• Nenhum resultado encontrado

CHAPTER 4: DISCUSSION AND CONCLUSIONS

CHAPTER 4: DISCUSSION AND CONCLUSIONS

In this study we used geodetic data from fifteen (15) permanent GNSS stations, to measure and interpret the co- and post-seismic crustal deformation due to four (4) strong seismic events in the central Ionian Islands, during the period 2007-2018. The earthquakes occurred on 26 January 2014 and 3 February 2014, on Cephalonia Island, on 17 November 2015, on Lefkada Island and offshore Zakynthos Island on 25 October 2018.

We used daily data, provided by the network administrators in the form of RINEX files (version 2.11) which were processed using Bernese 5.2 software (Dach et al. 2015) following the double-difference method. Daily position observations were obtained for each station in IGb08 Cartesian coordinates (X, Y, Z). The positions were then converted into EGSA 1987 system (Greek projection system). We used these data to a) observe the time series for changes due to seismic motions (offsets) and b) monitor changes in the horizontal distance (baselines) between several stations, in relation to time

Our conclusions are:

• The only station in which we observe seismic offset caused by the January 26 2014, Cephalonia event, is VLSM station (Tab. 3, Fig. 29), which is located only 17 km away from the hypocenter (Tab.5). The station moved 13.34mm SSW and 3.77±2.68 mm downwards. ZAKY station also shows offset off a few mm in the East-West direction (3.59±2.3 mm) but with considerable error.

• VLSM is also in the case of February 03 2014, Cephalonia event the only station in which we observe seismic offset (Tab. 3, Fig. 30). It is located 19 km away from the hypocenter (Tab. 5).The station moved 15.31 mm to the SSW. In vertical component the calculated offset shows high error so the result isn’t considered reliable.

• The seismic offsets with the highest values and the lowest errors in the case of November 17 2015, Lefkada event, are observed in stations PONT and SPAN on Lefkada Island which are located 15km and 20km away from the hypocenter, respectively (Tab. 5). PONT station moved 429. 04 mm to the SW in the horizontal direction (Tab. 3, Fig 33). Vertically the station moved downwards (57.64±3.79mm,

CHAPTER 4: DISCUSSION AND CONCLUSIONS

Tab. 3, Fig 34). SPAN, moved 95.03 mm to the SSW after the earthquake (Tab. 3, Fig. 33). This station exhibits downward motion but with a significant error. Offsets of a few mm with low error values are also observed in stations located on Cephalonia Island (KARA, SKAL, VLSM; Tab. 3, Fig. 32-34), although they are located more than 50 km away from the hypocenter.

• In the case of October 25, 2018 Zakynthos event, the highest offset values with the lowest error, are observed in ZAKY station which is located 50 km away from the hypocentre (Tab 5). The station moved 49.20mm to the SW in the horizontal direction (Tab. 4, Fig 35). The station moved slightly downwards (4.67±3.39mm, Tab. 4). The other two stations (SISS and VLSM) which are located far from the epicentre of the earthquake, show no deformation in horizontal as well as in vertical direction.

We notice that the proximity of the stations to the hypocenter of the earthquakes is correlated to the value of the observed offset. The highest offset values are observed in most cases in the stations closest to each seismic event.

We also notice that the magnitude of the earthquake is also positive correlated to the value of the observed offset. The highest offsets are observed after the 2015 November event (M6.5). Earthquakes with high magnitudes can cause deformation even in stations located quite far from their hypocenters (e.g Lefkada and Zakynthos earthquakes)

• We measured baseline shortening (negative baseline change rate) between some stations and baseline lengthening (positive baseline change rate) between other stations by a few mm/yr.

• Studying the baseline rate change between stations VLSM (located on Cephalonia) and PONT (located on south Lefkada), before and after Cephalonia, 2014 earthquakes, we observe that in both periods the distance between them increases by a few mm/yr.

