• Nenhum resultado encontrado

Puissance nécessaire à l’émission de l’antenne en fonction de la distance pour deux antennes

(en dBm) qui permet de fermer l’interrupteur au niveau du circuit de réception

Dans certaines applications, l’espace disponible pour l’antenne de réception est plus important (intégration dans un détecteur de fumée, dans le sous-plafond d’une pièce, etc) ce qui ouvre la possibilité d’y loger des antennes de taille et de gain plus importants. Une valeur minimale de 6 dBi est souhaitable.

b) Etage de rectification

La conception de la rectenna se fait suivant deux objectifs. Dans un premier temps, on peut privilégier un rendement de conversion élevé. Les résultats de simulation et de mesures réalisées jusqu’à présent affichent des rendements compris entre 20 % et 30 % pour des niveaux de puissance incidente de l’ordre de -15 dBm.

On fixe donc un objectif de 30% à -15 dBm pour une rectenna rechargeant un condensateur qui servira comme source d’énergie pour le système de réveil.

L’autre objectif vise à privilégier un niveau de tension DC le plus grand possible pour une puissance d’entrée donnée. Les mesures effectuées sur les prototypes de rectennas fabriquées affichent des valeurs de tension DC de l’ordre de 300 mV pour des niveaux de puissance incidente de l’ordre de -17 dBm.

Pour ce qui est de l’encombrement du circuit de rectification (sans l’antenne de réception), les réalisations précédentes montrent qu’on peut faire rentrer tous les composants CMS nécessaires dans une surface de 1 cm x 1 cm. Ces composants peuvent facilement être logés sur la face arrière du PCB contenant l’antenne réceptrice (derrière le plan de masse).

La fréquence centrale de fonctionnement de la rectenna doit être de 2.45 GHz. Le circuit de rectification aura une impédance caractéristique égale au conjugué de l’impédance de l’antenne de réception. La valeur de cette impédance reste à définir et cela en fonction de la topologie de circuit utilisé.

c) Etage de démodulation

L’étage de démodulation a comme rôle l’extraction de l’identifiant (l’adresse) contenu dans le signal

Au niveau du récepteur, le dimensionnement des différentes parties constitutives dépend fortement du scénario de réveil envisagé. Les différents scénarios retenus sont détaillés par la suite.

3.3.1 Scénario 1 : Full passif

Le premier scénario envisageable (et le plus optimiste) consiste en un système entièrement passif, qui a comme seule source d’énergie les ondes électromagnétiques envoyées par une télécommande. Le schéma de principe d’un tel système est donnée dans la Figure 3.11.

3.3. SCÉNARIOS DE RÉVEIL 47 Le fonctionnement du système est le suivant :

– Réception du signal de puissance à une fréquence F1

– Rectification de celui-ci par la rectenna et stockage de l’énergie dans le condensateur C1 – Alimentation de l’étage de démodulation à partir du condensateur C1

– Réception du signal de données à la fréquence F2 («adresse IP ») et démodulation (Utilisation possible de la même antenne bi-bande ou de la même fréquence que celle du signal de puissance)

– Si l’adresse est correcte, on active le driver

– Le driver ferme l’interrupteur de puissance avec l’énergie du condensateur C1

Compte tenu de la faible quantité d’énergie disponible à une distance de quelques mètres de la télécommande RF, l’étage radio de démodulation doit fonctionner avec une faible tension d’alimentation et consommer très peu. Il est possible de concevoir des récepteurs radio très peu consommateurs (< 100 µW [Pletcheret al., 2007]) et qui sont alimentés avec un niveau de tension de 0.5 V, niveau qui est atteignable avec des rectennas tout en limitant le niveau de puissance émise par la télécommande à des niveaux réalistes. Ce scénario suppose que l’énergie captée à partir des microondes suffit pour alimenter l’étage de démodulation et de fermer l’in- terrupteur de puissance.

Dans ce scénario, outre le fait de récupérer la quantité d’énergie nécessaire à l’alimentation de l’étage de démodulation (environ 1 µJ), on doit garantir un niveau de tension DC de l’ordre de 2 V au minimum afin de pouvoir commander directement la grille de l’interrupteur de puissance. Les rectennas fabriquées jusqu’à présent ont besoin d’un niveau de puissance incidente de l’ordre de 0 dBm pour atteindre ce niveau de tension DC. Le bilan de liaison montre, dans le meilleur des cas (antennes parfaitement alignées, transmission sans obstacles) que pour assurer une portée de 5 m minimum avec deux antennes de 6 dBi de gain, il faut émettre 16 W de puissance au niveau de la télécommande. Avec le niveau de puissance d’émission de 1 W établi comme étant le niveau maximal réalisable avec des composants standards ayant des couts raisonnables, la portée d’un système fonctionnant suivant un scénario tout passif serait de seulement 1,2 m. Un niveau de puissance émise plus important risque de poser aussi des problèmes d’un point de vue normatif.

S’il semble possible de réaliser une démodulation basique avec l’énergie récupérée par la rectenna (dans certaines conditions de portée et de puissance émise), il n’est pas certain que l’énergie récupérée soit suffisante pour la fermeture de l’interrupteur de puissance, qui a besoin d’un niveau de tension minimum de 2 V. C’est pour cela que le scénario 1bis (Figure 3.12) vient à l’esprit.

Dans ce scénario, l’alimentation de l’étage de démodulation de la trame radio contenant l’adresse se fait toujours exclusivement à partir de l’énergie provenant des ondes électromagnétiques, mais la fermeture du MOS est réalisée avec de l’énergie contenue dans un stockage local. Cette énergie n’est utilisée que lorsque l’étage de démodulation a identifié la bonne adresse. Le stockage local peut être une pile, un super condensateur ou un accumulateur rechargeable pendant les phases de fonctionnement de la charge. Dans ce scénario, la question de l’autonomie apparait.

Le scénario 1 bis offre l’avantage de nécessiter uniquement une quantité d’énergie limitée qui sert à alimenter la démodulation, tandis que le niveau de tension nécessaire à l’enclenchement de l’interrupteur de puissance provient d’un stockage local type pile 3 Volts. Au niveau de la rectenna, une énergie de 1 µJ sous 0,5 V au minimum doit être fournie pour le récepteur radio, tandis qu’une tension de 300 mV suffit pour commander la grille d’un MOS basse tension. Le niveau de puissance incidente correspondant à un niveau