• Nenhum resultado encontrado

ΣΥΜΠΕΡΑΣΜΑΤΑ

Έπειτα από τη μελέτη των μεθόδων που παρουσιάστηκαν στα προηγούμενα κεφάλαια, εξήχθησαν ορισμένα συμπεράσματα, σχετικά με τα μειονεκτήματα και τα πλεονεκτήματα που εμφανίστηκαν στον τρόπο λειτουργίας, καθώς επίσης και στα πεδία εφαρμογής της κάθε μεθόδου.

Παρακάτω παρατίθενται αναλυτικότερα τα σημεία που χρήζουν περισσότερης προσοχής.

Σχετικά με την φασματομετρία FTIR, αποτελέσματα από μετρήσεις πεδίου (που υπάρχουν στη βιβλιογραφία), δείχνουν ότι η μέθοδος αυτή είναι αρκετά ικανή για τηλε – ανίχνευση μεθανίου. Παρόλα αυτά η ακρίβεια των αποτελεσμάτων εξαρτάται άμεσα από τις καιρικές συνθήκες και συγκεκριμένα από την ταχύτητα του αέρα και από την διαφορά θερμοκρασίας ανάμεσα σε αυτήν του ανιχνευόμενου μεθανίου και σε αυτήν του περιβάλλοντος. Για το λόγο αυτό, η ελαχιστοποίηση της αβεβαιότητας, απαιτεί πολλές δειγματοληψίες.

Η χρήση των laser διόδων με εξωτερική κοιλότητα και βασισμένα στην τεχνολογία FBG αποτελεί μια αξιόπιστη λύση για την φασματοσκοπία αερίων με γραμμές απορρόφησης στα 0.7 – 1.7 μm. Για εφαρμογές που απαιτούν ανίχνευση ενός ή περισσότερων γραμμών απορρόφησης, αυτά τα laser είναι μια εναλλακτική και φθηνότερη λύση έναντι των διαδεδομένων lasers τεχνολογίας DFB (κύριο μειονέκτημα των laser DFB είναι η πολυπλοκότητα της χρήσης τους, η οποία απαιτεί επέμβαση στη δομή τους, πράγμα που τα καθιστούν αρκετά ακριβά).

Η φωτοακουστική μέθοδος με ταυτόχρονη χρήση ενός laser διόδων στο near-IR, αποτελεί μια αρκετά ενδιαφέρουσα τεχνική, καθώς είναι σε θέση να προσφέρει μία ανίχνευση μικρότερη της τάξης των ppm. Τα κύρια πλεονεκτήματα της μεθόδου αυτής είναι το υψηλό επίπεδο ικανότητας ανίχνευσης και η σχετικώς απλή πειραματική δομή της.

Οι ανιχνευτές TDLAS (Tunable diode laser absorption spectroscopy) είναι αποτελεσματικοί στον εντοπισμό διαρροών και στις μετρήσεις των LEL (lower explosive limit). Δεν απαιτείται επαναβαθμονόμηση και είναι ικανοί να ανιχνεύουν αιθάνιο άρα και φυσικό αέριο. Αλλάζοντας το κέντρο μήκους κύματος της συσκευής, μπορούν να ανιχνευθούν και άλλα αέρια, ανάλογα με τον συντελεστή απορρόφησής τους, διατηρώντας το ίδιο υλικό και λογισμικό.

Η ανίχνευση εκπομπών μεθανίου από το διάστημα (π.χ. SCIAMACHY), προσφέρει μεν μια συνολική εικόνα της υφιστάμενης κατάστασης των συγκεντρώσεών του σε όλο τον πλανήτη, είναι δε μια χρονοβόρα διαδικασία, εξ’ αιτίας της εποχιακής διακύμανσης. Για ακριβέστερα αποτελέσματα απαιτούνται και επίγειες μετρήσεις.

Οι οπτικοί ανιχνευτές έχουν σχετικά χαμηλότερο κόστος αγοράς από τους ανιχνευτές καταλυτικών συσκευών, αλλά υστερούν λόγω της εξάρτησής τους από τη θερμοκρασία. Για μια υψηλή ικανότητα ανίχνευσης, το εύρος θερμοκρασίας πρέπει να κυμαίνεται μεταξύ –20 και 50οC, αντίθετα, στους ανιχνευτές καταλυτικών συσκευών η θερμοκρασία είναι ένας ουδέτερος παράγοντας.