• Studying the baseline rate change, before the Lefkada, 2015 earthquake, we notice that the horizontal distance between PONT-VLSM and PONT-KARA (Lefkada- Cephalonia) increases with almost the same rate (5-6 mm/yr; Tab. 7). On the contrary, during the same period the distance between PONT-AGRI and PONT-KTCH (Lefkada-Akarnania) shortens (note that the results for these pairs are questionable because of the low R2 value).

CHAPTER 4: DISCUSSION AND CONCLUSIONS

• Studying the baseline rate change, before and after Zakynthos, 2018 earthquake, we calculate very low baseline rate change values with very low R2, which indicates that there is practically no deformation to be detected between these two pairs of stations. This is to be expected taking into consideration that both studied stations are located much further from the seismic fault than the ones in the previous cases.

• The baseline between stations SPAN-PONT (Lefkada stations belonging to NOA) shortens at a constant rate of -2.48 mm/yr before the occurrence of the 2015 Lefkada event. We interpret this behavior as due to pre-seismic deformation, related to fault “locking” before the earthquake rupture.

• We also note that a few days (about 15) after the seismic events of Lefkada and Zakynthos, the baseline rate between all studied pairs of stations, changes abruptly before going back to lower values. This is a non-linear behavior characterizing the first days of the post-seismic period.

• The post-seismic change of the baseline rate is marked by a non-linear behavior of the deformation in contrast to the linear behavior before the earthquake nucleation (pre-seismic period).

Future work

One of the future goals of this research can be the detection of the onset of pre-seismic deformation (i.e. negative change in baseline rate between two GNSS stations) in longer time series. It would also be very useful to compare the results of this study, with those in similar cases in other areas e.g. the Aegean region.

REFERENCES

Anderson H, Jackson J (1987) Active tectonics of the Adriatic region. Geophys J R Astr Soc 91:937–983.

Argyrakis, Panagiotis, Athanassios Ganas and Nikolaos Sagias, 2016. The NOANET GSAC (Geodesy Seamless Archive Centers) tool for GNSS data dissemination in SE Europe, ESC2016-144 http://meetingorganizer.copernicus.org/ESC2016/ESC2016-144.pdf

Aubouin, J., 1965. Geosynclines—Developments in Geotectonics. Elsevier, Amsterdam.

Aubouin, J., 1976. Alpine tectonics and plate tectonics: thoughts about the eastern Mediterranean. In: Ager, D.V., Brooks, M. (Eds.), Europe from Crust to Core. Wiley, London, pp. 143–158.

Aubouin, J., Le Pichon, X., Winterer, E., Bonneau, M., 1977. Les Hellenides dans l'optiques de le tectonique des plaques. 6th Colloq. Geol. Aegean Region, Athens, pp. 1333–1354.

Avallone A., et al., 2017. Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history, Scientific Reports 7, Article number: 10358, doi:10.1038/s41598-017-10431-w

Biju-Duval, B., Dercourt, J., Le Pichon, X., 1977. From the Tethys ocean to the Mediterranean seas: a plate tectonic model of the evolution of the Western Alpine system.

In: Biju-Duval, B., Montadert, L. (Eds.), Structural History of the Mediterranean Basins, Split, pp. 143–164.

British Petroleum, 1971. The geological results of petroleum exploration in western Greece.

Institute of Geology and Subsurface Research, Athens, No. 10.

Bock, Y. and Melgar, D., 2016. Physical applications of GPS geodesy: a review. Reports on Progress in Physics, 79(10), p.106801.

REFERENCES

REFERENCES

Caporali, A., Barba, S., Carafa, M.M.C., Devoti, R., Pietrantonio, G., Riguzzi, F., 2011. Static stress drop as determined from geodetic strain rates and statistical seismicity. J. Geophys.

Res. 116, doi: 10.1029/2010JB007671

Chaumillon, E., 1995, Structure de la Ride Mediterraneenne: apports de la sismique multitrace. These de 3e`me cycle de l’Universite´ Pierre et Marie Curie, Paris VI.

Chaumillon, E. and Mascle, J., 1997, From foreland to forearc domains: New multichannel seismic reflection survey of the Mediterranean Ridge accretionary complex (Eastern Mediterranean), Marine Geol. 138, 237–259.

