given in (3.20)–(3.22), we have

Gvrk1. P

jJkurG,jk1, |ΞGvr|xn=0+|1. P

jJ0(urG,j)|1 (3.79) by (3.65) and Lemma 3.53. Similarly we have DxnΞGvr|xn=0+ =P

jφjγ1(urG,j) since φj does not depend on the xn-variable. As a consequence, we obtain

|(DxnΞGvr)|xn=0+|0≤ P

jJjγ1(urG,j)|0. P

jJ1(urG,j)|0, (3.80) by Lemma 3.9.

Now concerning the right hand-side of (3.78), we directly have kvjrk1=k φj1

ζjvrk1=kζ1 φj1

ψjvrk1.k φj1

ψjvrk1.kvrk1, (3.81) by the definition ofk.k1 onM+, as well as

|Dxnvrj|xn=0+|0.|Dxnvr|xn=0+|0. (3.82) Finally, we computePϕ,jr vrj = φj1

Pϕrφj φj1

ζjvr= φj1

ζjPϕrvr+ φj1

[Pϕr, ζj]vr. We have k φj1

ζjPϕrvrk0=kζ1 φj1

ψjPϕrvrk0≤ kPϕrvrk0, (3.83) and, using Lemma 3.9,

k φj1

[Pϕr, ζj]vrk0.k[Pϕr, ζj]vrk0.hkvrk1, (3.84) since [Pϕr, ζj]∈hD1(M+). Finally combining all the estimates (3.79)-(3.84), together with the local inequalities (3.78) summed overj∈J, we obtain the sought global estimate (3.76) onM+.

To obtain Estimate (3.77) on the “l” side we first need a more precise estimate for the “r” side. For this, we introduce another microlocal cut-off function ˜χG F satisfying the same requirements (3.75) asχG F, and such thatχG F = 1 on a neighborhood of supp( ˜χG F). We chooseζ3∈C

c (0, X0) such that 0≤ζ3≤1,ζ3= 1 on a neighborhood of supp(ζ1), and such thatζ2= 1 on a neighborhood of supp(ζ3). As in (3.63) we set

˜

χG F,j = ˜ζj φj1

˜ χG F,

and we define the associated tangential pseudo-differential operator ˜ΞG F by Ξ˜G F = P

jJ

Ξ˜G F,j, with Ξ˜G F,jjOpT( ˜χG F,j) φj1

ζj3, ζj33ψj, j∈J, According to [LR10, Remark 2.5] and using (2.60) and (2.61) therein, applied withvd replaced by ζ(xn) φj1

ζjΞ˜G Fvr, we have h120(OpTG,j) φj1

ζjΞ˜G Fvr)|1+h121(OpTG,j) φj1

ζjΞ˜G Fvr)|0 .kPϕ,jr ζ φj1

ζjΞ˜G Fvrk0+hkζ φj1

ζjΞ˜G Fvrk1+h21 φj1

ζjΞ˜G Fvr

|0. (3.85) We notice that the right hand-side of this inequality can directly be bounded by global quantities.

First, we have

kζ φj1

ζjΞ˜G Fvrk1.kΞ˜G Fvrk1 (3.86) Second, we estimate

γ1 φj1

ζjΞ˜G Fvr0≤ | DxnΞ˜G Fvr

|xn=0+|0, where

DxnΞ˜G Fvr

|xn=0+ = ˜ΞG FDxnvr

|xn=0++ [Dxn,Ξ˜G F]

| {z }

0T(M+)

vr

|xn=0+.

Using Proposition 3.50 and the trace formula (3.23), we have the estimate h21 φj1

ζjΞ˜G Fvr

|0.h2|Dxnvr|xn=0+|0+h52kvrk1. (3.87) Concerning the term with Pϕ,jr in the right hand-side of (3.85), we can proceed as in (3.83)-(3.84) to obtain

kPϕ,jr ζ φj1

ζjΞ˜G Fvrk0=k φj1

PϕrζζjΞ˜G Fvrk0.kPϕrζΞ˜G Fvrk0+hkΞ˜G Fvrk1 (3.88) Moreover, using Proposition 3.48, we have ˜ΞG F(1−ΞG F)∈hΨ−∞T (M+), as their local symbols in every chart have disjoint supports by Proposition 3.52, because of the supports ofζ3 and ˜χG F. We then obtain with Proposition 3.50

hkΞ˜G Fvrk1.hkΞ˜G FΞG F vrk1+hkΞ˜G F(1−ΞG F)vrk1.hkΞG Fvrk1+h2kvrk1. (3.89) We also have

kPϕrζΞ˜G Fvrk0.kΞ˜G FζPϕrvrk0+k[Pϕr,Ξ˜G Fζ]vrk0. (3.90) Arguing as above with Propositions 3.48 and 3.52, and also Corollary 3.49, we have

[Pϕr,Ξ˜G Fζ] = [Pϕr,Ξ˜G Fζ]

| {z }

1(M+)

ΞG F + [Pϕr,Ξ˜G Fζ](1−ΞG F)

| {z }

hΨ−∞(M+)

so that (3.90) now reads with Proposition 3.50

kPϕrζΞ˜G Fvrk0.kζPϕrvrk0+hkΞG Fvrk1+h2kvrk1. (3.91) The three estimates (3.88), (3.89) and (3.91) give

kPϕ,jr ζ φj1

ζjΞ˜G Fvrk0.kζPϕrvrk0+hkΞG Fvrk1+h2kvrk1. (3.92) Combining (3.85) together with (3.86)–(3.87), (3.89) and (3.92), we finally have

h120(OpTG,j) φj1

ζjΞ˜G Fvr)|1+h121(OpTG,j) φj1

ζjΞ˜G Fvr)|0

.kζPϕrvrk0+hkΞG Fvrk1+h2|Dxnvr|xn=0+|0+h2kvrk1. (3.93) Then, we need the following lemma to come back to the variableurG,j = OpTG,j) φj1

ζjvr on the left hand-side of (3.93).

3.4. Proof of the Carleman estimate in a neighborhood of the interface 123 Lemma 3.29. There existsR∈hΨ−∞T (M+), such that

OpTG,j) φj1

ζjΞ˜G Fvr=urG,j+ φj1 Rvr. This lemma is proven in Appendix 3.8.6. As a consequence we have

h120(urG,j)|1.h120(OpTG,j) φj1

ζjΞ˜G Fvr)|1+h120( φj1

Rvr)|0 .h120(OpTG,j) φj1

ζjΞ˜G Fvr)|1+h2kvrk1 with the trace formula (3.23). This, together with Estimate (3.93) give

h120(urG,j)|1.kζPϕrvrk0+hkΞG Fvrk1+h2kvrk1+h2|Dxnvr|xn=0+|0. (3.94) Lemma 3.29 also yields

h121(urG,j)|0.h121(OpTG,j) φj1

ψjΞ˜G Fvr)|0+h121( φj1

Rvr)|0, .h121(OpTG,j) φj1

ψjΞ˜G Fvr)|0+h2kvrk1+h2|Dxnvr|xn=0+|0, (3.95) Combining (3.93) together with (3.95), we finally obtain

h121(urG,j)|0.kζPϕrvrk0+hkΞG Fvrk1+h2kvrk1+h2|Dxnvr|xn=0+|0. (3.96)

On the “l” side, we apply the Carleman method. With the properties of the weight function of Section 3.3.1 and in particular by (3.56), and by Lemma 2 in [LR95], we then have

hkulG,jk21+Re

hBl(ulG,j) +h2 (DnulG,j+Ll1ulG,j)|xn=0+, Ll0ulG,j|xn=0+

0

.kPϕ,julG,jk20, (3.97) for 0< h≤h0, h0 sufficiently small, whereLl1∈D1

T,Ll0∈Ψ0T. The quadratic formBl is given by Bl(ψ) =

2∂xnϕlj|xn=0+ Bl1 B1l Bl2

! γ1(ψ) γ0(ψ)

, γ1(ψ)

γ0(ψ)

!

0

, supp(ψ)⊂(0, X0)×U˜j×[0,2ε), (3.98) whereB1l,B1l ∈D1

T, with principal symbolsσ(B1l) =σ(Bl1) = 2 φj1

ql1|xn=0+andB2l ∈D2

T, with σ(Bl2) =−2∂xnϕlj φj1

q2l|xn=0+. Observe that we have

(DnulG,j+Ll1ulG,j)|xn=0+, Ll0ulG,j|xn=0+

0

.|γ1(ulG,j)|20+|γ0(ulG,j)|21. (3.99) and

|Bl(ulG,j)|.|γ0(ulG,j)|21+|γ1(ulG,j)|20. (3.100) Now, using (3.97), together with the estimates (3.99) and (3.100), we have,

hkulG,jk21.kPϕ,jl ulG,jk20+h|γ0(ulG,j)|21+h|γ1(ulG,j)|20. (3.101) It remains to estimate the traces on the “l” side by the traces on the “r” side, through the transmission conditions (TC,j) :









γ0(ulG,j) =γ0(urG,j) +θGl,j−θrG,j

γ1(ulG,j) = δcsj

h i cljPϕ,js γ0(urG,j)−θrG,j

−βγ1(urG,j) +kγ0(urG,j)−G˜1, usG,j0(urG,j)−θGr,j.

