• Nenhum resultado encontrado

A négy lépésben, UD, RD, ND és TD utak szerint eltérő sebességű hengerléssel alakított Al 7075 alumínium ötvözet mechanikai és mikroszerkezeti vizsgálata megmutatta, hogy ezzel a technikával ultra-finomszemcsés mikroszerkezet állítható elő. A négy különböző alakítási út jelentősen befolyásolja a kialakuló mikroszerkezetet és az anyag mechanikai viselkedését.

A szilárdsági mérőszámok megközelítőleg azonosnak adódtak mind a négy út esetén, míg a szívóssági mérőszámok az UD és ND utak esetén voltak a legnagyobbak, és TD út esetén a legkisebbek. Az átlagos krisztallitméret és a diszlokációsűrűség az UD és ND utak esetén volt a legnagyobb, a TD út esetén a legkisebb.

8 Új tudományos eredmények

1. Kidolgoztam egy numerikus eljárást, amellyel végeselemes számítások eredményeiből a kombinált Euler-Lagrange leírás alapján előállítható a folytonos sebességmező és a sebesség gradiens mező összenyomhatatlan anyag kétdimenziós, időben állandósult, áramlása esetén. A végeselemes számításokból eredő hibák (zaj) hatásának kiküszöbölésére az áramvonalak előállításánál köbös simító spline illesztést alkalmaztam. [III.].

◊ A hibák hatása a p simító paraméter értékének 0,7 és 0,9 közötti megválasztásával megszüntethető anélkül, hogy az alakváltozás leírása pontatlanná válna.

2. Kidolgoztam egy számítási módszert, amely alkalmas az alakító eljárások nem- monotonitásának számszerű jellemzésére, és kapcsolatba hozható az ultra- finomszemcsés anyag kialakulásával. A bevezetett υ1 mennyiség értéke egységnyi egyenértékű képlékeny alakváltozás esetén a 0-2 intervallumban változik.

[I.][II.][III.][IV].

=t dt

d d

0 max

eq.

1 w ω

ν

w- merevtest-szerű forgás szögsebességvektora, ω- alakváltozási sebesség főirányainak forgásvektora

deq.- egyenértékű alakváltozási sebesség, dmax- legnagyobb egyenértékű alakváltozási sebesség

◊ Minél nagyobb υ1 értéke annál jobban eltér az alakváltozási folyamat a monotontól. Különböző mechanikai sémájú, de azonos alakváltozási mértékű folyamatok közül υ1 értéke az egyszerű nyírással megvalósuló deformációk esetén a legnagyobb.

◊ Két képlékenyalakító folyamat közül, amelyiknél a υ1 értéke nagyobb, kisebb alakváltozás hatására várható az ultra-finomszemcsés szerkezet kialakulása.

3. Kimutattam, hogy a szimmetrikus, valamint az UD, RD, ND és TD utak szerinti eltérő sebességű hengerlés a nem-monotonitás szempontjából eltér egymástól. A vizsgált négylépéses alakítás után ez az eltérés a keresztmetszet különböző pontjaiban 25-100%-ot ér el. [II.][III.].

◊ Az eltérő sebességű hengerlésre a szimmetrikushoz képest nagyobb nem-monotonitás jellemző, valamint a υ1 nem-monotonitási mérőszám eloszlása a keresztmetszetben a többlépéses hengerlés után egyenletesebb.

◊ Többlépéses eltérő sebességű hengerlés hatására a υ1 nem-monotonitási mérőszám eloszlása a keresztmetszetben az UD és ND utak esetén aszimmetrikus, míg RD és TD utak esetén szimmetrikus.

4. Kimutattam, hogy a négy lépésben, az UD, ND, RD és TD utak szerint, eltérő sebességű (10 ford./perc −−−− 4 ford./perc) hengerléssel Al 7075 ötvözetben ultrafinom (400-500 nm) szemcseszerkezet állítható elő. Megállapítottam továbbá, hogy a négy különböző alakítási út jelentősen befolyásolja a kialakuló mikroszerkezetet és az anyag mechanikai viselkedését.