Chaumillon, E., Mascle, J. and Hoffmann, J., 1996, Deformation of the western Mediterranean Ridge: importance of Messinian evaporitic formations, Tectonophysics 263, 163–190.

Cirella, A., F. Romano, A. Avallone, A. Piatanesi, P. Briole, A. Ganas, N. Theodoulidis, K.

Chousianitis, M. Volpe, G. Bozionellos, G. Selvaggi, S. Lorito, 2020. The 2018 Mw 6.8 Zakynthos (Ionian Sea, Greece) Earthquake: Seismic source and local tsunami characterization, Geophysical Journal International, ggaa053, https://doi.org/10.1093/gji/ggaa053

Cushing, M., 1985. Evolution structurale de la marge nord-ouest hellenique dans l’ısle de Lefkas et ses environs (Grece nord-occidentale) .Ph.D. Thesis, Univ. d’Orsay.

Dach, R., S. Lutz, P. Walser, P. Fridez (Eds) 2015. Bernese GNSS Software Version 5.2. User manual, Astronomical Institute, University of Bern, Bern Open Publishing. DOI:

10.7892/boris.72297; ISBN: 978-3-906813-05-9.

Dercourt, J., 1970. L'expansion océanique actuelle et fossile; ses implications géotectoniques. Bulletin de la Societe Geologique de France 7, 261–317.

Dercourt, J., 1972. The Canadian cordillera, the Hellenides and the sea-floor spreading theory. Canadian Journal of Earth Sciences 9, 709–743.

REFERENCES

Dercourt, J., Zonenshain, L.P., Ricou, L.C., 1985. Présentation des 9 cartes paléogéographiques au 1/20 000 000 s'étendant de l'Atlantique au Pamir pour la période du Lias à l'Actuel. Bulletin de la Societe Geologique de France. 8, 637–652.

Dewey, J.F., Pitman, W.C., Ryan, W.B.F., Bonnin, J., 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137–3180.

Dewey, J.F., Şengör, C., 1979. Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin 90, 84–

92.

De Voogd, B., Truffert, C., Chamot-Rooke, N., Huchon, P., Lallemant, S. and Le Pichon, X., 1992, Two-ship deep seismic sounding in the basins of the Eastern Mediterranean Sea (Pasiphae cruise), Geophys. J. Intel 109, 536–552.

Dziewonski, A. M., T.-A. Chou and J. H. Woodhouse, 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J.

Geophys. Res., 86, 2825-2852, doi:10.1029/JB086iB04p02825

Emery, K.O., Heezen, B. and Allan, T.D., 1966, Bathymetry of the Eastern Mediterranean Sea, Deep Sea Res. 13, 173–192.

EERI, 2003. Preliminary observations on the August 14, 2003, Lefkada Island (Westren Greece) earthquake, Spectral Earthquake report, Nov. 2003.

Faccenna, C., Jolivet, L., Piromallo, C. and Morelli, A., 2003. Subduction and the depth of convection in the Mediterranean mantle. J. Geophys. Res., 108(B2): 2099, doi:

10.1029/2001JB001690.

Finetti, I., 1976, Mediterranean Ridge: a young submerged chain associated with the Hellenic Arc, Boll. Geofisica Teoria Appl. 19, 31–65.

Finetti, I. and Morelli, C, 1973. Geophysical exploration of the Mediterranean Sea: Boll.

Geofis. Teor. Appl., v. 15, p. 263-341.

REFERENCES

Finetti, I., Papanikolaou, D., Del Ben, A., Karvelis, P., 1990. Preliminary geotectonic interpretation of the East Mediterranean chain and the Hellenic arc. Bull. Geol. Soc. Greece 25/1, 509–526

Ganas, A. & Parsons, T., 2009. Three-dimensional model of Hellenic Arc deformation and origin of the Cretan uplift, J. geophys. Res., 114, doi:10.1029/2008JB005599

Ganas, Athanassios, Panagiotis Elias, George Bozionelos, George Papathanassiou, Antonio Avallone, Asterios Papastergios, Sotirios Valkaniotis, Issaak Parcharidis, Pierre Briole, 2016.

