• Nenhum resultado encontrado

Felhasznált irodalom

No documento PhD értekezés (páginas 110-121)

[1] https://www.greentechmedia.com/articles/read/siemens-gamesa-takes-worlds- largest-turbine-title (2021.03.04.)

[2] https://wwindea.org/world-wind-capacity-at-650-gw/ (2021.03.04.)

[3] http://betterplan.squarespace.com/todays-special/tag/wind-farm-blade-failure (2017.02.10.)

[4] Martinez-Luengo M., Kolios A., Wang L.: Structural health monitoring of offshore wind turbines: A review through the statistical pattern recognition paradigm. Renewable and Sustainable Energy Reviews, 64, 91–105 (2016).

[5] Beganovic N., Söffker D.: Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results.

Renewable and Sustainable Energy Reviews, 64, 68–83 (2016).

[6] Czvikovszky T., Nagy P., Gaál J.: A polimertechnika alapjai. Műegyetemi Kiadó, Budapest (2000).

[7] https://www.statista.com/statistics/380543/production-capacity-of-top-carbon- fiber-manufacturers/%0A (2019.09.24.)

[8] Carbon fiber market - growth, trends, COVID-19 impact, and forecast (2021 - 2026). Mordor Intelligence, Nanakramguda (2020).

[9] Park S. J.: Carbon fibers. Springer Netherlands, Dordrecht (2015).

[10] Veszprémi T.: Általános kémia. Akadémia Kiadó, Budapest (2008).

[11] Morgan P.: Carbon fibers and their composites. CRC Press, Boca Raton (2005).

[12] Bennet S. C., Johnson D. J.: Strength structure relationships in PAN-based carbon fibres. in '5th London International Carbon and Graphite Conference. London, Egyesült Királyság' 377 (1978).

[13] http://www.ngfworld.com (2017.05.11.)

[14] Hoffman W. P., Hurley W. C., Liu P. M., Owens T. W.: The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM. Journal of Materials Research, 6, 1685–1694 (1991).

[15] MATHUR R. B., Bahl O. P., MATTA V. K., NAGPAL K. C.: Modification of pan precursor - its influence on the reaction kinetics. Carbon, 26, 295–301 (1988).

[16] Rahaman M. S. A., Ismail A. F., Mustafa A.: A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 92, 1421–1432 (2007).

[17] Cho D. H., Yoon S. B., Cho C. W., Park J. K.: Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers. Carbon Letters, 12, 223–228 (2011).

[18] Zhang J.: Different surface treatments of carbon fibers and their influence on the interfacial properties of carbon fiber/epoxy composites. École Centrale des Arts et Manufactures, (2012).

[19] Yue Z., Vakili A., Duran M. P.: Surface treatments of solvated mesophase pitch- based carbon fibers. Journal of Materials Science, 52, 10250–10260 (2017).

[20] Zhang X., Lu Y., Xiao H., Peterlik H.: Effect of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers. Journal of Materials Science, 49, 673–684 (2014).

[21] Frank E., Steudle L. M., Ingildeev D., Spörl J. M., Buchmeiser M. R.: Carbon fibers: Precursor systems, processing, structure, and properties. Angewandte Chemie - International Edition, 53, 5262–5298 (2014).

[22] Society T. R., Transactions P., Society R., Sciences P., Johnson D. J., Frank C.:

Recent advances in studies of carbon fibre structure. Phil. Trans. R. Soc. Lond.

A, 294, 443–449 (1980).

[23] Qin X., Lu Y., Xiao H., Wen Y., Yu T.: A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch- based carbon fibers. Carbon, 50, 4459–4469 (2012).

[24] Edie D. D.: The effect of processing on the structure and properties of carbon fibers. Carbon, 36, 345–362 (1998).

[25] Huang Y., Young R. J.: Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres. Carbon, 33, 97–107 (1995).

[26] Watt W., Perov B. V.: Strong fibers. Elsevier, Amszterdam (1985).

[27] Emmerich F. G.: Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers.

Carbon, 79, 274–293 (2014).

[28] https://www.900gpa.com (2017.11.03.)