◊ A szilárdsági mérőszámok megközelítőleg azonosak mind a négy út esetén, míg a szívóssági mérőszámok az UD és ND utaknál a legnagyobbak, és TD út esetén a legkisebbek.

◊ A diszlokációsűrűség az UD és ND utak esetén a legnagyobb 5,6—1014 és 5,5—1014 m-2, a TD út esetén a legkisebb 3,4—1014 m-2.

9 Publikációk

[I.] Bobor K. Krállics Gy. Characterization of metal-forming processes with respect to non- monotonity, Journal of Physics Conference Series 240, 2010, 012126

[II.] Bobor K. Krállics Gy. Characterization of severe plastic deformation techniques with respect to non-monotonity, Review on Advanced Materials Science 25, 2010, 32-41 [III.] Bobor K. Krállics Gy. Study of non-monotonity of forming processes using finite element

analisys, Materials Science Forum 659, 2010, 373-379

[IV.] Bobor K. Krállics Gy. Könyöksajtolás különböző alakítási útjainak vizsgálata nem- monotonitás szempontjából, OGÉT 2010, XVIII. Nemzetközi Gépészeti Találkozó, konferenciakötet, 71-74

[V.] Bobor Kristóf, Májlinger Kornél, Felületi réteg kialakulása öntöttvas motorblokkok hengerfuratának falán lézerkezelés hatására, OGÉT 2010, XVIII. Nemzetközi Gépészeti Találkozó, konferenciakötet, 283-286

[VI.] Bobor Kristóf, Májlinger Kornél, Szabó Péter János, Formation of Surface Layer on Cast Iron Cylinder Bore due to Nanosecond Laser Impulses, Periodica Polytechnica Mech. Eng. 53, 2009:2, 75-80

10 Short abstract, summary of the theses

SEVERE PLASTIC DEFORMATION WITH ASYMMETRIC ROLLING Kristóf Bobor

PhD theses

Short abstract

The method of severe plastic deformation (SPD) is one of the often used methods to produce bulk ultra-fine grained materials. SPD is a procedure, whereby the structure of the material changes from the initial coarse grained state to ultra-fine grained structure. For these techniques shear deformation as well as the so-called non-monotonic deformation are characteristic. The differential speed rolling is an SPD technique, whereby the material is deformed by two rolls with equal diameter but different speed.

The investigation of the symmetrical and differential speed rolling of Al 7075 aluminium alloy was performed according to different deformation routes. The microstructure and the mechanical properties of the materials produced in different ways were studied.

A quantity and its calculation for the characterization of non-monotonity were introduced, which allows the studying of forming processes in arbitrary coordinate system. The value of this quantity is related to the evolution of ultra-fine grained microstructure. In order to allow the use of this method in case of finite element calculations, I developed a procedure based on the combined Euler-Lagrange description.

Conventional and severe plastic deformation techniques were studied with respect of non-monotonity using this method as well as the non-monotonity analysis of

Theses

1. I introduced a numerical method based on the combined Euler-Lagrange description wherewith the continuous velocity field and the velocity gradient field can be calculated in case of steady state two dimensional flow of incompressible material. By the calculation of the streamlines I applied cubic smoothing spline to eliminate the effect of the errors (noise) from the finite element calculations.

• The effect of the errors can be eliminated with choosing the p smoothing parameter between 0.7 and 0.9 without to become the description of the deformation inaccurate.

2. I introduced a calculation method, which is appropriate to quantitative characterization of the monotonity of forming processes and related to the evolution of ultra-fine grained microstructure. The value of the introduced υ1 quantity is changing in the 0-2 interval in case of unit equivalent plastic deformation.

=t dt

d d

0 max

eq.

1 w ω

ν

w- angular velocity vector of rigid body rotation,

ω- rotation vector of the principal axis of rate of deformation tensor deq.- equivalent strain rate, dmax- highest values of equivalent strain rate

• The higher the value of υ1 is, the more the deformation process differs from the monotonic one. From two deformation process with the same amount of deformation, but different mechanical scheme, the value of υ1 is the highest by those of which are realized through simple shear deformation.

