• Nenhum resultado encontrado

HAL Id: jpa-00225111

N/A
N/A
Protected

Academic year: 2023

Share "HAL Id: jpa-00225111"

Copied!
5
0
0

Texto

(1)

HAL Id: jpa-00225111

https://hal.archives-ouvertes.fr/jpa-00225111

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LASER SPECTROSCOPY OF Bi4Ge3O12 SINGLE CRYSTALS : EMISSION MECHANISM AND

SATURATION EFFECTS

F. Rogemond, C. Pedrini, B. Moine, G. Boulon

To cite this version:

F. Rogemond, C. Pedrini, B. Moine, G. Boulon. LASER SPECTROSCOPY OF Bi4Ge3O12 SIN-

GLE CRYSTALS : EMISSION MECHANISM AND SATURATION EFFECTS. Journal de Physique

Colloques, 1985, 46 (C7), pp.C7-459-C7-462. �10.1051/jphyscol:1985781�. �jpa-00225111�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplément au nolO, Tome 46, octobre 1985 page C7-459

LASER SPECTROSCOPY OF B i 4 G e 3 0 1 2 SINGLE CRYSTALS

:

EMISSION MECHANISM AND SATURATION EFFECTS

F. Rogemond, C . P e d r i n i , B. Moine and G . Boulon

Laboratoire de Physico-Chimie des Matériaux ~urninescents', Université Lyon I, 43 Bd du 11 novembre 1918, 6 9 6 2 2 ViZZeurbanne Cedex, France

Résumé

-

Sous e x c i t a t i o n l a s e r de f o r t e puissance, l a bande l a r g e de f l u o r e s - cence du germanate de bismuth présente des t r o u s dont l a formation e s t r e l i é e à un processus d ' a b s o r p t i o n saturée des d i v e r s centres émetteurs q u i c o n t r i - buent à l a fluorescence. On montre qu'une c o r r é l a t i o n e x i s t e e n t r e ce phéno- mène e t l e s mécanismes de t r a n s f e r t d ' e x c i t a t i o n e t un modèle e s t proposé pour e x p l i q u e r 1 es r é s u l t a t s expérimentaux.

A b s t r a c t

-

Under powerful l a s e r e x c i t a t i o n , t h e wide fluorescence band o f bismuth germanate shows holes t h e formation o f which i s r e l a t e d t o a saturated

absorption process o f v a r i o u s e m i t t i n g centers which c o n t r i b u t e t o t h e o v e r a l l fluorescence. I t i s shown t h a t a c o r r e l a t i o n e x i s t s between t h i s phenornenon and t h e e x c i t a t i o n t r a n s f e r mecanism and a mode1 i s proposed t o i n t e r p r e t t h e experimental r e s u l t s .

I n a r e c e n t paper, we have presented numerous new r e s u l t s concerning t h e o p t i c a l p r o p e r t i e s o f bismuth germanate c r y s t a l s by u s i n g l a s e r - e x c i t e d techniques

(ROEEMOND, PEDRINI, MOINE and BOULON, t o be p u b l i s h e d ) . The a b s o r p t i o n was shown t o occur i n bismuth and germanate centers w h i l e b o t h i n t r i n s i c and perturbed ~ iions ~ + together w i t h some i m p u r i t i e s c o n t r i b u t e t o t h e o v e r a l l fluorescence. We have repor- t e d f o r t h e f i r s t time f o r m a t i o n o f deep holes i n t h e wide emission band. This phe- nomenon was found t o be s t r o n g l y temperature and l a s e r e x c i t a t i o n pump power depen- dent and was a t t r i b u t e d t o a saturated a b s o r p t i o n process o f v a r i o u s centers, l e a d i n g as a r e s u l t , t o a slowing down o f t h e growing o f t h e i r own emission i n t e n s i t i e s as the pump energy increases. The s a t u r a t i o n e f f e c t s were s t u d i e d by e x c i t i n g more e s p e c i a l l y i n t h e low energy side o f t h e s o - c a l l e d A e x c i t a t i o n peak, and were found t o be v e r y s t r o n g a t room temperature f o r a l 1 t h e e m i t t i n g c e n t e r s w h i l e a t v e r y low temperature, o n l y t h e r e d emission, assigned t o i m p u r i t y centers, was a f f e c t e d by t h e phenomenon. Thermally-activated energy m i g r a t i o n , which was found t o occur i n t h i s m a t e r i a l /1/, probably promotes t h e s a t u r a t i o n process. I n o r d e r t o e s t a b l i s h a c o r r e l a t i o n between energy t r a n s f e r and s a t u r a t i o n e f f e c t , new experiments were performed and i t i s t h e purpose o f t h i s paper t o r e p o r t new r e s u l t s and t o discuss p o s s i b l e models e x p l a i n i n g t h e a b s o r p t i o n and emission mechanisms occuring a t low and room temperature.