[29] Xiao H., Lu Y., Zhao W., Qin X.: A comparison of the effect of hot stretching on microstructures and properties of polyacrylonitrile and rayon-based carbon fiber. Journal of Materials Science, 49, 5017–5029 (2014).

[30] Qin X., Lu Y., Xiao H., Hao Y., Pan D.: Improving preferred orientation and mechanical properties of PAN-based carbon fibers by pretreating precursor fibers in nitrogen. Carbon, 49, 4598–4600 (2011).

[31] Xiao H., Lu Y., Wang M., Qin X., Zhao W., Luan J.: Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber. Carbon, 52, 427–439 (2013).

[32] Zantout A. E., Zhupanska O. I.: On the electrical resistance of carbon fiber polymer matrix composites. Composites Part A: Applied Science and Manufacturing, 41, 1719–1727 (2010).

[33] Hou M., Ye L., Mai Y.-W. W.: An experimental study of resistance welding of carbon fibre fabric reinforced polyetherimide (CF Fabric/PEI) composite material. Applied Composite Materials, 6, 35–49 (1999).

[34] Hayes S. A., Lafferty A. D., Altinkurt G., Wilson P. R., Collinson M., Duchene P.:

Direct electrical cure of carbon fiber composites. Advanced Manufacturing:

Polymer & Composites Science, 1, 112–119 (2015).

[35] Chung D. D. L.: Damage detection using self-sensing concepts. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 221, 509–520 (2007).

[36] Gallo G. J., Thostenson E. T.: Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks. Materials Today Communications, 3, 17–26 (2015).

[37] Shen L., Li J., Liaw B. M., Delale F., Chung J. H.: Modeling and analysis of the electrical resistance measurement of carbon fiber polymer-matrix composites.

Composites Science and Technology, 67, 2513–2520 (2007).

[38] Joseph C., Viney C.: Electrical resistance curing of carbon-fibre/epoxy composites. Composites Science and Technology, 60, 315–319 (2000).

[39] Serway R. A., Jewett J. W.: Physics for scientists and engineers with modern physics. Thomson Brooks/Cole, Belmont (2008).

[40] Bayerl T., Duhovic M., Mitschang P., Bhattacharyya D.: The heating of polymer composites by electromagnetic induction - A review. Composites Part A:

Applied Science and Manufacturing, 57, 27–40 (2014).

[41] Yarlagadda S., Kim H. J., Gillespie J. W., Shevchenko N. B., Bruce K.: A study on the induction heating of conductive fiber reinforced composites. Journal of Composite Materials, 36, 401–421 (2002).

[42] Hoa S. V: Principles of the manufacturing of composite materials. DEStech Publications, Lancaster (2009).

[43] Šafářová V., Grégr J.: Electrical conductivity measurement of fibers and yarns.

in '7th International Conference - TEXSCI 2010. Liberec, Czech Republic' p8 (2010).

[44] Wang S., Chung D. D. L.: Piezoresistivity in continuous carbon fiber polymer- matrix. Polymer Composites, 21, 13–19 (2000).

[45] Deierling P. E., Zhupanska O. I.: Experimental study of high electric current effects in carbon/epoxy composites. Composites Science and Technology, 71, 1659–1664 (2011).

[46] Janesch J.: Two-wire vs. four-wire resistance measurements: Which configuration makes sense for your application. Keithley Instruments Inc, Cleveland (2013).

[47] Owston C. N.: Electrical properties of single carbon fibres. Journal of Physics D:

Applied Physics, 3, 1615–1626 (1970).

[48] Athanasopoulos N., Kostopoulos V.: Prediction and experimental validation of the electrical conductivity of dry carbon fiber unidirectional layers. Composites Part B: Engineering, 42, 1578–1587 (2011).

[49] Zimney E. J., Dommett G. H. B. B., Ruoff R. S., Dikin D. A.: Correction factors for 4-probe electrical measurements with finite size electrodes and material anisotropy: A finite element study. Measurement Science and Technology, 18, 2067–2073 (2007).

[50] Zhao Q., Zhang K., Zhu S., Xu H., Cao D., Zhao L., Zhang R., Yin W.: Review on the electrical resistance / conductivity of carbon fiber reinforced polymer.

Applied Sciences, 9, paper ID: 2390 (2019).