• From two forming processes, whereat the value of υ1 is higher the evolution of the ultra-fine grained microstructure can be expected by smaller amount of deformation.

3. I proved that the symmetrical and differential speed rolling according to the routes UD, RD, ND and TD differ from each other in the respect of non-monotonity. After the investigated four-step rolling this difference reaches the 25-100% in different points of the cross section.

◊ Compare to the symmetrical rolling, for the differential speed rolling higher non-monotonity is characteristic, and the value of υ1 is more evenly distributed through the cross section after the multi-step rolling.

◊ After multi-step differential speed rolling, the distribution of the value of υ1 is symmetrical through the cross section in case of UD and ND routes and asymmetrical in case of RD and TD routes.

4. I proved that througth four step differential speed rolling (10 rpm − 4 rpm) according to the UD, ND, RD and TD routes in Al 7075 aluminium alloy an ultra-fine grained (400- 500 nm) microstructure can be produced. Furthermore I determined that the four different deformation routes influence significantly the evolved microstructure and the mechanical behavior of the material.

◊ The strength quantities are approximately equal for all four routes, while the toughness was the highest for UD and ND routes and lowest for TD route.

The dislocation density was the highest for UD and ND routes 5,6—1014 and 5,5—1014 m-2, and the lowest for TD route 3,4—1014 m-2.

11 Irodalomjegyzék

[1] Richard Feynman, American Physical Society Meeting, There's Plenty of Room at the Bottom, 1959. december 29.

[2] Nanostructure Science and Technology - A Worldwide Study, National Science and Technology Council - Committee on Technology 2009. szeptember.

[3] Prohászka J., Bevezetés az anyagtudományba I., Nemzeti Tankönyvkiadó, Budapest, 1997

[4] Verő B., Hirka J., Horváth Á., Zsámbok D., Ultrafinom és nanoszemcsés acélok, Vaskohászat 137/2 (2004) 1-9

[5] R. Birringer, H. Gleiter, H.P. Klein, P. Marquardt, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? , Physics Letters A 102/8 (1984) 365–369

[6] R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Materials Science and Engineering A 441 (2006) 1–17

[7] E.A. El-Danaf, M.S. Soliman, A.A. Almajid, M.M. El-Rayes, Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP, Materials Science and Engineering A 458 (2007) 226–234 [8] C. Mallikarjuna, S.M. Shashidhara, U.S. Mallik, Evaluation of grain refinement

and variation in mechanical properties of equal-channel angular pressed 2014 aluminum alloy, Materials and Design 30 (2009) 1638–1642

[9] Jiang Jufu, Wang Ying, Du Zhiming, Qu Jianjun, Sun Yi, Luo Shoujing, Enhancing room temperature mechanical properties of Mg–9Al–Zn alloy by multi- pass equal channel angular extrusion, Journal of Materials Processing Technology 210 (2010) 751–758

[10] B. Chen, D-L. Lin, L. Jin, X-Q. Zeng, Ch. Lu, Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties, Materials Science and Engineering A 483–484 (2008) 113–116

[11] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti, Materials Science and Engineering A 299 (2001) 59–67

[12] G. Pürcek, Improvement of mechanical properties for Zn–Al alloys using equal- channel angular pressing, Journal of Materials Processing Technology 169 (2005) 242–248

[13] N. Lugo, N. Llorca J.M. Cabrera, Z. Horita, Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion, Materials Science and Engineering A 477 (2008) 366–

371

[14] J. Jufu, W. Ying, D. Zhiming, Q. Jianjun, S. Yi, L. Shoujing, Enhancing room temperature mechanical properties of Mg–9Al–Zn alloy by multi-pass equal channel angular extrusion, Journal of Materials Processing Technology 210 (2010) 751–758

[15] R.Z. Valiev: Paradoxes of severe plastic deformation, Advanced Engineering Materials 5 (2003) 296-300

[16] R.Z. Valiev: Nanomaterial advantage, Nature 419 (2002) 887-888

[17] R.Z. Valiev, I.V. Alexandrov, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17/1 (2002) 5-8

