• Nenhum resultado encontrado

77

78

12. Kim, K.M., et al., Applications of next-generation sequencing to unravelling the evolutionary history of algae. Int J Syst Evol Microbiol, 2014. 64(Pt 2): p.

333-45.

13. Berglund, E.C., A. Kiialainen, and A.C. Syvanen, Next-generation sequencing technologies and applications for human genetic history and forensics.

Investig Genet, 2011. 2: p. 23.

14. Han, Y., et al., Advanced Applications of RNA Sequencing and Challenges.

Bioinform Biol Insights, 2015. 9(Suppl 1): p. 29-46.

15. Wada, A., M. Yamamoto, and E. Soeda, Automatic DNA sequencer:

computer-programmed microchemical manipulator for the Maxam-Gilbert sequencing method. Rev Sci Instrum, 1983. 54(11): p. 1569-72.

16. Stamm, S. and F.M. Longo, Direct sequencing of PCR products using the Maxam-Gilbert method. Genet Anal Tech Appl, 1990. 7(5): p. 142-3.

17. Pichersky, E., Terminal labeling of DNA for Maxam and Gilbert sequencing.

Methods Mol Biol, 1993. 23: p. 247-53.

18. Woese, C., et al., A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: some modifications in the Sanger method for RNA sequencing. J Mol Evol, 1976. 7(3): p. 197-213.

19. Ansorge, W., et al., One label, one tube, Sanger DNA sequencing in one and two lanes on a gel. Nucleic Acids Res, 1990. 18(11): p. 3419-20.

20. Arsenic, R., et al., Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer.

BMC Clin Pathol, 2015. 15: p. 20.

21. Motz, M., S. Paabo, and C. Kilger, Improved cycle sequencing of GC-rich templates by a combination of nucleotide analogs. Biotechniques, 2000. 29(2):

p. 268-70.

22. Perrier, L., et al., Cost Of Genome Analysis: The Sanger Sequencing Method.

Value Health, 2015. 18(7): p. A353.

79

23. McKenney, K., et al., A whole genome shotgun gene fusion method for isolation of translation initiation sites in Escherichia coli: identification of Haemophilus influenzae translation initiation sites in E. coli. Microb Comp Genomics, 1997. 2(2): p. 113-21.

24. Lapuk, A., et al., Computational BAC clone contig assembly for comprehensive genome analysis. Genes Chromosomes Cancer, 2004. 40(1): p.

66-71.

25. Vembar, S.S., et al., Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11 kb), single molecule, real-time sequencing. DNA Res, 2016.

26. Ma, Y., et al., Human papillomavirus community in healthy persons, defined by metagenomics analysis of human microbiome project shotgun sequencing data sets. J Virol, 2014. 88(9): p. 4786-97.

27. Nakano, M., et al., Single-molecule PCR using water-in-oil emulsion. J Biotechnol, 2003. 102(2): p. 117-24.

28. Kihana, M., et al., Emulsion PCR-coupled target enrichment: an effective fishing method for high-throughput sequencing of poorly preserved ancient DNA. Gene, 2013. 528(2): p. 347-51.

29. Mehta, R.K. and J. Singh, Bridge-overlap-extension PCR method for constructing chimeric genes. Biotechniques, 1999. 26(6): p. 1082-6.

30. Haimovich, A.D., Methods, challenges, and promise of next-generation sequencing in cancer biology. Yale J Biol Med, 2011. 84(4): p. 439-46.

31. Taniguchi-Ikeda, M., et al., Next-generation sequencing discloses a nonsense mutation in the dystrophin gene from long preserved dried umbilical cord and low-level somatic mosaicism in the proband mother. J Hum Genet, 2016.

61(4): p. 351-5.

32. Mardis, E.R., Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, 2008. 9: p. 387-402.

80

33. Nordstrom, T., et al., Method enabling pyrosequencing on double-stranded DNA. Anal Biochem, 2000. 282(2): p. 186-93.

34. Kruckeberg, K.E. and S.N. Thibodeau, Pyrosequencing technology as a method for the diagnosis of multiple endocrine neoplasia type 2. Clin Chem, 2004. 50(3): p. 522-9.