Coseismic deformation, field observations and seismic fault of the 17 November 2015 M = 6.5, Lefkada Island, Greece earthquake, Tectonophysics, 687, 210-222, http://dx.doi.org/10.1016/j.tecto.2016.08.012

Ganas A, Briole P, Bozionelos G, Barberopoulou A, Elias P, Tsironi V, Valkaniotis S, Moshou A, Mintourakis I, 2020. The 25 October 2018 Mw= 6.7 Zakynthos earthquake (Ionian Sea, Greece): a low-angle fault model based on GNSS data, relocated seismicity, small tsunami and implications for the seismic hazard in the west Hellenic Arc, Journal of Geodynamics doi: https://doi.org/10.1016/j.jog.2020.101731

Ganas, A., Elias, P., Briole, P., Cannavo, F., Valkaniotis, S., Tsironi, V., Partheniou, E.I. 2020.

Ground Deformation and Seismic Fault Model of the M6.4 Durres (Albania) Nov. 26, 2019 Earthquake, Based on GNSS/INSAR Observations. Geosciences, 10, 210 https://www.mdpi.com/2076-3263/10/6/210/htm

Granot, R., 2016. Palaeozoic oceanic crust preserved beneath the eastern Mediterranean.

Nat. Geosci. 9, 701–705, doi: 10.1038/NGEO2784

Haddad, Α., A. Ganas, I. Kassaras, M. Lupi, 2020. Seismicity and geodynamics of western Peloponnese and central Ionian Islands: insights from a local seismic deployment, Tectonophysics, https://doi.org/10.1016/j.tecto.2020.228353

Hatzfeld, D., Kassaras, I., Panagiotopoulos, D., Amorese, D., Makropoulos, K., Karakaisis, G., Coutant, O., 1995. Microseismicity and strain pattern in northwestern Greece. Tectonics 14, 773–785.

REFERENCES

Heezen, B.C. and Ewing, M., 1963. The Mid Oceanic Ridge. In Hill, M.N. (ed.). The Seas, vol.

3, Interscience, New York, pp. 388–410.

Hollenstein, Ch., Geiger, A., Kahle, H.-G., Veis, G., 2006. CGPS time series and trajectories of crustal motion along the West Hellenic Arc. Geophys. J. Int. 164 (1), 182–191, doi:

10.1111/j.1365-246X.2005.02804.x.

Hollenstein, Ch., Muller, M.D., Geiger, A., Kahle, H.-G., 2008. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics 449, 17–40, doi: 10.1016/j.tecto.2007.12.006.

Howell, A., Jackson, J., Copley A., McKenzie, D., Nissen, E., 2017. Subduction and vertical coastal motions in the eastern Mediterranean, Geophysical Journal International, Volume 211, Issue 1, 593–620, https://doi.org/10.1093/gji/ggx307

IGME, Seismotectonic map, 1:500000, 1983

Ilieva, M., P. Briole, A. Ganas, D. Dimitrov, P. Elias, A. Mouratidis, R. Charara, 2016. Fault plane modelling of the 2003 August 14 Lefkada Island (Greece) earthquake based on the analysis of ENVISAT SAR interferograms, Tectonophysics, 693, 47-65, http://dx.doi.org/10.1016/j.tecto.2016.10.021

Jenny, S., Goes, S., Giardini, D., Kahle, H.G., 2004. Earthquake recurrence parameters from seismic and geodetic strain rates in the Eastern Mediterranean. Geophys. J. Int. 157, 1331–

1347, doi: 10.1111/j.1365-246X.2004.02261.x.

Jolivet, L. and Brun, J.P., 2010. Cenozoic geodynamic evolution of the Aegean region. Int. J.

Earth Science, 99: 109–138, DOI: 10.1007/s00531-008-0366-4.