[18] R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, B. Baudelet Deformation behaviour of ultra-fine-grained copper, Acta Metallurgica et Materialia Volume 42/7 (1994) 2467-2475

[19] H. Jin, D.J. Lloyd, Evolution of texture in AA6111 aluminum alloy after asymmetric rolling with various velocity ratios between top and bottom rolls, Scripta Materialia 50 (2004) 1319–1323

[20] W. Xia, Z. Chen, D. Chen, S. Zhu, Microstructure and mechanical properties of AZ31 magnesium alloy sheets produced by differential speed rolling, Journal of materials processing technology 209 (2009) 26–31

[21] W.J. Kim, J.D. Park, W.Y. Kim, Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy, Journal of Alloys and Compounds 460 (2008) 289–293

[22] H. Watanabe, T. Mukai, K. Ishikawa, Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy, Journal of Materials Processing Technology 182 (2007) 644–647

[23] X. Huang, K. Suzuki, Y. Chino, Improvement of stretch formability of pure titanium sheet by differential speed rolling, Scripta Materialia 63 (2010) 473–476 [24] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in metals and ceramics

[25] Y. Zhang, A.V. Ganeev, J. T. Wang, , J. Qiang Liu and I. V. Alexandrov, Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity, Materials Science and Engineering: A 503 (2009) 37-40

[26] R. Song, D. Ponge, D. Raabe, Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing, Acta Materialia 53 (2005) 4881–4892

[27] J.H. Jiang, A.B. Ma, D. Song, N. Saito, Y.Ch. Yuan, Y. Nishida, Corrosion behavior of hypereutectic Al-23%Si alloy (AC9A) processed by severe plastic deformation, Transactions of Nonferrous Metals Society of China 20/2 (2010) 195-200

[28] A. Balyanov, J. Kutnyakova, N.A. Amirkhanova, V.V. Stolyarov, R.Z. Valiev, X.Z. Liao, Y.H. Zhao, Y.B. Jiang, H.F. Xu, T.C. Lowe, Y.T. Zhu, Corrosion resistance of ultra fine-grained Ti, Scripta Materialia 51 (2004) 225–229

[29] W.J. Kim, K.E. Lee, S.H. Choi, Mechanical properties and microstructure of ultra fine-grained copper prepared by a high-speed-ratio differential speed rolling, Materials Science and Engineering A 506 (2009) 71–79

[30] R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels, Review, Materials Science and Engineering A 441 (2006) 1–17

[31] Y. Fukuda, K. Oh-ishi, Z. Horita and T. G. Langdon, Processing of a low-carbon steel by equal-channel angular pressing, Acta Materialia 50 (2002) 1359-1368

[32] D.H. Shin, B.Ch. Kim, Y.S. Kim, K.T. Park, Microstructural evolution in a commercial low carbon steel by equal channel angular pressing, Acta Materialia 48 (2000) 2247-2255

[33] W.J. Kim, J.K. Kim, W.Y. Choo, S. I. Hong, J.D. Lee, Large strain hardening in Ti–V carbon steel processed by equal channel angular pressing, Materials Letters 51 (2001) 177-182

[34] Y.I. Son, Y.K. Lee, K.T. Park, Ch.S. Lee, D.H. Shin, Ultrafine grained ferrite–

martensite dual phase steels fabricated via equal channel angular pressing:

Microstructure and tensile properties, Acta Materialia 53 (2005) 3125-3134

[35] Y. Ivanisenko, W. Lojkowski,, R.Z. Valiev, H.J. Fecht, The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion, Acta Materialia 51 (2003) 5555-5570

[36] R. Kaspar, J.S. Distl, O. Pawelski, Steel Res. 59 (1988) 421

[37] P. D. Hodgson, M. R. Hickson, R. K. Gibbs, Ultrafine ferrite in low carbon steel, Scripta Materialia 40 (1999) 1179-1184

[38] S. Nanba, M. Nomura, N. Matsukura, K. Makii, Y. Shirota, Proceedings of the International Symposium on Ultrafine Grained Steels (ISUGS 2001), The Iron and Steel Institute of Japan, Fukuoka, Japan (2001), 286–289.