35. King, C. and T. Scott-Horton, Pyrosequencing: a simple method for accurate genotyping. J Vis Exp, 2008(11).

36. Yan, J.B., et al., Pyrosequencing is an accurate and reliable method for the analysis of heteroplasmy of the A3243G mutation in patients with mitochondrial diabetes. J Mol Diagn, 2014. 16(4): p. 431-9.

37. Kim, S., et al., Comparison of two high-throughput semiconductor chip sequencing platforms in noninvasive prenatal testing for Down syndrome in early pregnancy. BMC Med Genomics, 2016. 9(1): p. 22.

38. Gomez, J., et al., Non optical semi-conductor next generation sequencing of the main cardiac QT-interval duration genes in pooled DNA samples. J Cardiovasc Transl Res, 2014. 7(1): p. 133-7.

39. Tops, B.B., et al., Development of a semi-conductor sequencing-based panel for genotyping of colon and lung cancer by the Onconetwork consortium.

BMC Cancer, 2015. 15: p. 26.

40. Huang, X., et al., A Dual-Mode Large-Arrayed CMOS ISFET Sensor for Accurate and High-Throughput pH Sensing in Biomedical Diagnosis. IEEE Trans Biomed Eng, 2015. 62(9): p. 2224-33.

41. Merriman, B., et al., Progress in ion torrent semiconductor chip based sequencing. Electrophoresis, 2012. 33(23): p. 3397-417.

42. Salipante, S.J., et al., Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol, 2014. 80(24): p. 7583-91.

81

43. Balla, B., et al., Fast and robust next-generation sequencing technique using ion torrent personal genome machine for the screening of neurofibromatosis type 1 (NF1) gene. J Mol Neurosci, 2014. 53(2): p. 204-10.

44. Dunham, J.P. and M.L. Friesen, A cost-effective method for high-throughput construction of illumina sequencing libraries. Cold Spring Harb Protoc, 2013.

2013(9): p. 820-34.

45. Machida, R.J. and Y.Y. Lin, Four methods of preparing mRNA 5' end libraries using the Illumina sequencing platform. PLoS One, 2014. 9(7): p.

e101812.

46. Kumar, R., et al., A High-Throughput Method for Illumina RNA-Seq Library Preparation. Front Plant Sci, 2012. 3: p. 202.

47. Thys, K., et al., Performance assessment of the Illumina massively parallel sequencing platform for deep sequencing analysis of viral minority variants. J Virol Methods, 2015. 221: p. 29-38.

48. Quail, M.A., et al., A tale of three next generation sequencing platforms:

comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 2012. 13: p. 341.

49. Hu, Z., L. Cheng, and H. Wang, The Illumina-solexa sequencing protocol for bacterial genomes. Methods Mol Biol, 2015. 1231: p. 91-7.

50. Oyola, S.O., et al., Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes. BMC Genomics, 2012. 13: p.

1.

51. Feng, Y.J., et al., Parallel tagged amplicon sequencing of relatively long PCR products using the Illumina HiSeq platform and transcriptome assembly. Mol Ecol Resour, 2016. 16(1): p. 91-102.

52. Seguin-Orlando, A., et al., Ligation bias in illumina next-generation DNA libraries: implications for sequencing ancient genomes. PLoS One, 2013.

8(10): p. e78575.

82

53. Kozarewa, I., et al., Overview of Target Enrichment Strategies. Curr Protoc Mol Biol, 2015. 112: p. 7 21 1-23.

54. Kozich, J.J., et al., Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol, 2013. 79(17): p. 5112-20.

55. Schirmer, M., et al., Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res, 2015. 43(6):

p. e37.

56. Chen, C.Y., DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol, 2014. 5: p. 305.

57. Kircher, M., S. Sawyer, and M. Meyer, Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res, 2012. 40(1): p. e3.

58. McGinnis, M.D., et al., Automated, solid-phase sequencing of DRB region genes using T7 sequencing chemistry and dye-labeled primers. Tissue Antigens, 1995. 46(3 ( Pt 1)): p. 173-9.