Jolivet, L., C., Faccenna, B, Huet, L, Labrousse, L, Le Pourhiet, et al. 2013. Aegean tectonics:

Strain localisation, slab tearing and trench retreat. Tectonophysics, 597-598, pp.1-33., doi:

10.1016/j.tecto.2012.06.011

REFERENCES

Kahle, H.G., et al., 1995. The strain field in northwestern Greece and the Ionian islands:

results inferred from GPS measurements. Tectonophysics 249, 41–52.

Kahle, H.,Müller, M., Veis, G., 1996. Trajectories of crustal deformation of Western Greece from GPS observations 1989–1994. Geophys. Res. Lett. 23, 677–680.

Kiratzi, A., Langston, C., 1991. Moment tensor inversion of the 1983 January 17 Kefallinia event of Ionian Islands (Greece). Geophys. J. Int. 105, 529–535.

Kokinou, E., Papadimitriou, E., Karakostas, V., Kamberis, E., Vallianatos, F., 2006. The Kephalonia Transform Zone (offshore Western Greece) with special emphasis to itsprolongation towards the Ionian Abyssal Plain. Mar. Geophys. Res. 27, 241–252.

http://dx.doi.org/10.1007/s11001-006-9005-2

Kreemer, C. and Chamot-Rooke, N., 2004, Contemporary kinematics of the southern Aegean and the Mediterranean Ridge, Geophys. J. Intl. 157, 1377–1392.

Le Meur, D., 1997, Etude geophysique de la structure profonde et de la tectonique active de la partie occidentale de la Ride Mediterrane´enne. PhD Thesis, Orsay, Paris XI University.

Le Pichon, X., Angelier, J., 1979. The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60, 1–42.

Louvari, E., Kiratzi, A., Papazachos, B., 1999. The Cephalonia transform Fault and its extension to western Lefkada Island (Greece). Tectonophysics 308, 223–236.

Makropoulos, K., Kaviris, G., Kouskouna, V., 2012. An updated and extended earthquakecatalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst.

Sci. 12(5), 1425–1430.

Mascle, J., Le Quellec, P., 1980. Matapan trench (Ionian Sea): Example of trench disorganization?. Geology; 8 (2): 77–81. doi: https://doi.org/10.1130/0091- 7613(1980)8<77:MTISEO>2.0.CO;2

REFERENCES

Mascle, J., Chaumillon, E., 1998. An overview of Mediterranean Ridge collisional accretionary complex as deduced from multichannel seismic data. Geo-Mar. Lett. 18, 81–

89.

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K. and Kahle, H., 2000, Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys.

Res. 105, 5695–5719.

McKenzie, D., 1978. Active tectonics of the Alpine–Himalayan belt: The Aegean Sea and surrounding regions. Geophysical Journal of the Royal Astronomical Society 55, 217–254.

Melgar, D., B.W. Crowell, J. Geng, R.M. Allen, Y. Bock, S. Riquelme, E.M. Hill, M. Protti, and A. Ganas, 2015. Earthquake magnitude calculation without saturation from the scaling of peak ground displacement, Geophysical Research Letters, 42, http://onlinelibrary.wiley.com/doi/10.1002/2015GL064278/full

Mercier, J., Carey, E., Philip, H., Sorel, D., 1976. La neotectonique plio-quaternaire de l’arc egeen externe et de la Mer Egee et ses relations avec la seismicite´. Bull. Soc. Geol. Fr. 2, 355–372.

Moschas, F., and S. Stiros, 2011. Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer, Engineering Structures, 33, 1, 10-17, https://doi.org/10.1016/j.engstruct.2010.09.013.

Murray, J. R., B. W. Crowell, R. Grapenthin, K. Hodgkinson, J. O. Langbein, T. Melbourne, D.

Melgar, S. E. Minson, D. A. Schmidt, 2018. Development of a Geodetic Component for the U.S. West Coast Earthquake Early Warning System. Seismological Research Letters, 89, (6), 2322-2336, doi: https://doi.org/10.1785/0220180162

Nocquet, J.M., 2012. Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics 579, 220–242.

Olivet, J.L., Bonnin, J., Beuzart, P. and Auzende, J.M., 1982, Cinematique des plaques et paleogeographie: une revue, Bull. de la Societe´ Geologique de France XXIV, 875–892.