Under strong l a s e r e x c i t a t i o n i n t h e A peak ( 3 = 2775

A

o r 36036 cm-'), a satura- t i o n e f f e c t on t h e fluorescence a t low temperature i s c l e a r l y observed as i n d i c a t e d i n F i g . 1. For weak l a s e r pulses (0.09 mJ), t h e emission band has i t s usual shape and i s represented by curve 1. Curves 2, 3, 4, obtained by e x c i t i n g w i t h l a s e r p u l ~ ses o f higher energy, a r e represented as i f they were obtained under t h e same low e x c i t a t i o n energy (0.09 mJ) which g i v e s curve 1 and by supposing t h a t t h e i r i n t e n - s i t i e s Vary l i n e a r l y w i t h t h i s energy. Such a r e p r e s e n t a t i o n p e r m i t s t o compare the p r o f i l e s o f saturated emission bands w i t h t h a t o f non-saturated one. One observes a strong v a r i a t i o n o f t h e emission band p r o f i l e s w i t h f o r m a t i o n o f holes. As already seen i n Our previous work by e x c i t i n g w i t h photons o f lower energy, t h e r e l a t i v e decrease o f t h e fluorescence i s more pronounced i n t h e lower energy p a r t o f t h e wide fluorescence band. The r e a l v a r i a t i o n o f t h e emission i n t e n s i t y versus l a s e r p u l s e energy i s represented i n t h e i n s e r t o f F i g . 1. Curve 1 shows a l i n e a r dependence o f the p a r t o f the fluorescence taken i n t h e h i g h energy wing o f t h e band, i n d i c a t i n g + u n i t é a s s o c i é e a u C.N.R.S.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985781

(3)

C7-460 JOURNAL

DE

PHYSIQUE

t h a t no saturation occurs in t h i s region. On the other hand, the intensity of the fluorescence corresponding t o the maximum of the emission band (curve 2) presents f i r s t a l i n e a r dependence f o r weak excitation energy l e s s than around 1 0 0 ~ 5 , and then a strong slowing down of the increase of the signal which becomes almost cons- t a n t f o r energy more than 5 0 0 ~ 5 . Fig.

2

shows the temperature dependence of t h e saturation e f f e c t s . Curves

2

t o 7 were obtained with constant l a s e r excitation energy (0.9 mJ) and compared in t h e same way than in Fig.

1

t o the non-saturated band 1 weakly excited (0.13 mJ) a t very low temperature

( T =

4.4 K).

A

weak increase of the temperature induces a strong increase of saturation. Since f o r T<100

K,

no temperature dependence of the integrated fluorescence was detected previously under lamp excitation /2,3/, i t therefore e x i s t s a phenomenon responsible of t h e saturation promotion and occuring

w i t h

a very weak activation energy.

Laser excitation in the

C

peak region

( 3 =

2257 A or 44307 cm-') leads t o d i f f e r e n t r e s u l t s . Saturation e f f e c t s a r e not observed a t very low temperature but begin t o occur r e a l l y a t temperature greater than few tens K (see Fig. 3 ) . The thermal a c t i - vation energy of the process promoting the saturation i s therefore l a r g e r than in the previous case.

W e have shown in the e a r l i e r paper previously mentionned t h a t severall emitting centers contribute t o the overall fluorescence appearing a s a very wide band

:

i n t r i n s i c bismuth centers, perturbed bismuth centers so-called traps, and impurity centers, the most important of which giving r i s e t o a strong red contribution a t low temperature. If saturated absorption process occurs f o r one or some of these centers, formation of holes in the emission band i s expected and indeed observed.