59. Routh, A., et al., ClickSeq: Fragmentation-Free Next-Generation Sequencing via Click Ligation of Adaptors to Stochastically Terminated 3'-Azido cDNAs. J Mol Biol, 2015. 427(16): p. 2610-6.

60. Yegnasubramanian, S., Explanatory chapter: next generation sequencing.

Methods Enzymol, 2013. 529: p. 201-8.

61. Pu, D., et al., Sequencing-by-ligation using oligonucleotide probes with 3'- thio-deoxyinosine. J Biomed Nanotechnol, 2014. 10(5): p. 751-9.

62. Vivien, R., B.J. Ferrari, and J. Pawlowski, DNA barcoding of formalin-fixed aquatic oligochaetes for biomonitoring. BMC Res Notes, 2016. 9(1): p. 342.

63. van Dijk, E.L., Y. Jaszczyszyn, and C. Thermes, Library preparation methods for next-generation sequencing: tone down the bias. Exp Cell Res, 2014.

322(1): p. 12-20.

83

64. Caruccio, N., Preparation of next-generation sequencing libraries using Nextera technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Methods Mol Biol, 2011. 733: p. 241-55.

65. Stein, L., Large scale sequencing. Curr Protoc Bioinformatics, 2003. Chapter 11: p. Unit11 1.

66. Wang, Y., et al., Using iterative fragment assembly and progressive sequence truncation to facilitate phasing and crystal structure determination of distantly related proteins. Acta Crystallogr D Struct Biol, 2016. 72(Pt 5): p. 616-28.

67. Hitzemann, R., et al., Introduction to sequencing the brain transcriptome. Int Rev Neurobiol, 2014. 116: p. 1-19.

68. McGettigan, P.A., Transcriptomics in the RNA-seq era. Curr Opin Chem Biol, 2013. 17(1): p. 4-11.

69. Qi, Y.X., Y.B. Liu, and W.H. Rong, [RNA-Seq and its applications: a new technology for transcriptomics]. Yi Chuan, 2011. 33(11): p. 1191-202.

70. Cheranova, D., et al., RNA-seq analysis of transcriptomes in thrombin-treated and control human pulmonary microvascular endothelial cells. J Vis Exp, 2013(72).

71. Peng, J., et al., RNA-Seq and microarrays analyses reveal global differential transcriptomes of Mesorhizobium huakuii 7653R between bacteroids and free- living cells. PLoS One, 2014. 9(4): p. e93626.

72. Matkovich, S.J., et al., Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq. Circ Res, 2010.

106(9): p. 1459-67.

73. Stenger, D.A., et al., Potential applications of DNA microarrays in biodefense-related diagnostics. Curr Opin Biotechnol, 2002. 13(3): p. 208-12.

74. Kissopoulou, A., et al., Next generation sequencing analysis of human platelet PolyA+ mRNAs and rRNA-depleted total RNA. PLoS One, 2013. 8(12): p.

e81809.

84

75. Chronowska, E., High-throughput analysis of ovarian granulosa cell transcriptome. Biomed Res Int, 2014. 2014: p. 213570.

76. Sun, Z., et al., Impact of library preparation on downstream analysis and interpretation of RNA-Seq data: comparison between Illumina PolyA and NuGEN Ovation protocol. PLoS One, 2013. 8(8): p. e71745.

77. Zhong, Z., et al., Large-scale identification of small noncoding RNA with strand-specific deep sequencing and characterization of a novel virulence- related sRNA in Brucella melitensis. Sci Rep, 2016. 6: p. 25123.

78. Ozsolak, F. and P.M. Milos, Single-molecule direct RNA sequencing without cDNA synthesis. Wiley Interdiscip Rev RNA, 2011. 2(4): p. 565-70.

79. Moreton, J., A. Izquierdo, and R.D. Emes, Assembly, Assessment, and Availability of De novo Generated Eukaryotic Transcriptomes. Front Genet, 2015. 6: p. 361.

80. Nanoth Vellichirammal, N., et al., De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus. PLoS One, 2014. 9(1): p. e82129.