ΒΙΒΛΙΟΓΡΑΦΙΑ

• Conrad, R., 1993. Mechanisms controlling methane emission from wetland rice fields. In: Oremland, R.S. (Ed.), Biogeochemistry of Global Change: Radiative Trace Gases. Chapman and Hall, New York

• Conrad, R., Frenzel, P. and Cohen, Y., 1995. Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity.

FEMS Microbiology Ecology

• Frenzel, P., Rothfuss, F. and Conrad, R., 1992. Oxygen profiles and methane turnover in a flooded rice microcosm. Biology and Fertility of Soils

• Frenzel, P. and Bosse, U., 1996. Methyl fluoride, an inhibitor of methane oxidation and methane production. FEMS Microbiology Ecology

• Gilbert, B. and Frenzel, P., 1995. Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biology and Fertility of Soils

• Gilbert, B. and Frenzel, P., 1998. Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the microenvironment. Soil Biology & Biochemistry

• Kimura, M., Murakami, H. and Wada, H., 1991. Carbon dioxide, hydrogen and methane production in rice rhizosphere. Soil Science and Plant Nutrition

• Neue, H.U., Wassmann, R., Lantin, R.S., Alberto, M.A.C.R., Aduna, J.B. and Javellana, A.M., 1996. Factors affecting methane emission from rice fields. Atmospheric Environment

• Liesack, W., Großkopf, R., Bosse, U., Frenzel, P., 1997. Molecular analysis of methanogenic populations in flooded rice microcosms. In:

Martins, M.T., Sato, M.I.Z., Tiedje, J.M., Hagler, L.C.N., Döbereiner, J., Sanchez P.S. (Eds.), Proceedings of the Seventh International Symposium on Microbial Ecology (ISME-7), Santos, Brazil. Sociedade Brasileira de Microbiologia, São Paulo

• Sass, R.L., Fisher, F.M., Harcombe, P.A. and Turner, F.T., 1990.

Methane production and emission in a Texas rice field. Global Biogeochemical Cycles

• Schütz, H., Holzapfel-Pschorrn, A., Conrad, R., Rennenberg, H. and Seiler, W., 1989. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. Journal of Geophysical Research

• Schütz, H., Seiler, W. and Conrad, R., 1989. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry

• Kimura, M., Miura, Y., Watanabe, A., Katoh, T. and Haraguchi, H., 1991. Methane emission from paddy field. Part I. Effect of fertilization, growth stage and midsummer drainage: Pot experiment. Environ

• Bowmann, A.F. (Ed.) 1989. Soils and the Greenhouse Effect. Wiley, New York

• Wang, W.C., Yung, Y.L., Lacis, A.A., Mo, T. and Hansen, J.E. 1976.

Greenhouse effects due to man-made perturbations of trace gases

• Wahlen, M., Tanaka, N., Henry, R., Deck, B., Zeglen, J., Vogel, J.S., Southon, J., Shemesh, A., Fairbanks, R. and Broecker, W. 1989.

Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon

• Ramanathan, V., Cicerone, R.J., Singh, H.B. and Kiehl, J.T., 1985.

Trace gas trends and their potential role in climate change

• Yagi, K. and Minami, K., 1990. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Science Plant Nutrition

• Neue H. U. and Sass R. 1994. Trace Gas Emissions from Rice Fields.

In Global Atmospheric-Biospheric Chemistry. (edited by Prinn R. G.)

• Neue H. U. and Roger P. A. 1993. Rice agriculture: factors controlling emission. In Global Atmospheric Methane (edited by Khalil M. A. K.

and Shearer M.)

• Cicerone R. J., Delwiche C. C., Tyler S. C. and Zimmermann P. R.

1992. Methane emissions from California rice paddies with varied treatments

• Dickinson R. E. and Cicerone R. J. 1986. Future global warming from atmospheric trace gases

• International Rice Research Institute (IRRI) 1989. IRRI towards 2000 and Beyond

• Intergovernmental Panel on Climate Change (IPCC) 1992. Climate Change: the Supplementary Report to the IPCC Scientific Assessment.

Cambridge University Press, New York

• Parashar D., Rai C. J., Gupta P. K. and Singh N. 1990. Parameters affecting methane emission from paddy fields

• Sass R. L., Fisher F. M., Wang Y. B., Turner F. T. and Jund M. F.