REFERENCES

Papadimitriou, E.E., 1993. Focal mechanisms along the convex side of the Hellenic Arc and its tectonic significance. Boll. Geofis. Teor. Appl. 140, 401–426.

Papanikolaou, D., 1984. The three metamorphic belts of the Hellenides; a review and a kinematic interpretation. In: Dixon, J.E., Robertson, A.H.F. (Eds.), The Geological Evolution of the Eastern Mediterranean. Geological Society of London, Oxford, pp. 551–561.

Papanikolaou, D., 1986. Geology of Greece. (in Greek) Eptalofos Publ., Athens.

Papanikolaou, D., 1989. Are the medial crystalline massifs of the eastern Mediterranean drifted Gondwanian fragments? In: Papanikolaou, D., Sassi, F.P. (Eds.), Special Publications of the Geological Society of Greece. Newsletter, Athens, pp. 63–90.

Papanikolaou, D., 1997. The tectonostratigraphic terranes of the Hellenides. Annales Géologiques des Pays Helléniques 37, 495–514.

Papanikolaou, D., 2009. Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 108, 262–280.

Papanikolaou, D., Barghathi, H., Dabovski, C., Dimitriu, R., El-Hawat, A., Ioane, D., Kranis, H., Obeidi, A., Oaie, C., Seghedi, A., Zagorchev, I., 2004. TRANSMED Transect VII: East European Craton–Scythian Platform–Dobrogea–Balkanides–Rhodope Massif– Hellenides–

East Mediterranean–Cyrenaica. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P. (Eds.), The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle.

Springer-Verlag, Heidelberg.

Papazachos, B.C., Karakaisis, G.F. and Hatzidimitriou, P., 1994. Further information on the transform fault of the Ionian Sea. XXIV Gem Assoc. Eur. Seismol. Comm., Athens, 19 24 September 1994, 12 pp.

Papazachos, B.C., Papazachou, C.C., 1997. The Earthquakes of Greece. Ziti Publication Co., Thessaloniki (304 pp.).

REFERENCES

Papazachos BC, Comninakis PE, Karakaisis GF, Karakostas VG, Papaioannou ChA, Papazachos CB, Scordilis EM (2005) A catalog of earthquakes in Greece and surrounding area for the period 550 BC–2005, Publ Geophys Lab, University of Thessaloniki

Papazachos, C., Kiratzi, A., 1996. A detailed study of the active crustal deformation in the Aegean and surrounding area. Tectonophysics 253, 129–153.

Partheniou, Eleni, Athanassios Ganas and Sakkas Vassilis, 2019. Ground deformation from GNSS data following strong Ionian Sea earthquakes in 2014 and 2015: co-seismic offsets and station baseline changes. Bull. Geological Society of Greece, Special Publication 7, pp.

263-264.

Reillinger, R.E., McClusty, S.C., Oral, M.B., King, R.W. and Toksoz, M.N., 1997, Global positioning system measurements of present-day crustal movements in the Arabia-Africa- Eurasia plate collision zone, J. Geophys. Res. 102, 9983–9999.

Robertson, A.H.F., 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 1–67.

Robertson, A.H.F., Dixon, J.E., 1984. Introduction: aspects of the geological evolution of the Eastern Meditarranean. In: Dixon, J.E., Robertson, A.H.F. (Eds.), The Geological Evolution of the Mediterranean, Oxford, pp. 551–561.

Robertson, A.H.F., Clift, P.D., Degnan, P.J., Jones, G., 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 289–343.

Ruhl, C. J, D. Melgar, J. Geng, D.E Goldberg, B.W Crowell, R.M Allen, Y. Bock, S. Barrientos, S. Riquelme, JC Baez, E. Cabral‐Cano, X. Pérez‐Campos, E.M Hill, M. Protti, A. Ganas, M.