81. Trapnell, C., et al., Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010. 28(5): p. 511-5.

82. Kono, N., et al., Evaluation of the impact of RNA preservation methods of spiders for de novo transcriptome assembly. Mol Ecol Resour, 2016. 16(3): p.

662-72.

83. Lu, B., Z. Zeng, and T. Shi, Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Sci China Life Sci, 2013. 56(2): p. 143-55.

84. Byron, S.A., et al., Translating RNA sequencing into clinical diagnostics:

opportunities and challenges. Nat Rev Genet, 2016. 17(5): p. 257-71.

85

85. Petropoulos, S., et al., Single-cell RNA sequencing: revealing human pre- implantation development, pluripotency and germline development. J Intern Med, 2016.

86. Ozsolak, F. and P.M. Milos, RNA sequencing: advances, challenges and opportunities. Nat Rev Genet, 2011. 12(2): p. 87-98.

87. Budak, H. and M. Kantar, Harnessing NGS and Big Data Optimally:

Comparison of miRNA Prediction from Assembled versus Non-assembled Sequencing Data--The Case of the Grass Aegilops tauschii Complex Genome.

OMICS, 2015. 19(7): p. 407-15.

88. Selitsky, S.R. and P. Sethupathy, tDRmapper: challenges and solutions to mapping, naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. BMC Bioinformatics, 2015. 16: p. 354.

89. Git, A., et al., Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA, 2010. 16(5): p. 991-1006.

90. Qian, X., et al., RNA-Seq technology and its application in fish transcriptomics. OMICS, 2014. 18(2): p. 98-110.

91. Liu, C., et al., Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in chili pepper (Capsicum annuum L.). PLoS One, 2013. 8(6): p. e65209.

92. Ghosh, S. and C.K. Chan, Analysis of RNA-Seq Data Using TopHat and Cufflinks. Methods Mol Biol, 2016. 1374: p. 339-61.

93. Bai, Y., et al., The RNA expression signature of the HepG2 cell line as determined by the integrated analysis of miRNA and mRNA expression profiles. Gene, 2014. 548(1): p. 91-100.

94. Katsonis, P., et al., Single nucleotide variations: biological impact and theoretical interpretation. Protein Sci, 2014. 23(12): p. 1650-66.

86

95. Hsiao, Y.H., et al., Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins.

Genome Res, 2016. 26(4): p. 440-50.

96. Tong, P., et al., SIBER: systematic identification of bimodally expressed genes using RNAseq data. Bioinformatics, 2013. 29(5): p. 605-13.

97. Allen, G.I. and Z. Liu, A Local Poisson Graphical Model for inferring networks from sequencing data. IEEE Trans Nanobioscience, 2013. 12(3): p.

189-98.

98. Conesa, A., et al., A survey of best practices for RNA-seq data analysis.

Genome Biol, 2016. 17: p. 13.

99. Zhao, W., et al., Weighted gene coexpression network analysis: state of the art. J Biopharm Stat, 2010. 20(2): p. 281-300.

100. Gibbs, D.L., et al., Multi-omic network signatures of disease. Front Genet, 2014. 4: p. 309.

101. Morisaki, H., et al., Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect. J Clin Invest, 1993. 91(5): p. 2275-80.

102. Niemela, E.H., et al., Evolutionarily conserved exon definition interactions with U11 snRNP mediate alternative splicing regulation on U11-48K and U11/U12-65K genes. RNA Biol, 2015. 12(11): p. 1256-64.

103. Fukumura, K. and K. Inoue, [Molecular mechanism of exon definition and alternative splicing]. Tanpakushitsu Kakusan Koso, 2009. 54(16 Suppl): p.

2032-7.

104. Chen, K., X. Dai, and J. Wu, Alternative splicing: An important mechanism in stem cell biology. World J Stem Cells, 2015. 7(1): p. 1-10.

105. Garcia-Blanco, M.A., A.P. Baraniak, and E.L. Lasda, Alternative splicing in disease and therapy. Nat Biotechnol, 2004. 22(5): p. 535-46.