1992. Methane emission from rice fields: the effect of floodwater management

• Rodhe, H. 1990, A comparison of the contribution of various gases to the greenhouse effect

• Lelieveld, J., Crutzen. P.J. and Briihl, C. 1993. Climate effects of atmospheric methane.

• D.R. Blake and F.S. Rowland 1988. Continuing worldwide increase in tropospheric methane, 1978 to1987

• Intergovernmental Panel on Climate Change (IPCC) 2000. Emissions Scenarios, Special Report of the Intergovernmental Panel on Climate Change. , Cambridge University Press, UK

• Khalil M.A.K., Shearer M.J., Rasmussen R.A. 1993. Methane sources in China: historical and current emissions, in: Khalil M.A.K., Shearer M.J. (Eds.), Atmospheric Methane: Sources, Sinks and Role in Global Change. Proceedings of the NATO Advanced Research Workshop

• A.M. Thompson, K.B. Hogan and J.S. Hoffman 1992. Methane Reductions - Implications for global warming and atmospheric chemical change

• Jean Le Mer and Pierre Roger, 2000. Laboratoire de microbiologie IRD, Institut fédératif de recherches en biotechnologies agro- industrielles de Marseille, universités de Provence et de la Méditerranée, ESIL

• Cantrell, C.A., Shetter, R.E., McDaniel, A.H., Calvert, J.G., Davidson, J.A., Lowe, D.C., Tyler, S.C., Cicerone, R.J., Greenberg, J.P., 1990.

Carbon kinetic isotope effect in the oxidation of methane by hydroxyl radicals

• Craig, H., Chou, C.C., Welhan, J.A., Stevens, C.M., Engelkemeir, A., 1988. The isotopic composition of methane in polar ice cores

• Khalil, M.A.K., Rasmussen, R.A., 1985. Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions

• Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R., Schlesinger,M., 1987.

Climate– chemical interactions and effects of changing atmospheric trace gases

• Boyle, W.C., 1977: “Energy recovery from Sanitary Landfills – A Review”. In Microbial Energy Conversion, H.G. Schlegel and J. Barnea (eds.) Pergamon Press, New York

• Ham, R.K. and others, 1979: Recovery, Processing and Utilization of Gas from Sanitary Landfills, EPA

• Pacey, J., 1976: “Methane Gas in Landfills: Liability or Asset?” , Proc.

Fourth National Congress on Waste Management Technology and Resource and Energy Recovery, U. S. EPA

• Rhyne, C.W., 1974: Landfill Gas, Internal Report, Office of Solid Waste Management Programs, U.S. EPA

• EMCON Associates, 1980: State of the Art of Methane Gas Enhancement in Landfills, San Jose, California

• Findikakis, A.N. , and J.O. Leckie, 1979: “Numerical Simulation of Gas Flow in Sanitary Landfills,” Journal of the Environmental Engineering Division – ASCE

• Stone, R., 1978: “Reclamation of Landfill Methane and Control of Offsite Migration Hazards,” Solid Waste Management/Refuse Removal Journal

• Van Heuit, R.E., and J. Edberg, 1980: “Recovery of Decomposition Gas from Landfills,” In Landfill Methane Utilization Symposium proceedings, The Johns Hopkins University Applied Physics Laboratory

• Cheremisinoff, P.N., and A.C. Morresi, 1976: Energy from Solid Wastes, Marcel Dekker, Inc., NewYork

• Tchobanoglous, G., H. Theisen and R. Eliassen, 1977: Solid Waste:

Engineering Principles and Management Issues, McGraw-Hill Book Co., New York

• Bauer J., 2004. Personal communication. Technical support specialist, Boreal Laser Inc, Spruce Grove, Alberta, Canada.

• IPCC, Climate Change 2001 The Scientific Basis In: J.T. Houghton, Y.