[51] Schulte K., Baron C.: Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Composites Science and Technology, 36, 63–

76 (1989).

[52] Athanasopoulos N., Kostopoulos V.: Resistive heating of multidirectional and unidirectional dry carbon fibre preforms. Composites Science and Technology, 72, 1273–1282 (2012).

[53] Abliz D., Duan Y., Steuernagel L., Xie L., Li D., Ziegmann G.: Curing methods for advanced polymer composites - A review. Polymers and Polymer Composites, 21, 341–348 (2013).

[54] Athanasopoulos N., Sotiriadis G., Kostopoulos V.: A study on the effect of Joule- heating during the liquid composite molding (LCM) process and on the curing of CFRP composite laminates. in 'The 10th International Conference on Flow Processes in Composite Materials (FPCM10). Ascona, Svájc' p5 (2010).

[55] Fink B. K., McKnight S. H., Yarlagadda S., Gillespie J. W.: Non-polluting composites repair and remanufacturing for military applications: Induction- based repair of integral armor. in 'Army Research Laboratory. Adelphy' Adelphy (1999).

[56] Frauenhofer M., Kunz H., Dilger K.: Fast curing of adhesives in the field of CFRP.

The Journal of Ahesion, 88, 406–417 (2012).

[57] Enoki S., Iwamoto K., Harada R., Tanaka K., Katayama T.: Heating properties of carbon fibers by using direct resistance heating. in 'High Performance Structures and Materials VI' (szerk.: de Wilde W. P., Brebbia C. A., Hernández S.) WIT Press, Southampton, 239–248 (2012).

[58] Reese J., Vorhof M., Hoffmann G., Böhme K., Cherif C.: Joule heating of dry textiles made of recycled carbon fibers and PA6 for the series production of thermoplastic composites. Journal of Engineered Fibers and Fabrics, 15, 1–13 (2020).

[59] Eveno E. C., Gillespie J. W.: Resistance welding of graphite polyetheretherketone composites: An experimental investigation. Journal of Thermoplastic Composite Materials, 1, 322–338 (1988).

[60] McKnight S. H., Holmes S. T., Gillespie J. W., Lambing C. L. T., Marinelli J. M.:

Scaling Issues in Resistance- Welded Thermoplastic Composite Joints. Advances in Polymer Technology, 16, 279–295 (1997).

[61] Pappadà S., Salomi A., Montanaro J., Passaro A., Caruso A., Maffezzoli A.:

Fabrication of a thermoplastic matrix composite stiffened panel by induction welding. Aerospace Science and Technology, 43, 314–320 (2015).

[62] Ezekiel H. M., Spain R. G.: Preparation of graphite fibers from polymeric fibers.

Journal of Polymer Science Part C: Polymer Symposia, 265, 249–265 (1967).

[63] Hung C. C., Dillehay M. E., Stahl M.: A heater made from graphite composite material for potential deicing application. Journal of Aircraft, 24, 725–730 (1987).

[64] Pan L., Liu Z., Kızıltaş O., Zhong L., Pang X., Wang F., Zhu Y., Ma W., Lv Y.:

Carbon fiber/poly ether ether ketone composites modified with graphene for electro-thermal deicing applications. Composites Science and Technology, 192, paper ID: 108117 (2020).

[65] Park J. S., Takahashi K., Guo Z., Wang Y., Bolanos E., Hamann-Schaffner C., Murphy E., Wudl F., Hahn H. T., Jong Se Park, Takahashi K., Guo Z., Wang Y., Bolanos E., Hamann-Schaffner C., Murphy E., … Hahn H. T.: Towards Development of a Self-Healing Composite using a Mendable Polymer and Resistive Heating. Journal of Composite Materials, 42, 2869–2881 (2008).

[66] Park J. S., Kim H. S., Thomas Hahn H., Hahn H. T.: Healing behavior of a matrix crack on a carbon fiber/mendomer composite. Composites Science and Technology, 69, 1082–1087 (2009).

[67] Park J. S., Darlington T., Starr A. F., Takahashi K., Riendeau J., Hahn H. T., Thomas Hahn H.: Multiple healing effect of thermally activated self-healing composites based on Diels-Alder reaction. Composites Science and Technology, 70, 2154–2159 (2010).