106. Orengo, J.P. and T.A. Cooper, Alternative splicing in disease. Adv Exp Med Biol, 2007. 623: p. 212-23.

87

107. Lebrilla, C.B. and L.K. Mahal, Post-translation modifications. Curr Opin Chem Biol, 2009. 13(4): p. 373-4.

108. Conserva, F., L. Gesualdo, and M. Papale, A Systems Biology Overview on Human Diabetic Nephropathy: From Genetic Susceptibility to Post- Transcriptional and Post-Translational Modifications. J Diabetes Res, 2016.

2016: p. 7934504.

109. Zippo, A., et al., Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell, 2009. 138(6): p.

1122-36.

110. Bikkavilli, R.K., et al., In vitro methylation assay to study protein arginine methylation. J Vis Exp, 2014(92): p. e51997.

111. Fackelmayer, F.O., Protein arginine methyltransferases: guardians of the Arg? Trends Biochem Sci, 2005. 30(12): p. 666-71.

112. Chan, J.Y., et al., Physical and functional interactions between hnRNP K and PRMT family proteins. FEBS Lett, 2009. 583(2): p. 281-6.

113. Herrmann, F., et al., Human protein arginine methyltransferases in vivo-- distinct properties of eight canonical members of the PRMT family. J Cell Sci, 2009. 122(Pt 5): p. 667-77.

114. Kim, J.D., et al., PRMT8 as a phospholipase regulates Purkinje cell dendritic arborization and motor coordination. Sci Adv, 2015. 1(11): p. e1500615.

115. Kim, J.H., et al., The Role of Protein Arginine Methyltransferases in Inflammatory Responses. Mediators Inflamm, 2016. 2016: p. 4028353.

116. Chiou, Y.Y., et al., Direct mass-spectrometric identification of Arg296 and Arg299 as the methylation sites of hnRNP K protein for methyltransferase PRMT1. Protein J, 2007. 26(2): p. 87-93.

117. Yue, Y., Y. Chu, and H. Guo, Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations. Molecules, 2015. 20(6):

p. 10032-46.

88

118. Scorilas, A., et al., Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem Biophys Res Commun, 2000. 278(2): p. 349-59.

119. Mathioudaki, K., et al., Clinical evaluation of PRMT1 gene expression in breast cancer. Tumour Biol, 2011. 32(3): p. 575-82.

120. Mathioudaki, K., et al., The PRMT1 gene expression pattern in colon cancer.

Br J Cancer, 2008. 99(12): p. 2094-9.

121. Li, B., et al., miR-503 suppresses metastasis of hepatocellular carcinoma cell by targeting PRMT1. Biochem Biophys Res Commun, 2015. 464(4): p. 982-7.

122. Deorowicz, S. and S. Grabowski, Compression of DNA sequence reads in FASTQ format. Bioinformatics, 2011. 27(6): p. 860-2.

123. Cock, P.J., et al., The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res, 2010.

38(6): p. 1767-71.

124. Blankenberg, D., et al., Manipulation of FASTQ data with Galaxy.

Bioinformatics, 2010. 26(14): p. 1783-5.

125. Benjamin, A.M., et al., Comparing reference-based RNA-Seq mapping methods for non-human primate data. BMC Genomics, 2014. 15: p. 570.

126. Pandey, R.V., et al., ClinQC: a tool for quality control and cleaning of Sanger and NGS data in clinical research. BMC Bioinformatics, 2016. 17: p. 56.

127. Kim, D. and S.L. Salzberg, TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol, 2011. 12(8): p. R72.

128. Zhang, H., Overview of Sequence Data Formats. Methods Mol Biol, 2016.

1418: p. 3-17.

129. Thorvaldsdottir, H., J.T. Robinson, and J.P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.

Brief Bioinform, 2013. 14(2): p. 178-92.

89

130. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010. 26(6): p. 841-2.

131. Mullis, K., et al., Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. 1986. Biotechnology, 1992. 24: p. 17-27.

132. Mullis, K.B. and F.A. Faloona, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol, 1987. 155: p. 335- 50.

133. Mansor, F., L. Zamri, and S.S. Hamzah, Electrophoretic Techniques for the Detection of Human Microsatellite D19S884. Malays J Med Sci, 2015. 22(2):

p. 18-24.