Ruiz, P. Mothes, P. Jarrín, J‐M. Nocquet, J.‐P. Avouac, E. D'Anastasio, 2018. A Global Database of Strong‐Motion Displacement GNSS Recordings and an Example Application to PGD Scaling, Seismological Research Letters, https://doi.org/10.1785/0220180177

REFERENCES

Sachpazi, M., Clément, C., Laigle, M., Hirn, A., Roussos, N., 2003. Rift structure, evolution, and earthquakes in the Gulf of Corinth, from reflection seismic images. Earth and Planetary Science Letters 216, 243–257

Sachpazi, M.; Hirn, A.; Clément, C.; Haslinger, F.; Laigle, M.; Kissling, E.; Charvis, P.; Hello, Y.; Lépine, J.C.; Sapin, M.; et al. Western Hellenic subduction and Cephalonia Transform:

Local earthquakes and plate transport and strain. Tectonophysics 2000, 319, 301–331.

Sakkas, V. & Lagios, E. 2017. Ground deformation effects from the ~M6 earthquakes (2014–

2015) on Cephalonia–Ithaca Islands (Western Greece) deduced by GPS observations. Acta Geophys., 65: 207. https://doi.org/10.1007/s11600-017-0017-x

Scordilis EM, Karakaisis GF, Karakostas BG, Panagiotopoulos DG, Comninakis PE, Papazachos BC 1985. Evidence for transform faulting in the Ionian Sea: The Cephalonia Island earthquake sequence, Pure Appl Geophys 123:388– 397

Sengor, A.M.C., 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications.

Nature 279, 590–593.

Sengor, A.M.C., 1984. The Cimmeride orogenic system and the tectonics of Eurasia.

Geological Society of America Special Papers 195, 74.

Sengor, A.M.C., 1989. The Tethyside orogenic system: an introduction. In: NATO (Ed.), Tectonic Evolution of the Tethyan Region, pp. 1–22.

Sengör, A.M.C., Satir, M., Akkök, R., 1984. Timing of tectonic events in the Menderes Massif, western Turkey: implications for tectonic evolution and evidence for pan- African basement in Turkey. Tectonics 3, 693–707.

Şengör, A.M.C., Altıner, D., Cin, A., Ustaömer, T., Hsü, K.J., 1988. Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land. Geological Society, London, Special Publications 37, 119–181.

Shaw, Beth, Jackson, James, 2010. Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International 181, 966–984.

REFERENCES

Smith, A.G., Rassios, A., 2003. The evolution of ideas for the origin and emplacement of the western Hellenic ophiolites. Special Paper 373: Ophiolite Concept and the Evolution of Geological Thought, 373, pp. 337–350.

Spakman, W., Wortel, M.J.R. and Vlaar, N.J., 1988. The Hellenic subduction zone: a tomographic image and its geodynamic implications. Geophys. Res. Lett., 15: 60-63

Stampfli, G., Borel, G., 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza, W., Roure, F., Stampfli, G., Ziegler, P. (Eds.), The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle. Springer, Berlin, pp. 53–80.

Stiros, S.C., Pirazzoli, P.A., Laborel, J., Laborel-Deguen, F., 1994. The 1953 earthquake in Cephalonia (Western Hellenic Arc): coastal uplift and halotectonic faulting. Geophys. J. Int.

117, 834–849

Stride, A., Belderson, R., Kenyon, N., 1977. Evolving miogeoanticlines of the Eastern Mediterranean (Hellenic, Calabrian and Cyprus outer ridges). Philos. Trans. R. Soc. London A, 284, 255.

Underhill, J.R., 1989. Late Cenozoic deformation of the Hellenide foreland, western Greece.

Geol. Soc. Am. Bull. 101, 613–634.

Valkaniotis S., Ganas A., Papathanassiou, G., and Papanikolaou M., 2014. Field observations of geological effects triggered by the January-February 2014 Cephalonia (Ionian Sea, Greece) earthquakes, Tectonophysics, 630, 150-157, DOI:10.1016/j.tecto.2014.05.012 http://www.sciencedirect.com/science/article/pii/S0040195114002601

Wortel, M.J.R. and Spakman, W., 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science, 290: 1910-1917, doi:10.1126/science.290.5498.1910.

Documentos relacionados