[68] Bergman S. D., Wudl F.: Mendable polymers. Journal of Materials Chemistry, 18, 41–62 (2008).

[69] Bode R.: Stretch-broken carbon fiber yarns for a heating device. U.S. Patent 20100051605 A1, USA (2010).

[70] Chung D. D. L.: Electrical applications of carbon materials. J. Mater. Sci., 39, 2645–2661 (2004).

[71] Aripin A. B., Yamamoto T., Nishi M., Hayakawa K.: Electromagnetic shielding property of laminated carbon fiber tape reinforced thermoplastics. Polymer- Plastics Technology and Materials, 59, 1308–1316 (2020).

[72] https://www.ipitaka.com/blogs/news/carbon-fiber-phone-cases-just-say-no (2017.09.28.)

[73] Gagné M., Therriault D.: Lightning strike protection of composites. Progress in Aerospace Sciences, 64, 1–16 (2014).

[74] Li Y., Li R., Lu L., Huang X.: Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Composites Part A: Applied Science and Manufacturing, 79, 164–175 (2015).

[75] Kumar V., Yokozeki T., Okada T., Hirano Y., Goto T., Takahashi T., Ogasawara T.: Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages. Composites Part A: Applied Science and Manufacturing, 114, 429–438 (2018).

[76] Molnár K., Szebényi G., Szolnoki B., Marosi G., Vas L. M., Toldy A.: Enhanced conductivity composites for aircraft applications: Carbon nanotube inclusion both in epoxy matrix and in carbonized electrospun nanofibers. Polymers for

Advanced Technologies, 25, 981–988 (2014).

[77] Dong Q., Guo Y., Sun X., Jia Y.: Coupled electrical-thermal-pyrolytic analysis of carbon fiber / epoxy composites subjected to lightning strike. Polymer, 56, 385–

394 (2015).

[78] Wang F. S., Ji Y. Y., Yu X. S., Chen H., Yue Z. F.: Ablation damage assessment of aircraft carbon fiber/epoxy composite and its protection structures suffered from lightning strike. Composite Structures, 145, 226–241 (2016).

[79] Shirshova N., Qian H., Shaffer M. S. P., Steinke J. H. G., Greenhalgh E. S., Curtis P. T., Kucernak A., Bismarck A.: Structural composite supercapacitors.

Composites Part A: Applied Science and Manufacturing, 46, 96–107 (2013).

[80] Shirshova N., Qian H., Houlí M., Steinke J. H. G., Kucernak A. R. J., Fontana Q.

P. V., Greenhalgh E. S., Bismarck A., Shaffer M. S. P.: Multifunctional structural energy storage composite supercapacitors. Faraday Discuss, 172, 81–103 (2014).

[81] Ferreira A. D. B. L. A. D. B. L. A. D. B. L., N??voa P. R. O., Marques A. T. A. T., Nóvoa P. R. O., Marques A. T. A. T.: Multifunctional Material Systems: A state- of-the-art review. Composite Structures, 151, 3–35 (2016).

[82] Moyer K., Meng C., Marshall B., Assal O., Eaves J., Perez D., Karkkainen R., Roberson L., Pint C. L.: Carbon fiber reinforced structural lithium-ion battery composite: Multifunctional power integration for CubeSats. Energy Storage Materials, 24, 676–681 (2020).

[83] Sierakowski R. L., Telitchev I. Y., Zhupanska O. I.: On the impact response of electrified carbon fiber polymer matrix composites: Effects of electric current intensity and duration. Composites Science and Technology, 68, 639–649 (2008).

[84] Barakati A., Zhupanska O. I.: Mechanical response of electrically conductive laminated composite plates in the presence of an electromagnetic field.

Composite Structures, 113, 298–307 (2014).

[85] Meiszel L.: Szénszálakról. in 'BME VBK Fizikai Kémia és Anyagtudományi Tanszék. (2017).

[86] Urzsumcev J. S., Makszimov R. D.: A műanyagok alakváltozása. Műszaki Könyvkiadó, Budapest (1982).

[87] Vas L. M., Bodor G.: Polimer anyagszerkezettan. Műegyetemi Kiadó, Budapest (2005).

[88] Greenhalgh E. S.: Failure analysis and fracture of polymer composites. 53, Woodhead Publishing, Cambridge (2013).

[89] Todoroki A.: Electric resistance change method for cure/strain/damage monitoring of CFRP laminates. Key Engineering Materials, 270–273, 1812–1820 (2004).

[90] Bashmal S., Siddiqui M., Arif A. F. M.: Experimental and numerical investigations on the mechanical characteristics of carbon fiber sensors. Sensors (Switzerland), 17, paper ID: 2026 (2017).

[91] Prasse T., Michel F., Mook G., Schulte K., Bauhofer W.: A comparative investigation of electrical resistance and acoustic emission during cyclic loading of CFRP laminates. Composites Science and Technology, 61, 831–835 (2001).

[92] Stone D. E. W., Dingwall P. F.: The Kaiser effect in stress wave emission testing of carbon fibre composites. Nature Physical Science, 241, 68–69 (1973).

[93] Shkuratnik V. L., Nikolenko P. V.: Spectral Characteristics of Acoustic Emission in Carbon Fiber-Reinforced Composite Materials Subjected to Cyclic Loading.

Advances in Materials Science and Engineering, 2018, paper ID: 1962679 (2018).

[94] Abry J. C., Choi Y. K., Chateauminois A., Dalloz B., Giraud G., Salvia M.: In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Composites Science and Technology, 61, 855–864 (2001).

[95] Vavouliotis A., Paipetis A., Kostopoulos V.: On the fatigue life prediction of CFRP laminates using the electrical resistance change method. Composites Science and Technology, 71, 630–642 (2011).

[96] Angelidis N., Khemiri N., Irving P. E.: Experimental and finite element study of the electrical potential technique for damage detection in CFRP laminates. Smart Materials and Structures, 14, 147–154 (2005).

[97] Todoroki A., Tanaka M., Shimamura Y.: Electrical resistance change method for monitoring delaminations of CFRP laminates: Effect of spacing between electrodes. Composites Science and Technology, 65, 37–46 (2005).

[98] Todoroki A., Omagari K., Shimamura Y., Kobayashi H.: Matrix crack detection of CFRP using electrical resistance change with integrated surface probes.

Composites Science and Technology, 66, 1539–1545 (2006).

[99] Wang S., Kowalik D. P., Chung D. D. L.: Self-sensing attained in carbon-fiber–

polymer-matrix structural composites by using the interlaminar interface as a sensor. Smart Materials and Structures, 13, 570–592 (2004).

[100] Chung D. D. L.: Continuous carbon fiber polymer-matrix composites and their joints, studied by electrical measurements. Polymer Composites, 22, 250–270 (2001).

[101] Wang S., Mei Z., Chung D. D. L.: Interlaminar damage in carbon fiber polymer- matrix composites, studied by electrical resistance measurement. International Journal of Adhesion and Adhesives, 21, 465–471 (2001).

[102] Grammatikos S. A., Kordatos E. Z., Matikas T. E., David C., Paipetis A. S.:

Current injection phase thermography for low-velocity impact damage identification in composite laminates. Materials & Design, 55, 429–441 (2014).

[103] Amaro A. M., Reis P. N. B., Santos J. B., Santos M. J., Neto M. A.: Effect of the electric current on the impact fatigue strength of CFRP composites. Composite Structures, 182, 191–198 (2017).

[104] Friedrich K., Breuer U.: Multifunctionality of polymer composites: Challenges and new solutions. William Andrew, Oxford (2015).

[105] Grammatikos S. A., Paipetis A. S.: On the electrical properties of multi scale reinforced composites for damage accumulation monitoring. Composites Part B:

Engineering, 43, 2687–2696 (2012).

[106] Böger L., Wichmann M. H. G., Meyer L. O., Schulte K.: Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Composites Science and Technology, 68, 1886–

1894 (2008).

[107] Gao L., Thostenson E. T., Zhang Z., Byun J. H., Chou T. W.: Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks. Philosophical Magazine, 90, 4085–4099 (2010).

[108] Chow W. S., Ishak Z. A. M.: Smart polymer nanocomposites : A review. Express Polymer Letters, 14, 416–435 (2020).