[39] N. Zadeh, A. Jonas, J.J. Yue, Grain refinement by dynamic recrystallization during the simulated warm-rolling of interstitial free steels, Metallurgical Transactions A 23 (1992) 2607-2617

[40] Sh. Torizukaa, K. Nagaia, T. Kitaib, Y. Kogob, N. Murtya, Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon stee,l Scripta Materialia 53 (2005) 763-768

[41] R. Song, D. Ponge, D. Raabe, R. Kaspar, Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing, Acta Materialia 53, (2005) 845-858

[42] V. M. Segal, Severe plastic deformation: simple shear versus pure shear, Materials Science and Engineering A 338 (2002) 331-344

[43] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P.

Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformationnext term (SPD) processes for metals CIRP Annals, Manufacturing Technology 57 (2008) 716-735

[44] V.M. Segal, Materials processing by simple shear, Materials Science and Engineering A 197 (1995) 157-164

[45] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Progress in Materials Science 45 (2000) 103-189 [46] M. Furukawa, Z. Hotira, M. Nemoto, T. G. Langadon, Review Processing of

metals by equal-channel angular pressing Journal of Materials Science 36 (2001) 2835 – 2843

[47] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The shearing characteristics associated with equal-channel angular pressing, Materials Science and Engineering A 257 (1998) 328-332

[48] M. Hoseini, M. Meratian, M.R. Toroghinejad, J.A. Szpunar, Texture contributionnext term in grain refinement effectiveness of different routes during ECAP, Materials Science and Engineering A 497 (2008) 87-92

[49] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, The process of grain refinement in equal-channel angular pressing, Acta Materialia 46 (1998) 3317-3331 [50] K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Development of a multi- pass facility for equal-channel angular pressing to high total strains, Materials Science and Engineering A 281 (2000) 82-87

[51] T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Materials Science and Engineering A 462 (2007) 3–11

[52] C.H. Choi, K.H. Kim, D.N. Lee., The Effect of Shear Texture Development on the Formability in Rolled Aluminum Alloys Sheets, Materials Science Forum 273-275 (1998) 391.

[54] J.K. Lee, D.N. Lee, Texture control and grain refinement of AA1050 Al alloy sheets by asymmetric rolling, International Journal of Mechanical Sciences 50 (2008) 869-887

[55] J.K. Lee, D.N. Lee, Texture evolution and grain refinement in AA1050 aluminum alloy sheets asymmetrically rolled with varied shear directions, Key Engineering Materials 340–341 (2007) 619–626

[56] S.H. Lee, D.N. Lee, Analysis of deformation textures of asymmetrically rolled steel sheets, International Journal of Mechanical Sciences 43 (2001) 1997–2015

[57] X. Huang, K. Suzuki, Y. Chino, Improvement of stretch formability of pure titanium sheet by differential speed rolling, Scripta Materialia 63 (2010) 473–476 [58] X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, N. Saito, Mechanical properties

of Mg–Al–Zn alloy with a tilted basal texture obtained by differential speed rolling, Materials Science and Engineering A 488 (2008) 214–220

[59] S.H. Kim, J.H. Ryu, K.H. Kim, D.N. Lee, The evolution of shear deformation texture and grain refinement in asymmetrically rolled aluminum sheets, Materials Science Research International 8 (2002) 2–5

[60] A. Wauthier, H. Regle, J. Formigoni, G. Herman, The effects of asymmetrical cold rolling on kinetics, grain size and texture in IF steels, Materials Characterization 60 (2009) 90–95

[61] W.J. Kim, J.Y.Wang, Choi, H.J. Choi, H.T. Sohn, Synthesis of ultra high strength Al–Mg–Si alloy sheets by differential speed rolling, Materials Science and Engineering A 520 (2009) 23–28

[62] Z. Fang-qing, J. Jian-hua, Sh. Ai-dang, F. Jian-min, Z. Xing-yao, Shear deformation and grain refinement in pure Al by asymmetric rolling, Transactions of Nonferrous Metals Society of China 18 (2008) 774-777

[63] Yi Ding, Jianhua Jiang, Aidang Shan Materials Science and Engineering A 509 (2009) 76–80 Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling

[64] H.G. Jeonga, Y.G. Jeonga, W.J. Kim, Microstructure and superplasticity of AZ31 sheet fabricated by differentialspeed rolling, Journal of Alloys and Compounds 483 (2009) 279–282

[65] H. Jin, D.J. Lloyd, Effect of a duplex grain size on the tensile ductility of an ultra-fine grained Al–Mg alloy, AA5754, produced by asymmetric rolling and annealing, Scripta Materialia 50 (2004) 1319–1323

[66] W.J. Kim, J.D. Park, J.Y. Wang, W.S. Yoo, Realization of low-temperature superplasticity in Mg–Al–Zn alloy sheets processed by differential speed rolling, Scripta Materialia 57 (2007) 755–758

[67] D.N. Lee, A symmetric rolling as means of texture and ridging control and grain refinement of aluminum alloy and steel sheets, Materials Science Forum 1–6 (2004) 449–452

[68] J. Jiang, Y. Ding, F. Zuo, A. Shan, Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling, Scripta Materialia 60 (2009) 905–908

[69] Dr. Horváth L.: Képlékenyalakító technológiák elméleti alapjai, Bánki Donát Műszaki Főiskola jegyzete, Bp. 1996.

[70] Krállics Gy., D. Malgin: Finite Element Simulation of Equal Channel Angular Pressing, Severe Plastic Deformation (2005) 449-468, Nova Publishers

[71] F.Z. Utyashev, G.I. Raab: The model of structure refinement in metals at large deformations and factors effecting grain sizes, Review on Advanced Matererials Science 11 (2006) 137-151

[72] L. Dupuy, E.F. Rauch: Deformation paths related to equal channel angular extrusion, Materials Science and Engineering A 337 (2002) 241-247

[73] Г. А. Смирнов-Альяев: Сопротивление Материалов Пластическому Дефформированию, Машиностроение, Ленинград 1978

[74] Fodor Á., Al 6082 ötvözet intenzív képlékeny alakítása, PhD értekezés (2007), Budapest

[75] Y. Estrin, A. Molotnikov, C.H.J. Davies, R. Lapovok, Strain gradient plasticity modelling of high-pressure torsion, Journal of the Mechanics and Physics of Solids 56 (2008) 1186–1202

[76] Tóth S. L., Modelling of strain hardening and microstructural evolution in equal channel angular extrusion, Computational Materials Science 32 (2005) 568–576 [77] I.J. Beyerlein, R.A. Lebensohn, C.N. Tomé, Policrystal Constitutive Modeling of

ECAP: Texture and Microstructural Evolution, Ultrafine Grained Materials II.

The Minerals, Metals & Materials Society, 2002, 585-594.

[78] G. Ribárik, J. Gubicza, T. UngárA, Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction, Materials Science and Engineering A 387-389 (2004) 343-347

[79] V.K. Voroncov, P. I. Poluhin, V.A Belevitin, Geom. metodi issledovania deformacij i naprazhenij. Trudi Vsesojuznogo Seminara, Cseljabinszk, 1976 Cseljabinszki Műszaki Egyetem, 125-131

[80] P.J. Green, B.W. Silverman, Nonparametric regression and generalized linear models: a roughness penalty approach, Chapman & Hall, 1994

[81] L. Randall, M. Eubank, Nonparametric regression and spline smoothing, Dekker, 1999

[82] MSC.Marc® Manual Volume A: Theory and User Information

[83] G. Zhong-heng, Spin and rotation velocity of the stretching frame in continuum, Applied Mathematics and Mechanics 9 (1988) 1109-1112

[85] Sz.G. Szmenanszkij, Raszcseti Processzov Obrabotki Metallov Davleniem, Moszkva Masinosztroenie 1979

[86] H. Xiao, O. T. Bruhns, Logarithmic strain, logarithmic spin and logarithmic rate, A.