134. Palittapongarnpim, P., et al., DNA fragment length polymorphism analysis of Mycobacterium tuberculosis isolates by arbitrarily primed polymerase chain reaction. J Infect Dis, 1993. 167(4): p. 975-8.

135. Hjerten, S., T. Srichaiyo, and A. Palm, UV-transparent, replaceable agarose gels for molecular-sieve (capillary) electrophoresis of proteins and nucleic acids. Biomed Chromatogr, 1994. 8(2): p. 73-6.

136. Vlachos, I.S., et al., DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res, 2015. 43(Database issue): p. D153-9.

137. Goldovsky, L., et al., BioLayout(Java): versatile network visualisation of structural and functional relationships. Appl Bioinformatics, 2005. 4(1): p.

71-4.

138. Nicholson, P., et al., Nonsense-mediated mRNA decay in human cells:

mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci, 2010. 67(5): p. 677-700.

139. de Souza, N., The ENCODE project. Nat Methods, 2012. 9(11): p. 1046.

140. McCain, J., The cancer genome atlas: new weapon in old war? Biotechnol Healthc, 2006. 3(2): p. 46-51B.

90

141. Cheung, V.G., et al., Making and reading microarrays. Nat Genet, 1999. 21(1 Suppl): p. 15-9.

142. Grossmann, V., et al., Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia, 2011. 25(4): p. 671-80.

143. Hoppe, R., et al., Exploiting the complexity of the genome and transcriptome using pharmacogenomics towards personalized medicine. Genome Biol, 2011.

12(1): p. 301.

144. Berger, M.F., et al., Integrative analysis of the melanoma transcriptome.

Genome Res, 2010. 20(4): p. 413-27.

145. Hancock, N.T., N.D. Black, and T.Y. Cath, A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes. Water Res, 2012. 46(4):

p. 1145-54.

146. Twine, N.A., et al., Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease.

PLoS One, 2011. 6(1): p. e16266.

147. Ku, G.M., et al., Research resource: RNA-Seq reveals unique features of the pancreatic beta-cell transcriptome. Mol Endocrinol, 2012. 26(10): p. 1783-92.

148. Servant, N., et al., Bioinformatics for precision medicine in oncology:

principles and application to the SHIVA clinical trial. Front Genet, 2014. 5: p.

152.

149. Yates, M.S., et al., Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano- 3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole. Cancer Res, 2006. 66(4): p.

2488-94.

91

150. Creager, A.J., et al., Intraoperative imprint cytologic evaluation of sentinel lymph nodes for lobular carcinoma of the breast. Ann Surg, 2004. 239(1): p.

61-6.

151. Ellington, W.R., D. Yamashita, and T. Suzuki, Alternative splicing produces transcripts coding for alpha and beta chains of a hetero-dimeric phosphagen kinase. Gene, 2004. 334: p. 167-74.

152. Feng, H., Z. Qin, and X. Zhang, Opportunities and methods for studying alternative splicing in cancer with RNA-Seq. Cancer Lett, 2013. 340(2): p.

179-91.

153. Yang, Y. and M.T. Bedford, Protein arginine methyltransferases and cancer.

Nat Rev Cancer, 2013. 13(1): p. 37-50.

154. Adamopoulos, P.G., et al., Identification of novel alternative splice variants of the BCL2L12 gene in human cancer cells using next-generation sequencing methodology. Cancer Lett, 2016. 373(1): p. 119-29.

92 ΠΕΡΙΛΗΨΗ

Τίτλος: Ανάλυση και μελέτη της έκφρασης σε καρκινικά κύτταρα, μέσω μη κωδικών μορίων RNA (ncRNAs), νέων εναλλακτικών μεταγράφων του γονιδίου PRMT1 με χρήση μεθοδολογίας αλληλούχισης νέας γενιάς.