Ding, D.J. Griggs, M. Noguer, D.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson, Editors, Contribution of Working Group I to the Third

Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

• R.L. Desjardins, O.T. Denmead, L. Harper, M. McBain, D. Massé and S. Kaharabata, 2004. Evaluation of a micrometeorological mass balance method employing an open-path laser for measuring methane emissions

• C. Frankenberg, J. F. Meirink, M. vanWeele, U. Platt, T.Wagner, 2003 Assessing Methane Emissions from Global Space-Borne Observations

• J. Houghton et al., Eds., Climate Change 2001: TheScientific Basis

• U. Platt, 1994. Differential Optical Absorption Spectroscopy (DOAS) in Air Monitoring by Spectroscopic Techniques (Wiley, New York)

• David Cooper, 2003. SRI Int., Remote Gas Leak Sensor for Underground Pipelines

• Beer R. 1992: “Remote Sensing by Fourier Transform Spectrometry,”

(Wiley, New York)

• Beil, A., Daum, R., Matz, G., Harig, R. 1998: “Remote sensing of atmospheric pollution by passive FTIR spectrometry“ in Spectroscopic Atmospheric Environmental Monitoring Techniques, Klaus Schäfer, Editor

• Griffiths, P. R. 1993: “Fourier Transform Infrared Spectrometry at Low Resolution: How Low Can You Go?,”

• Roland Harig, Gerhard Matza, Peter Ruscha, Jörn-Hinnrich Gerharda, Klaus Schäferb, Carsten Jahnb, Peter Schwenglerc, Andreas Beil 2004. Technische Universität Hamburg, “Remote Detection of Methane by Infrared spectrometry for AirbornePipeline Surveillance: First Results of Ground-Based Measurements”

• M.G. Allen 1998, Meas. Sci. Technol. 9

• V. Sykes 2001. External Cavity Diode Lasers for Ultra-Dense WDM Networks, Lightwave

• M.I. Belovolov, A.V. Gladyshev, V.P. Duraev, E.T. Nedelin, K.A. Zykov- Myzin 2003, Coherent Properties of FBG-Based External Cavity Diode Lasers

• A.V. Gladyshev , M.I. Belovolov , S.A. Vasiliev , E.M. Dianov , O.I.

Edvedkov ,A.I. Nadezhdinskii , O.V. Ershov , A.G. Beresin , V.P.

Duraev , E.T. Nedelin 2003, “Tunable μονής συχνότητας diode laser at wavelength λ = 1.65m for methane concentration measurements”

• G. Agrawal, N. Dutta, Semiconductor Lasers1993, 2nd ed., Nostrand Reinhold (Van), New York

• R. Grisar 1992, Quantitative Gasanalyse mit abstimmbaren IR- Diodenlasern, Applikationsschrift, laser components, Fraunhofer- Institut für Physikalische Meßtechnik, Freiburg, Olching

• Oliver Hennig, Rainer Strzoda Erhard Mágori, Eric Chemisky, Christian Tump, Maximilian Fleischer, Hans Meixner and Ignaz Eisele 2003,”Hand-held unit for simultaneous detection of methane and ethane based on NIR-absorption spectroscopy”

• M.W. Sigrist 1994. Air Monitoring by Spectroscopic Techniques, Wiley, New York

• V.A. Kapitanov, V. Zéninari, B. Parvitte, D. Courtois and Yu.N.

Ponomarev 2002 . Spectrochim. Acta 58

• V. Zéninari 1998, Ph.D. thesis

• A.B. Antipov, V.A. Kapitanov, Yu.N. Ponomarev and V.A.

Sapozhnikova 1984. “Optoacoustic methods in laser molecular spectroscopy”. Nauka, Novosibirsk

• M.W. Sigrist 2001. in: 2nd Workshop on Quantum Cascade Lasers;

Technology and Application, Freiburg, Germany

• V. Zéninari, B. Parvitte, D. Courtois, V. A. Kapitanov and Yu. N.

Ponomarev 2003. “Methane detection on the sub-ppm level with a near-IR diode laser photoacoustic sensor”

• C.H. Wang, J.G. Cowder, V. Mannheim, T. Ashley, D.T. Dutton, A.D.

Johnson, G.J. Pryce and S.D. Smith 1998. “Detection of nitrogen dioxide using a room temperature mid-infrared InSb light emitting diode”

• G. Stewart, C. Tandy, D. Moodie, M.A. Morante, F. Dong and B.

Culshaw 1998, Design of a fibre optic multi-point sensor for gas detection

• Crawford Massie, George Stewart, George McGregor and John R.