As a consequence,γ0(ulG,j) andγ1(ulG,j) can be estimated as follows



0(ulG,j)|1≤ |γ0(urG,j)|1+|θlG,j|1+|θGr,j|1,

1(ulG,j)|0.|γ1(urG,j)|0

h|Pϕ,js γ0(urG,j)|0+ δ

h|Pϕ,js θrG,j|0+|γ0(urG,j)|0+|G˜1|0. (3.102) We now prove that, on the support of χG,j, the operator Pϕ,js is of order 0. For this, let ˜χ ∈ C

c (T(Rn)), be equal to one on a neighborhood of the supp(χG,j|xn=0+). We then have γ0(urG,j) = OpTG,j)vjr|xn=0+= OpT( ˜χ) OpTG,j)vrj|xn=0++ OpT(1−χ) Op˜ TG,j)

| {z }

hΨ−∞T

vjr|xn=0+,

which yields

Pϕ,js γ0(urG,j) = Pϕ,js OpT( ˜χ)

| {z }

Ψ0T

γ0(urG,j) +Pϕ,js OpT(1−χ) Op˜ TG,j)

| {z }

hΨ−∞T

vjr|xn=0+.

This, together with the trace formula (3.23) gives the estimate, δ

h|Pϕ,js γ0(urG,j)|0≤Cδ

h|γ0(urG,j)|0+CNδhNkvjrk1, N ∈N.

Similarly, we have the estimate δ

h|Pϕ,js θrG,j|0≤Cδ

h|θrG,j|0+CNδhNϕ,jr |0. δ h|θϕ,jr |0. The last two estimates and the second equation of (3.102) yield,

1(ulG,j)|0.|γ1(urG,j)|0+ 1 + δ h

0(urG,j)|0

h|θϕ,jr |0+|G˜1|0+CNδhNkvrjk1, N∈N. Using estimates (3.94) and (3.96) to bound the traces on the “r” side, we obtain

h121(ulG,j)|0. 1 + δ h

kζPϕrvrk0+hkΞG Fvrk1+h2kvrk1+h2|Dxnvr|xn=0+|0 + δ

h12ϕ,jr |0+h12|G˜1|0,

for 0< h≤h0, and, using (3.74) to estimate the remainder, we have h121(ulG,j)|0. 1 + δ

h

kζPϕrvrk0+hkΞG Fvrk1+h2kvrk1+h2|Dxnvr|xn=0+|0 +h32|vsj|1+h12rϕ,j|0

+h12sϕ,j|0+h12lϕ,j|0, (3.103) We observe now that the first line of (3.102) together with (3.94) yields

h120(ulG,j)|1.kζPϕrvrk0+hkΞG Fvrk1+h2kvrk1+h2|Dxnvr|xn=0+|0

+h12lϕ,j|1+h12rϕ,j|1. (3.104) Combining (3.68), with (3.101), (3.103) and (3.104) we obtain

hkulG,jk21+h|γ0(ulG,j)|21+h|γ1(ulG,j)|20

. 1 + δ2 h2

kζPϕrvrk20+h2G Fvrk21+h4kvrk21+h4|Dxnvr|xn=0+|20+h3|vjs|21

+h|θlϕ,j|212

h|θrϕ,j|20+h|θϕ,jr |21+h|Θsϕ,j|20+kPϕ,jl vjlk20+h2kvljk21. (3.105) This is a local version of (3.77). Patching together onM+ the local Carleman estimates (3.105) as we did in (3.79)-(3.84) yields (3.77). This concludes the proof of Proposition 3.28.

3.4. Proof of the Carleman estimate in a neighborhood of the interface 125

Reξn

Imξn

ρl,+

Pϕl

ρl, Reξn

Imξn

ρr, ρr,+

Pϕr

Figure 3.5 – Root configuration in the regionF.