Μαυρογιάννης Αδαμάντιος

Η αλληλούχιση νέας γενιάς αναμένεται να βοηθήσει σημαντικά στην ανακάλυψη της πολυπλοκότητας του εναλλακτικού ματίσματος και στην κατανόηση της σύνδεσής του με την καρκινογένεση. Ο σκοπός της παρούσας εργασίας ήταν να χρησιμοποιηθεί η τεχνολογία NGS για την εύρεση νέων εναλλακτικών μεταγράφων του γονιδίου PRMT1 σε ένα σύνολο καρκινικών κυτταρικών σειρών ανθρώπου με διαφορετική προέλευση. Για τον σκοπό αυτόν, απομονώθηκε RNA από 56 καρκινικές κυτταρικές σειρές ανθρώπου και συντέθηκε μονόκλωνο cDNA, χρησιμοποιώντας oligo-dT-adaptor ως εκκινητή. Μετά τη δημιουργία του cDNA, έγινε 3’ RACE-nested PCR για τη μοριακή κλωνοποίηση όλων των PRMT1 μεταγραφων. Όλα τα PCR προϊόντα καθαρίστηκαν και έγινε κατασκευή βιβλιοθηκών και ποσοτικοποίησή τους.

Ακολούθησε αλληλούχιση με τεχνολογία NGS σε ημιαγωγό με το μηχάνημα Ion Torrent Personal Genome Machine™. Με βιοπληροφορική ανάλυση των δεδομένων αλληλούχισης βρέθηκαν 19 νέες θέσεις συρραφής μεταξύ γνωστών εξωνίων του γονιδίου, που υποδηλώνουν την ύπαρξη νέων, μικρής συχνότητας, εναλλακτικών μεταγράφων του PRMT1. Επιπροσθέτως, η ανάλυση οδήγησε στην ανακάλυψη ενός νέου εξωνίου μεταξύ των εξωνίων 11 και 12 του γονιδίου, μήκους 90 νουκλεοτιδίων.

Η ύπαρξη κάθε νέου μεταγράφου επιβεβαιώθηκε με πειράματα PCR και ηλεκτροφόρησης σε gel αγαρόζης. Ως αποτέλεσμα, ταυτοποιήθηκαν 86 νέα μετάγραφα του PRMT1, από τα οποία τα 45 προβλέπεται να κωδικοποιούν πρωτεΐνη και 41 ως μη νοηματικά mRNAs, που μάλλον υφίστανται nonsense-mediated mRNA decay (NMD). Τέλος, η ρύθμιση της έκφρασης, μέσω μη κωδικών μορίων RNA (ncRNAs), των γονιδίων της οικογένειας PRMT μελετήθηκε μέσα από ένα δίκτυο αλληλεπιδράσεων μεταξύ micro-RNAs και γονιδίων στόχων, που κατασκευάστηκε σύμφωνα με τα δεδομένα της βάσης DIANA-TarBase v7.0.

No documento ΕΙΣΑΓΩΓΗ ΙΣΤΟΡΙΚΗ ΑΝΑΔΡΟΜΗ ΤΗΣ ΑΛΛΗΛΟΥΧΙΣΗΣ ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΛΛΗΛΟΥΧΙΣΗΣ Αλληλούχιση Maxam-Gilbert………5 1.2.2 Αλληλούχιση Sanger Προηγμένες μέθοδοι ΑΛΛΗΛΟΥΧΙΣΗ ΝΕΑΣ ΓΕΝΙΑΣ Πυροαλληλούχιση Αλληλούχιση με ημιαγωγό Αλληλούχιση με «reversible terminators Αλληλούχιση με «ligation ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Προετοιμασία του δείγματος Προκλήσεις στην ανάλυση ΜΕΛΕΤΗ ΓΟΝΙΔΙΑΚΗΣ ΕΚΦΡΑΣΗΣ Μέθοδοι Συναρμολόγηση του μεταγραφώματος Πλεονεκτήματα και περιορισμοί Ανάλυση ΕΝΑΛΛΑΚΤΙΚΟ ΜΑΤΙΣΜΑ ΓΟΝΙΔΙΟ PRMT1………33 2 (páginas 83-99)

Documentos relacionados