Gilchrist 2005. “Design of a portable optical sensor for methane gas detection” Department of Electronic and Electrical Engineering, The University of Strathclyde

• Yariv 1985. Optical Electronics (2 ed.), Holt Rinehart and Winston, New York

• P. Legg, M. Tur and I. Andonovic 1996. “Solutions to interferometric noise induced performance degradation in ASK direct detected lightwave networks”

• G. Stewart, A. Mencaglia, W. Philp and W. Jin 1998. “Interferometric signals in fibre optic methane sensors with wavelength modulation of the DFB laser”

• W. Jin, Y.Z. Xu, M.S. Demokan and G. Stewart 1997. “Investigation of interferometric noise in fibre optic gas sensors with use of wavelength modulation spectroscopy”

• B. Culshaw, G. Stewart, F. Dong, C. Tandy and D. Moodie 1998 “Fibre optic techniques for remote spectroscopic methane detection from concept to system realisation”

• Jerry Myers and Lisa Spaeth 2003. “Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection” Ophir Corporation

• E.M. Logothetis, M.D. Hurley, W.J. Kaiser, Y.C. Yao 1986. “Selective methane sensors” in: Proc. 2nd Int. Meeting on Chemical Sensors, Bordeaux, France

• D. Voelkel, Yu.L. Chuzavkov, J. Marquez, S.N. Orlov, Yu.N. Polivanov, V.V. Smirnov and F. Huisken 1997. Appl. Phys. B

• C. Wieman and T.W. Hänsch 1976. Phys. Rev. Lett.

• W. Demtröder 1996. “Laser Spectroscopy: Basic concepts and instrumentation” (second ed.), Springer Verlag, Berlin, NY

• R.E. Teets, F.V. Kowalski, W.T. Hill, N. Carlson and T.W. Hänsch 1977. Proc. SPIE

• Z.T. Alwahabi, Z.S. Li, J. Zetterberg and M. Aldén 2004. Opt. Commun.

• H. Debeda, P. Massok, C. Lucat, F. Menil and J.L. Ausouturier 1996,

“Methane sensing: from sensitive thick films to a reliable selective device”

• F. Menil, C. Lucat and H. Debeda 1995. “The thick film route to selective gas sensors”

• Hélène Debeda, Laurent Dulau, Philippe Dondon, Francis Menil, Claude Lucat and P. Massok 1998, “Development of a reliable methane detector”, Laboratoire IXL, Université Bordeaux

• Kim, H.H. Jun, J.-S. Huh and D.D. Lee 1997. “Tin oxide-based methane gas sensor promoted by allumina-supported Pd catalyst”

• H. Meixner and U. Lampe 1996. “Metal oxide sensors”

• F. Quaranta, R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli, A. Licciulli and A. Zocco 1998. “A novel gas sensor based on SnO2/Os thin film for the detection of methane at low temperature”, Istituto per lo Studio di Nuovi Materiali per l'Elettronica Via Arnesano, Italy

• T. Hibino and H. Iwahara, A hydrocarbon sensor using a high temperature-type proton conductor. (1994),

• T. Hibino, K. Asano, H. Iwahara 1994, “Improvement of CAPCIUS cell using SrCe0.95Yb0.05 O3−α as a solid electrolyte”

• L. N. van Rij, R. C. van Landschoot and J. Schoonman 2000.

“Detection of methane in oxygen-poor atmospheres using a catalytic asymmetric sensor design”, Delft University of Technology, The Netherlands

• Bong-Ki Min and Soon-Don Choi 2004. “Undoped and 0.1 wt.% Ca- doped Pt-catalyzed SnO2 sensors for CH4 detection” Yeungnam University, South Korea

• J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho and H. Dai 2000, Science

• Shu. Peng and K. Cho 2003, Nano Lett

• Pal AK, Roy RK, Mandal SK, Gupta S, Deb B. 2004. “Thin Solid Films”

• R.K. Roy, M. Pal Chowdhury and A.K. Pal 2004. “Room temperature sensor based on carbon nanotubes and nanofibres for methane detection” Department of Materials Science, Indian Association for the Cultivation of Science, India

• P. N. Bartlett and S. Guerin 2003. “Analytical Chemistry”

• Blaha D., K. Bartlett, P. Czepiel, R. Harriss, P. Crill, 1998, Natural and Anthropogenic Methane source in New England, Atmospheric Environment

• IPCC, 2001: “Climate Change 2001: The Scientific Basis”

• Ehhalt D. D. and U. Schmidt, 1978, Source and Sinks of Atmospheric Methane

Documentos relacionados