The emission of traps and impurity centers which a r e present in weak concentration

in the material can be saturated even a t low temperature i f they a r e d i r e c t l y

excited in t h e i r absorption bands. Most of them probably a r e present i n the absorp-

tion t a i l below the band-edge energy

b u t

some may al so l i e a t higher energy cl ose

t o the B and

C

bands. However the most e f f i c i e n t way to excite these centers i s

indirect excitation in bismuth and germanium i n t r i n s i c absorbing centers, which a r e

in l a r g e r concentration, followed by a multistep energy migration process. Then

thermally-activated exciton migration can occur explaining the temperature dependence

of saturation e f f e c t s . In order t o i n t e r p r e t the experimental r e s u l t s and to describe

the fluorescence dynamics, we use the mode1 represented in Fig. 4. The d'ffusion of

excitation i s supposed t o occur along two channels

:

exciton band ( ~ e 0 ~ ) ~ - (peak

A )

and exciton band ( ~ i 0 ~ ) ~ - (peaks

B

and C), with an interaction between them. Because

the weak activation energy AE1 of the self-trapped exciton, excitation in the peak

A i s followed, even a t low temperature, by a f a s t diffusion among Ge04 tetrahedrons

and therefore induces an e f f i c i e n t i n d i r e c t excitation of traps and impurities lea-

ding t o saturation e f f e c t s . The same kind of excitonic process occurs among Bi06

octahedrons. However owing to saturation e f f e c t s a r e much l e s s e f f i c i e n t and begin

t o occur a t higher temperature when bismuth germanate i s excited in the

C

band, the

phenomenon involves a weaker excitation t r a n s f e r probability and a l a r g e r thermal

absorption energy AE2 of the self-trapped exciton. Saturated absorption process in

i n t r i n s i c ~ i 3 + centers i s much more d i f f i c u l t t o obtain since they a r e present in

large concentration i n the c r y s t a l . Such a phenomenon i s not observed in

O u r

experi-

ments since no decrease or quenching of the overall fluorescence occurs. Instead,

under strong e x c i t a t i o n , the i n t e n s i t y of the fluorescence a t the center of the

band c o n t i n u e s t o s l i g h l y increase with l a s e r power as shown by curve 2 of i n s e r t of'

Fig.

1.

These experimental data a r e interpreted as a r e s u l t of a balance between

l i n e a r increase of i n t r i n s i c bismuth center emission and strong decrease of fluores-

cences due to t r a p s and impurities.

(4)

Fig. 1 - Laser i n t e n s i t y dependence of the fluorescence excited in the

A

excitation peak ( A = 2775

A

or 36036 cm-1) a t

T =

12.5

K.

Laser pulse energy

:

( 1 ) 0.09 mJ

;

( 2 ) 0;225 mJ

; ( 3 )

0;550 mJ

;

(4) 1 . 1 mJ.

Insert

:

variation of the fluorescence i n t e n s i t y versus l a s e r pulse energy

:

( 1 ) in the high energy side of emission band (23810 cm-1)

;

( 2 ) a t the maximum of the emission band (20000 cm-l).

photon energy (lo4crn-')

Fig. 2 - Temperature dependence of the fluorescence excited in the

A

excitation peak ( h = 2775 a or 36036 cm-l) and obtained

(1) w j t h

weak l a s e r pulse energy (0.13 mJ) a t

T = 4 . 4

K and with strong l a s e r pulse energy (0.9 mJ) a t (2)

T =

4.4

K;

(3)

T =

10

K ;

(4)

T =

12.5

K ;

( 5 )

T =

15

K ;

( 6 )

T =

20

K ; ( 7 ) T =

25

K.

(5)

JOURNAL DE PHYSIQUE

Fig. 3

-

Temper t u r e dependen e o f t h e fluorescence e x c i t e d i n t h e C e x c i t a t i o n peak

( 2 ;

2257

1

o r 44307 cm-

i

) obtained w i t h strong l a s e r pulse energy (0.6 mJ) a t : ( 1 ) T = 4.4 K ; ( 2 ) T = 20 K ; ( 3 ) T = 50 K ; ( 4 ) T = 8 0 K ; (5 ) T = 120 K ;

(6) T = 160 K ; ( 7 ) T = 200 K.

exci ton band

!83J9:

exciton bond

-

- - P E T = -

- _

e O 4 , ;

tAEi

C

STEi

. . . -. . . . . . . . . ...

. . . ... - -- --- . -. . . . . . .-- ~ ..-

. . . .. . . .

. . . . .

- -. ...

-. - - - . . .

. . . . . . ... ..

impuri lies

F i g . 4

-

Simple mode1 e x p l a i n i n g fluorescence dynamics.

REFERENCES

/1/ REIKIRK, D.P. and POWELL, R.C., J. Luminescence 20 (1979) 261.

/2/ WEBER, L . J . and MONCHAMP, R.R., J. Appl

.

Phys. 4 T ( 1 9 7 3 ) 5495.

/3/ MONCORGE, R., JACQUIER, B. and BOULON, G.

,

J. L%inescence

2

(1976) 337

Referências

Documentos relacionados

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements