• Nenhum resultado encontrado

[19] Bánhegyi Gy.: Reconsidering plastics recycling and bio-plastics. Express Polymer Letters, 15, 685-686 (2021).

[20] Moroni M., Mei A.: Characterization and separation of traditional and bio- plastics by hyperspectral devices. Applied Sciences, 10, 2800 (2020).

[21] Aldas M., Pavon C., De La Rosa-Ramírez H., Ferri J. M., Bertomeu D., Samper M. D., López-Martínez J.: The impact of biodegradable plastics in the properties of recycled polyethylene terephthalate. Journal of Polymers and the Environment, 29, 2686-2700 (2021).

[22] Skoczinski P., Carus M., de Guzman D., Käb H., Chinthapalli R., Ravenstijn J., Baltus W., Raschka A.: Bio-based building blocks and polymers – Global capacities, production and trends 2020 – 2025. Nova-Institut GmbH, Hürth (2021).

[23] Buzási L.: Magyarország műanyagipara 2016-ban (II.). Polimerek, 3, 232-237 (2017).

[24] Schyns Z. O. G., Shaver M. P.: Mechanical recycling of packaging plastics: A review. Macromolecular Rapid Communications, 42, 2000415 (2021).

[25] Buzási L.: MMSZ elemzés: Magyarország műanyagipara 2020-ban. Polimerek, 7, 209-219 (2021).

[26] European Bioplastics: Bioplastics facts and figures. European Bioplastics e.V., Berlin (2020).

[27] MSZ EN 16575: Bioalapú termékek. Szakszótár (2015).

[28] Zhu Y., Romain C., Williams C. K.: Sustainable polymers from renewable resources. Nature, 540, 354-362 (2016).

[29] Soroudi A., Jakubowicz I.: Recycling of bioplastics, their blends and biocomposites: A review. European Polymer Journal, 49, 2839-2858 (2013).

[30] Scott G.: 'Green' polymers. Polymer Degradation and Stability, 68, 1-7 (2000).

[31] Vilaplana F., Strömberg E., Karlsson S.: Environmental and resource aspects of sustainable biocomposites. Polymer Degradation and Stability, 95, 2147-2161 (2010).

[32] Ignatyev I. A., Thielemans W., Vander Beke B.: Recycling of polymers: a review.

ChemSusChem, 7, 1579-1593 (2014).

[33] Hubo S., Leite L., Martins C., Ragaert K.: Evaluation of post-industrial and post- consumer polyolefin-based polymer waste streams for injection moulding. in '6th Polymers & Mould Innovations International Conference. Guimarães, Portugália, 201-206 (2014).

[34] Dobrovszky K.: Nem-elegyedő polimer keverékek tulajdonságainak és ömledékállapotú szétválaszthatóságának elemzése. PhD értekezés, BME, Gépészmérnöki Kar, Polimertechnika Tanszék (2016).

[35] Faraca G., Astrup T.: Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Management, 95, 388-398 (2019).

[36] Spierling S., Venkatachalam V., Mudersbach M., Becker N., Herrmann C., Endres H.-J.: End-of-life options for bio-based plastics in a circular economy—

status quo and potential from a life cycle assessment perspective. Resources, 9, 90 (2020).

[37] Sója J., Tulok E., Miskolczi N.: Műanyaghulladékok újrahasznosításának lehetőségei. Polimerek, 3, 178-183 (2017).

[38] Al-Salem S. M., Lettieri P., Baeyens J.: Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29, 2625-2643 (2009).

[39] Al-Salem S. M., Lettieri P., Baeyens J.: The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals.

Progress in Energy and Combustion Science, 36, 103-129 (2010).

[40] https://www.nlplastics.com.hk/about/ (2021.06.16.)

[41] Arvanitoyannis I. S., Bosnea L. A.: Recycling of polymeric materials used for food packaging: current status and perspectives. Food Reviews International, 17, 291-346 (2001).

[42] Hopewell J., Dvorak R., Kosior E.: Plastics recycling: challenges and opportunities. Philosophical Transactions of the Royal Society B, 364, 2115-2126 (2009).

[43] Stenvall E., Tostar S., Boldizar A., Foreman M. R., Möller K.: An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Management, 33, 915-922 (2013).

[44] Stenvall E., Boldizar A.: Mechanical and thermal characterization of melt- filtered, blended and reprocessed post-consumer WEEE thermoplastics.

Recycling, 1, 89-100 (2016).

[45] Geyer R., Jambeck J. R., Law K. L.: Production, use, and fate of all plastics ever made. Science Advances, 3, e1700782 (2017).

[46] Mutha N. H., Patel M., Premnath V.: Plastics materials flow analysis for India.

Resources, Conservation and Recycling, 47, 222-244 (2006).

[47] Davis J., Geyer R., Ley J., He J., Clift R., Kwan A., Sansom M., Jackson T.: Time- dependent material flow analysis of iron and steel in the UK: Part 2. Scrap generation and recycling. Resources, Conservation and Recycling, 51, 118-140 (2007).

[48] Kuczenski B., Geyer R.: Material flow analysis of polyethylene terephthalate in the US, 1996–2007. Resources, Conservation and Recycling, 54, 1161-1169 (2010).

[49] Dahlbo H., Poliakova V., Mylläri V., Sahimaa O., Anderson R.: Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, 71, 52-61 (2018).

[50] Kaza S., Yao L., Bhada-Tata P., Van Woerden F.: What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank, Washington (2018).

[51] Alhazmi H., Almansour F. H., Aldhafeeri Z.: Plastic waste management: A review of existing life cycle assessment studies. Sustainability, 13, 5340 (2021).

[52] Czupy I., Vágvölgyi A.: Mezőgazdasági (növénytermesztés, állattartás, erdészeti) hulladékok kezelése és hasznosítása. Mezőgazda Kiadó, Budapest (2011).

[53] Diaz L. F., de Bertoldi M.: History of composting. in 'Compost Science and Technology' (Ed.: Diaz L. F., de Bertoldi M., Bidlingmaier W.) Elsevier, Amsterdam, 7-24 (2007).

[54] MSZ EN ISO 20200: Műanyagok. A műanyagok bomlási fokának meghatározása szimulált komposztálási feltételek mellett, laboratóriumi vizsgálattal (2016).

[55] ASTM D6400: Standard specification for labeling of plastics designed to be aerobically composted in municipal or industrial facilities (2019).

[56] Rudnik E.: Compostable Polymer Materials. Elsevier, Amsterdam (2008).

[57] Kocsis I.: Komposztálás. Szaktudás Kiadó Ház, Budapest (2005).

[58] Barótfi I.: Környezettechnika. Mezőgazda Kiadó, Budapest (2000).

[59] Farah S., Anderson D. G., Langer R.: Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review.

Advanced Drug Delivery Reviews, 107, 367-392 (2016).

[60] Khan W., Muthupandian S., Farah S., Kumar N., Domb A. J.: Biodegradable polymers derived from amino acids. Macromolecular Bioscience, 11, 1625-1636 (2011).

[61] Lamberti F. M., Román‑Ramírez L. A., Wood J.: Recycling of bioplastics: routes and benefits. Journal of Polymers and the Environment, 28, 2551-2571 (2020).

[62] Ghorpade V. M., Gennadios A., Hanna M. A.: Laboratory composting of extruded poly(lactic acid) sheets. Bioresource Technology, 76, 57-61 (2001).

[63] Auras R., Harte B., Selke S.: An overview of polylactides as packaging materials.

Macromolecular Bioscience, 4, 835-864 (2004).

[64] Teixeira S., Eblagon K. M., Miranda F., R. Pereira M. F., Figueiredo J. L.:

Towards controlled degradation of poly(lactic) acid in technical applications. C, 7, c7020042 (2021).

[65] Nova-Institut: Biodegradable polymers in various environments. Nova-Institut GmbH, Hürth (2021).

[66] Park K. I., Xanthos M.: A study on the degradation of polylactic acid in the presence of phosphoniumionic liquids. Polymer Degradation and Stability, 94, 834-844 (2009).

[67] Maharana T., Mohanty B., Negi Y. S.: Melt–solid polycondensation of lactic acid and its biodegradability. Progress in Polymer Science, 34, 99-124 (2009).

[68] Zumstein M. T., Schintlmeister A., Nelson T. F., Baumgartner R., Woebken D., Wagner M., Kohler H.-P. E., McNeill k., Sander M.: Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Science Advances, 4, eaas9024 (2018).

[69] Kalita N. K., Sarmah A., Bhasney S. M., Kalamdhad A., Katiyar V.:

Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions. Environmental Challenges, 3, 100030 (2021).

[70] Lunt J.: Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59, 145-152 (1998).

[71] Xu H., Yang X., Xie L., Hakkarainen M.: Conformational footprint in hydrolysis- induced nanofibrillation and crystallization of poly(lactic acid).

Biomacromolecules, 17, 985-995 (2016).

[72] Reddy N., Nama D., Yang Y.: Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polymer Degradation and Stability, 93, 233- 241 (2008).

[73] Nguyen D. M., Do T. V. V., Grillet A.-C., Ha Thuc H., Ha Thuc C. N.:

Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration & Biodegradation, 115, 257-265 (2016).

[74] Tolga S., Kabasci S., Duhme M.: Progress of disintegration of polylactide (PLA)/poly(butylene succinate) (PBS) blends containing talc and chalk inorganic fillers under industrial composting conditions. Polymers, 13, 10 (2020).

[75] MSZ EN 13432: Csomagolás. Komposztálással és biológiai lebomlással hasznosítható csomagolás követelményei. Vizsgálati program és a csomagolás végleges elfogadásának értékelési feltételei (2002).

[76] AS 5810: Biodegradable plastics—Biodegradable plastics suitable for home composting (2010).

[77] NF T51-800: Plastics - Specifications for plastics suitable for home composting (2015).

[78] Czvikovszky T., Nagy P., Gaál J.: A polimertechnika alapjai. Műegyetemi Kiadó, Budapest (2006).

[79] Anastasiadis S. H., Gancarz I., Koberstein J. T.: Interfacial tension of immiscible polymer blends: Temperature and molecular weight dependence.

Macromolecules, 21, 2980-2987 (1988).

[80] Van Eerdenbrugh B., Taylor L. S.: Molecular weight effects on the miscibility behavior of dextran and maltodextrin with poly(vinylpyrrolidone).

Pharmaceutical Research, 29, 2754-2765 (2012).

[81] Wang D., Li Y., Xie X.-M., Guo B.-H.: Compatibilization and morphology development of immiscible ternary polymer blends. Polymer, 52, 191-200 (2011).

[82] Lee J. K., Han C. D.: Evolution of a dispersed morphology from a co-continuous morphology in immiscible polymer blends. Polymer, 40, 2521-2536 (1999).

[83] Lee J. K., Han C. D.: Evolution of polymer blend morphology during compounding in a twin-screw extruder. Polymer, 41, 1799-1815 (2000).

[84] Lu X., Tang L., Wang L., Zhao J., Li D., Wu Z., Xiao P.: Morphology and properties of bio-based poly (lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polymer Testing, 54, 90-97 (2016).

[85] Macosko C. W.: Morphology development and control in immiscible polymer blends. Macromolecular Symposia, 149, 171-184 (2000).

[86] Utracki L. A., Wilkie C. A.: Polymer Blends Handbook. Springer, Dordrecht (2014).

[87] Koning C., Van Duin M., Pagnoulle C., Jerome R.: Strategies for compatibilization of polymer blends. Progress in Polymer Science, 23, 707-757 (1998).

[88] Flory P. J.: Thermodynamics of high polymer solutions. The Journal of Chemical Physics, 10, 51-61 (1942).

[89] Mekhilef N., Verhoogt H.: Phase inversion and dual-phase continuity in polymer blends: theoretical predictions and experimental results. Polymer, 37, 4069-4077 (1996).

[90] Veenstra H., Verkooijen P. C. J., van Lent B. J. J., van Dam J., de Boer A. P., Nijhof A. P. H. J.: On the mechanical properties of co-continuous polymer blends:

experimental and modelling. Polymer, 41, 1817-1826 (2000).

[91] Le Corroller P., Favis B. D.: Effect of viscosity in ternary polymer blends displaying partial wetting phenomena. Polymer, 52, 3827-3834 (2011).

[92] Bhattacharyya A. R., Ghosh A. K., Misra A., Eichhorn K. J.: Reactively compatibilised polyamide6/ethylene-co-vinyl acetate blends: mechanical properties and morphology. Polymer, 46, 1661-1674 (2005).

[93] Baudouin A.-C., Auhl D., Tao F., Devaux J., Bailly C.: Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement. Polymer, 52, 149- 156 (2011).

[94] Jordhamo G. M., Manson J. A., Sperling L. H.: Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Polymer Engineering & Science, 26, 517-524 (1986).

[95] Kitayama N., Keskkula H., Paul D. R.: Reactive compatibilization of nylon 6/styrene-acrylonitrile copolymer blends. Part 1. Phase inversion behavior.

Polymer, 41, 8041-8052 (2000).

[96] Everaert V., Aerts L., Groeninckx G.: Phase morphology development in immiscible PP/(PS/PPE) blends influence of the melt-viscosity ratio and blend composition. Polymer, 40, 6627-6644 (1999).

[97] Steinmann S., Gronski W., Friedrich C.: Cocontinuous polymer blends:

influence of viscosity and elasticity ratios of the constituent polymers on phase inversion. Polymer, 42, 6619-6629 (2001).

[98] Ravati S., Favis B. D.: Morphological states for a ternary polymer blend demonstrating complete wetting. Polymer, 51, 4547-4561 (2010).

[99] He J., Bu W., Zeng J.: Co-phase continuity in immiscible binary polymer blends.

Polymer, 38, 6347-6353 (1997).

[100] Omonov T. S., Harrats C., Groeninckx G., Moldenaers P.: Anisotropy and instability of the co-continuous phase morphology in uncompatibilized and reactively compatibilized polypropylene/polystyrene blends. Polymer, 48, 5289-5302 (2007).

[101] Michler G. H., Baltá-Calleja F. J.: Mechanical properties of polymers based on nanostructure and morphology. CRC Press, Boca Raton (2005).

[102] Hubo S., Delva L., Van Damme N., Ragaert K.: Blending of recycled mixed polyolefins with recycled polypropylene: Effect on physical and mechanical properties. in 'Regional Conference of the Polymer-Processing-Society (PPS).

Graz, Ausztria, Vol 1779, 140006/1-140006/5 (2015).

[103] Dorigato A.: Recycling of polymer blends. Advanced Industrial and Engineering Polymer Research, 4, 53-69 (2021).

[104] Muthuraj R., Misra M., Mohanty A. K.: Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 135, 45726 (2018).

[105] Wu D., Zhang Y., Yuan L., Zhang M., Zhou W.: Viscoelastic interfacial properties of compatibilized poly(ε-caprolactone)/polylactide blend. Journal of Polymer Science: Part B: Polymer Physics, 48, 756-765 (2010).

[106] Kim C.-H., Cho K. Y., Choi E.-J., Park J.-K.: Effect of P(lLA-co-εCL) on the compatibility and crystallization behavior of PCL/PLLA blends. Journal of Applied Polymer Science, 77, 226-231 (2000).

[107] Supthanyakul R., Kaabbuathong N., Chirachanchai S.: Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer, 105, 1-9 (2016).

[108] Na Y.-H., He Y., Shuai X., Kikkawa Y., Doi Y., Inoue Y.: Compatibilization effect of poly(ε-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(ε-caprolactone) blends.

Biomacromolecules, 3, 1179-1186 (2002).

[109] Yang X., Finne-Wistrand A., Hakkarainen M.: Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites. Composites Science and Technology, 86, 149-156 (2013).

[110] Chen L., Qiu X., Xie Z., Hong Z., Sun J., Chen X., Jing X.: Poly(L-lactide)/starch blends compatibilized with poly(L-lactide)-g-starch copolymer. Carbohydrate Polymers, 65, 75-80 (2006).

[111] Maglio G., Malinconico M., Migliozzi A., Groeninckx G.: Immiscible poly(L- lactide)/poly(ɛ-caprolactone) blends: Influence of the addition of a poly(L- lactide)-poly(oxyethylene) block copolymer on thermal behavior and morphology. Macromolecular Chemistry and Physics, 205, 946-950 (2004).

[112] Vilay V., Mariatti M., Ahmad Z., Pasomsouk K., Todo M.: Improvement of microstructures and properties of biodegradable PLLA and PCL blends compatibilized with a triblock copolymer. Materials Science and Engineering:

A, 527, 6930-6937 (2010).

[113] Renner K., Imre B., Pukánszky B.: Természetes és biológiai lebontható polimerek módosítása: kölcsönhatás, szerkezet, tulajdonságok. Magyar Kémiai Folyóirat, 121, 68-72 (2015).

[114] Zeng J.-B., Li K.-A., Du A.-K.: Compatibilization strategies in poly(lactic acid)- based blends. RSC Advances, 5, 32546-32565 (2015).

[115] Xiao L., Wang H., Qian Q., Jiang X., Liu X., Huang B., Chen Q.: Molecular and structural analysis of epoxide-modified recycled poly(ethylene terephthalate) from rheological data. Polymer Engineering & Science, 52, 2127-2133 (2012).

[116] Duarte I. S., Tavares A. A., Lima P. S., Andrade D. L. A. C. S., Carvalho L. H., Canedo E. L., Silva S. M. L.: Chain extension of virgin and recycled poly(ethylene terephthalate): Effect of processing conditions and reprocessing.

Polymer Degradation and Stability, 124, 26-34 (2016).

[117] Al-Itry R., Lamnawar K., Maazouz A.: Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 97, 1898-1914 (2012).

[118] Bocz K., Molnár B., Marosi G., Ronkay F.: Preparation of low-density microcellular foams from recycled PET modified by solid state polymerization and chain extension. Journal of Polymers and the Environment, 27, 343-351 (2019).

[119] Mallet B., Lamnawar K., Maazouz A.: Improvement of blown film extrusion of poly(lactic acid): Structure-processing-properties relationships. Polymer Engineering & Science, 54, 840-857 (2014).

[120] Abdelwahab M. A., Taylor S., Misra M., Mohanty A. K.: Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co- terephthalate) and lignin. Macromolecular Materials and Engineering, 300, 299- 311 (2015).

[121] Tavares A. A., Silva D. F. A., Lima P. S., Andrade D. L. A. C. S., Silva S. M. L., Canedo E. L.: Chain extension of virgin and recycled polyethylene terephthalate. Polymer Testing, 50, 26-32 (2016).

[122] You X., Snowdon M. R., Misra M., Mohanty A. K.: Biobased Poly(ethylene terephthalate)/Poly(lactic acid) Blends Tailored with Epoxide Compatibilizers.

ACS Omega, 3, 11759-11769 (2018).

[123] Al-Itry R., Lamnawar K., Maazouz A.: Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheologica Acta, 53, 501-517 (2014).

[124] Palsikowski P. A., Kuchnier C. N., Pinheiro I. F., Morales A. R.: Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. Journal of Polymers and the Environment, 26, 330-341 (2018).

[125] Quiles-Carrillo L., Montanes N., Garcia-Garcia D., Carbonell-Verdu A., Balart R., Torres-Giner S.: Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour.

Composites Part B: Engineering, 147, 76-85 (2018).

[126] Taguet A., Cassagnau P., Lopez-Cuesta J. M.: Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Progress in Polymer Science, 39, 1526-1563 (2014).

[127] Sinha Ray S., Okamoto M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28, 1539-1641 (2003).

[128] Pavlidou S., Papaspyrides C. D.: A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33, 1119-1198 (2008).

[129] Giannelis E. P., Krishnamoorti R., Manias E.: Polymer-silicate nanocomposites:

model systems for confined polymers and polymer brushes. in 'Polymers in Confined Environments' (Ed.: Granick S., Binder K., de Gennes P.-G., Giannelis E. P., Grest G. S., Hervet H., Krishnamoorti R., Léger L., Manias E., Raphaël E., Wang S.-Q.) Springer, Berlin, 107-147 (1999).

[130] Alexandre M., Dubois P.: Polymer-layered silicate nanocomposites:

preparation, properties and uses of a new class of materials. Materials Science and Engineering, 28, 1-63 (2000).

[131] Fazekasné M. A.: Új típusú égésgátolt polipropilén rendszerek fejlesztése. PhD értekezés, BME, Vegyészmérnöki és Biomérnöki Kar, Szerves Kémiai Technológia Tanszék (2004).

[132] Isayev A. I.: Encyclopedia of Polymer Blends: Volume 3: Structure. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2016).

[133] Salzano de Luna M., Filippone G.: Effects of nanoparticles on the morphology of immiscible polymer blends – Challenges and opportunities. European Polymer Journal, 79, 198-218 (2016).

[134] Olasz L., Farkass G.: A műanyag hulladék érték. Polimerek, 7, 40-42 (2021).

[135] Schwartz J.: Why ‘biodegradable’ isn’t what you think. The New York Times, 2020.10.02.

https://www.nytimes.com/interactive/2020/10/01/climate/biodegradable- containers.html?campaign_id=54&emc=edit_clim_20201007&instance_id%E2

%80%A6

[136] Åkesson D., Kuzhanthaivelu G., Bohlén M.: Effect of a small amount of thermoplastic starch blend on the mechanical recycling of conventional plastics.

Journal of Polymers and the Environment, 29, 985-991 (2021).

[137] Plastics Recyclers Europe sajtóközlemény: Recycled film quality negatively affected by degradable plastics from Southern Europe. Brüsszel, 2017.

szeptember 18.

http://www.plasticsrecyclers.eu/news/recycled-film-quality-negatively- affected-degradable-plastics-southern-europe (2017.11.06.)

[138] Yarahmadi N., Jakubowicz I., Enebro J.: Polylactic acid and its blends with petroleum-based resins: Effects of reprocessing and recycling on properties.

Journal of Applied Polymer Science, 133, 43916 (2016).

[139] Imre B., Pukánszky B.: Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49, 1215-1233 (2013).

[140] Alaerts L., Augustinus M., Van Acker K.: Impact of bio-based plastics on current recycling of plastics. Sustainability, 10, 1487 (2018).

[141] Gent M. R., Menendez M., Toraño J., Diego I.: Recycling of plastic waste by density separation: prospects for optimization. Waste Management & Research, 27, 175-187 (2009).

[142] McLauchlin A. R., Ghita O. R.: Studies on the thermal and mechanical behavior of PLA-PET blends. Journal of Applied Polymer Science, 133, 44147 (2016).

[143] La Mantia F. P., Botta L., Morreale M., Scaffaro R.: Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles.

Polymer Degradation and Stability, 97, 21-24 (2012).

[144] La Mantia F. P., Botta L., Mistretta M. C., Di Fiore A., Titone V.: Recycling of a Biodegradable Polymer Blend. Polymers, 12, 2297 (2020).

[145] Awaja F., Pavel D.: Recycling of PET. European Polymer Journal, 41, 1453-1477 (2005).

[146] Rudolph N., Kiesel R., Aumnate C.: Understanding Plastics Recycling. Carl Hanser Verlag, München (2017).

[147] Nisticò R.: Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing, 90, 106707 (2020).

[148] Titone V., Correnti A., La Mantia F. P.: Effect of moisture content on the processing and mechanical properties of a biodegradable polyester. Polymers, 13, 1616 (2021).

[149] Torres-Huerta A. M., Palma-Ramírez D., Domínguez-Crespo M. A., Del Angel- López D., de la Fuente D.: Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal, 61, 285-299 (2014).

[150] Nofar M., Sacligil D., Carreau P. J., Kamal M. R., Heuzey M.-C.: Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 125, 307-360 (2019).

[151] Hamad K., Kaseem M., Ayyoob M., Joo J., Deri F.: Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 85, 83-127 (2018).

[152] Vrsaljko D., Macut D., Kovačević V.: Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. Journal of Applied Polymer Science, 132, 41414 (2015).

[153] Balakrishnan H., Hassan A., Wahit M. U.: Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. Journal of Elastomers and Plastics, 42, 223-239 (2010).

[154] Bhardwaj I. S., Kumar V., Palanivelu K.: Thermal characterization of LDPE and LLDPE blends. Thermochimica Acta, 131, 241-246 (1988).

[155] Gupta A. K., Rana S. K., Deopura D. L.: Mechanical properties and morphology of high-density polyethylene/linear low-density polyethylene blend. Journal of Applied Polymer Science, 46, 99-108 (1992).

[156] La Mantia F. P.: Basic concepts on the recycling of homogeneous and heterogeneous plastics. in 'Recycling of PVC & mixed plastics waste' (Ed.: La Mantia F. P.) ChemTec Publisher, Toronto, 63-76 (1996).

[157] Fortelný I., Hlavatá D., Horák Z., Kolařík J., Sikora A.: Blending. in 'Processing and finishing of polymeric materials' (Ed.: Seidel A.) John Wiley & Sons, Inc., Hoboken, 86-144 (2011).

[158] DuPont: Elvaloy® resins Product Data Sheet. DuPont, Wilmington (2016).

[159] Kumar M., Mohanty S., Nayak S. K., Rahail Parvaiz M.: Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresource Technology, 101, 8406-8415 (2010).

[160] Yang L., Chen H., Jia S., Lu X., Huang J., Yu X., Ye K., He G., Qu J.: Influences of ethylene-butylacrylate-glycidyl methacrylate on morphology and mechanical properties of poly(butylene terephthalate)/polyolefin elastomer blends. Journal of Applied Polymer Science, 131, 40660 (2014).

[161] Zhang C., Dai G.: Mechanical properties and reactions of PBT/PTW blends.

Journal of Materials Science, 42, 9947-9953 (2007).

[162] Kaci M., Benhamida A., Cimmino S., Silvestre C., Carfagna C.: Waste and virgin LDPE/PET blends compatibilized with an ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) Terpolymer, 1. Macromolecular Materials and Engineering, 290, 987-995 (2005).

[163] Benhamida A., Kaci M., Cimmino S., Silvestre C., Duraccio D.: Evaluation of the effectiveness of new compatibilizers based on EBAGMA-LDPE and EBAGMA- PET masterbatches for LDPE/PET blends. Macromolecular Materials and Engineering, 295, 222-232 (2010).

[164] Kang H., Lu X., Xu Y.: Properties of immiscible and ethylene-butyl acrylate- glycidyl methacrylate terpolymer compatibilized poly (lactic acid) and polypropylene blends. Polymer Testing, 43, 173-181 (2015).

[165] Khonakdar H. A., Jafari S. H., Mirzadeh S., Kalaee M. R., Zare D., Saeb M. R.:

Rheology-morphology correlation in PET/PP blends: Influence of type of compatibilizer. Journal of Vinyl & Additive Technology, 19, 25-30 (2013).

[166] Li S.-C., Lu L.-N.: Melt rheological properties of reactive compatibilized HDPE/PET blends. Journal of Applied Polymer Science, 108, 3559-3564 (2008).

[167] Kim Y. F., Choi C. N., Kim Y. D., Lee K. Y., Lee M. S.: Compatibilization of immiscible poly(l-lactide) and low density polyethylene blends. Fibers and Polymers, 5, 270-274 (2004).

[168] Lohse D. J.: The melt compatibility of blends of polypropylene and ethylene- propylene copolymers. Polymer Engineering & Science, 26, 1500-1509 (1986).

[169] Hemsri S., Puttiwanit K., Saeaung K., Satung P.: Low density polyethylene/poly(butylene adipate-co-terephthalate) films: Effect of a compatibilizer on morphology and properties. IOP Conference Series: Materials Science and Engineering, 965, 012020 (2020).

[170] Biron M.: Industrial applications of renewable plastics: environmental, technological, and economic advances. William Andrew, Oxford (2017).

[171] Samper M. D., Bertomeu D., Arrieta M. P., Ferri J. M., López-Martínez J.:

Interference of biodegradable plastics in the polypropylene recycling process.

Materials, 11, 1886 (2018).

[172] Kuciel S., Kuzniar P., Nykiel M.: Biodegradable polymers in the general waste stream – the issue of recycling with polyethylene packaging materials.

Polimery, 63, 31-37 (2018).

[173] Carné Sánchez A., Collinson S. R.: The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. European Polymer Journal, 47, 1970-1976 (2011).

[174] Mistretta M. C., La Mantia F. P., Titone V., Botta L., Pedeferri M., Morreale M.:

Effect of ultraviolet and moisture action on biodegradable polymers and their blend. Journal of Applied Biomaterials & Functional Materials, 18, 1-8 (2020).

[175] MSZ EN ISO 527-2: Műanyagok. A húzási tulajdonságok meghatározása. 2.

rész: A fröccs- és extrúziós műanyagok vizsgálati feltételei (2012).

[176] ASTM D4603: Standard test method for determining inherent viscosity of poly(ethylene terephthalate) (PET) by glass capillary viscometer (2018).

[177] Billmeyer Jr. F. W.: Methods for estimating intrinsic viscosity. Journal of Polymer Science, 4, 83-86 (1949).

[178] Molnár B.: Polietilén-tereftalát szerkezetének és mechanikai tulajdonságainak változása az újrahasznosítás során. PhD értekezés, BME, Gépészmérnöki Kar, Polimertechnika Tanszék (2018).

[179] ISO 11443: Plastics. Determination of the fluidity of plastics using capillary and slit-die rheometers (2014).

[180] MSZ EN ISO 527-1: Műanyagok. A húzási tulajdonságok meghatározása. 1.

rész: Alapelvek (2020).

[181] MSZ EN ISO 527-3: Műanyagok. A húzási tulajdonságok meghatározása. 3.

rész: A fóliák és a lemezek vizsgálati feltételei (2019).

[182] MSZ EN ISO 179-1: Műanyagok. A Charpy-féle ütési jellemzők meghatározása.

1. rész: Nem műszeres ütésvizsgálat (2010).

[183] Wu H., Lv S., He Y., Qu J.-P.: The study of the thermomechanical degradation and mechanical properties of PET recycled by industrial-scale elongational processing. Polymer Testing, 77, 105882 (2019).

[184] Tábi T., Hajba S., Kovács J. G.: Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. European Polymer Journal, 82, 232-243 (2016).

[185] ASTM D1003: Standard test method for haze and luminous transmittance of transparent plastics (2013).

[186] BYK Gardner haze-gard plus: Operating Instructions. BYK Gardner, Geretsried (2010).

[187] Simon S. L.: Temperature-modulated differential scanning calorimetry: theory and application. Thermochimica Acta 374, 55-71 (2001).

[188] Gorrasi G., Pantani R.: Effect of PLA grades and morphologies on hydrolytic degradation at composting temperature: Assessment of structural modification and kinetic parameters. Polymer Degradation and Stability, 98, 1006-1014 (2013).

[189] Kale G., Auras R., Singh S. P.: Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technology and Science, 20, 49-70 (2007).

[190] González-López M. E., Martín del Campo A. S., Robledo-Ortíz J. R., Arellano M., Pérez-Fonseca A. A.: Accelerated weathering of poly(lactic acid) and its biocomposites: A review. Polymer Degradation and Stability, 179, 109290 (2020).

[191] Scheirs J., Long T. E.: Modern polyesters: Chemistry and technology of polyesters and copolyesters. John Wiley & Sons Ltd, Chichester (2003).

[192] Litauszki K., Kovács Z., Mészáros L., Kmetty Á.: Accelerated photodegradation of poly(lactic acid) with weathering test chamber and laser exposure – A comparative study. Polymer Testing, 76, 411-419 (2019).