Meyers, Acta Mechanica 124, 89-105 (1997)

[87] K. Ghavam, R. Naghdabadi, Spin tensors associated with corotational rates and corotational integrals in continua, International Journal of Solids and Structures 44 (2007) 5222–5235

[88] M. Yeganeh, Incorporation of yield surface distortion in finite deformation constitutive modeling of rigid-plastic hardening materials based on the Hencky logarithmic strain, International Journal of Plasticity 23 (2007) 2029–2057

[89] B. Avitzur, Handbook of Metal-forming Processes, John Wiley & Sons Inc, 1983 [90] V.G. Sinicyn, I.A. Andrujshchenko, Teoremichnoj isspedobanie processa

necimmetrichnoj prokatki, Chornaja metallurgija, 1973-1 69-72

[91] A.R. Eivani, A. Karimi Taheri, Journal of Materials Processing Technology 182 (2007) 555–563

[92] O. Mishin, J.R. Bowen, S. Lathabai, Quantification of microstructure refinement in aluminium deformed by equal channel angular extrusion: Route A vs. Route Bc in a 90° die, Scripta Materialia 63 (2010) 20-23

[93] A. Mishra, B.K. Kad, F. Gregori, M.A. Meyers, Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis, Acta Materialia 55 (2007) 13–28

[94] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing, Acta mater.

45 (1997) 4733-4741

[95] Shinobu Kaneko, Kenji Murakami, Tetsuo Sakai, Effect of the extrusion conditions on microstructure evolution of the extruded Al–Mg–Si–Cu alloy rods, Materials Science and Engineering A 500 (2009) 8–15

[96] T. Ishikawa, H. Sano, Y. Yoshida, N. Yukawa, J. Sakamoto, Y. Tozawa, Effect of Extrusion Conditions on Metal Flow and Microstructures of Aluminum Alloys, Annals of the CIRP 55/1 (2006)

[97] H. Zhu, A.K. Ghosh, K. Maruyama, Effect of cold rolling on microstructure and material properties of 5052 alloy sheet produced by continuous casting, Materials Science and Engineering A 419 (2006) 115–121

[98] J.B. Lee, T.J. Konno, H.G. Jeong, Grain refinement and texture evolution in AZ31 Mg alloys sheet processed by differential speed rolling, Materials Science and Engineering B 161 (2009) 166–169

[99] J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon, Effect of Mg addition on microstructure and mechanical properties of aluminum, Materials Science and Engineering A 387–389 (2004) 55–59

[100] H. Chandler, Heat treater's guide: practices and procedures for nonferrous alloys, ASM International, 1996

12 Mellékletek

12.1 ábra: A végeselemes számításokhoz felhasznált Al7075 alumínium ötvözet folyásgörbéi különböző

alakváltozási sebesség mellett.

12.1 táblázat: Szűkülő csatornában történő anyagáramlás végeselemes vizsgálatának eredményei. Alakváltozások és

MNM értékek a keresztmetszet különböző pontjaiban, a középponttól t0 távolságra

keresztmetszet ε ν1 ν2

(%) (-) (-) (-)

6,2 0,37 0,44 0,41

18,7 0,34 0,22 0,12

25 0,35 0,20 0,13

31,2 0,35 0,22 0,14

37,5 0,35 0,20 0,15

43,7 0,35 0,20 0,16

46,8 0,33 0,17 0,14

50 0,33 0 0

53,1 0,33 0,17 0,14

56,2 0,35 0,20 0,16

62,5 0,35 0,20 0,15

68,7 0,35 0,22 0,14

75 0,35 0,20 0,13

81,2 0,34 0,22 0,12

93,7 0,37 0,44 0,41

12.2 táblázat: Csavarás és súrlódás nélküli zömítés, alakváltozás és MNM értékek

v0 0 0,25 0,5 0,75 1

ω0 1 0,75 0,5 0,25 0

ε (-) ν1= ν2

0 0 0 0 0 0

0,5 0,42 0,41 0,37 0,29 0

1 0,86 0,79 0,69 0,50 0

1,5 1,3 1,15 0,94 0,66 0

2 1,75 1,47 1,16 0,80 0

Documentos relacionados