[109] Tallman T. N., Gungor S., Wang K. W., Bakis C. E.: Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler. Structural Health Monitoring: An International Journal, 14, 100–109 (2015).

[110] Park J. M., Kim D. S., Kim S. J., Kim P. G., Yoon D. J., DeVries K. L.: Inherent sensing and interfacial evaluation of carbon nanofiber and nanotube/epoxy composites using electrical resistance measurement and micromechanical technique. Composites Part B: Engineering, 38, 847–861 (2007).

[111] Pinto B., Kern S., Ku-Herrera J. J., Yasui J., La Saponara V., Loh K. J., Saponara V. La, Loh K. J., La Saponara V., Loh K. J.: A comparative study of a self strain- monitoring carbon nanotube film and carbon fibers under flexural loading by electrical resistance changes. Journal of Physics: Conference Series, 628, paper ID: 12098 (2015).

[112] Forintos N., Czigany T.: Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers – A short review. Composites Part B: Engineering, 162, 331–343 (2019).

[113] https://www.compositesworld.com/news/bmw-chooses-sgl-carbon-as- supplier-for-inext (2019.02.01.)

[114] https://www.compositesworld.com/news/sgl-carbon-hyundai-motor-group- extend-partnership-for-fuel-cell-components (2019.12.11.)

[115] https://www.compositesworld.com/news/sgl-carbon-to-build-composite- battery-enclosures-for-north-american-automaker (2020.01.17.)

[116] https://www.compositesworld.com/news/solvay-sgl-to-develop-large-tow- carbon-fiber-materials-for-aerospace (2019.12.11.)

[117] www.sglgroup.com (2020.07.10.)

[118] www.ipox-chemicals.de/en/ (2020.01.16.)

[119] Heany M. B.: Electrical conductivity and resistivity. in 'Electrical measurement signal, processing and displays' (szerk.: Webster J. G.) CRC Press, Boca Raton, 7/1-7/14 (2003).

[120] Sánta B., Balogh Z., Gubicza A., Pósa L., Krisztián D., Mihály G., Csontos M., Halbritter A.: Universal 1/ f type current noise of Ag filaments in redox-based memristive nanojunctions. Nanoscale, 11, 4719–4725 (2019).

[121] MSZ EN ISO 527:1999 szabvány: Műanyagok - a húzási tulajdonságok meghatározása. (1999).

[122] MSZ EN ISO 14125:1998 szabvány: Szálerősített műanyag kompozitok - hajlítási tulajdonságok meghatározása. (1999).

[123] ISO 13003:2003 szabvány: Fiber-reinforced plastics - determination of fatigue properties under cyclic loading conditions. (2003).

[124] Rácz Zs.: Egyirányban erősített kompozit rudak hajlító karakterisztikájának és tönkremeneteli folyamatának elemzése. PhD értekezés, Budapesti Műszaki és Gazdaságtudományi Egyetem, (2006).

[125] Forintos N., Sarkadi T., Boros Cs. Ö., Czigány T.: Multifunctional carbon fiber sensors: The effect of anisotropic electrical conductivity. IEEE Sensors Journal, 21, 8960–8968 (2021).

[126] Forintos N., Czigany T.: Multifunctional carbon fiber reinforced polymer composite structures: Reinforcing and sensing. in '6th International Conference

on Sensors Engineering and Electronics Instrumentation Advances (SEIA’ 2020).

Porto, Portugália' 162–166 (2020).

[127] Crasto A. S., Kim R. Y.: Using carbon fiber piezoresistivity to measure residual stresses in composites. Proceedings of the American Society for Composites, 8, 162–173 (1993).

[128] Jellonek A., Karkowski Z.: Elektronikus mérőműszerek tervezése. Műszaki Könyvkiadó, Budapest (1965).

[129] Takahashi K., Hahn H. T.: Investigation of temperature dependency of electrical resistance changes for structural management of graphite/polymer composite.

Journal of Composite Materials, 45, 2603–2611 (2011).

[130] Czifra Á., Drégelyi-Kiss Á., Galla J., Huba A., Kis F., Petróczki K.: Méréstechnika.

Typotex Kiadó, Budapest (2012).

[131] Beenakker C., Schönenberger C.: Quantum shot noise. Physics Today, 56, 37–42 (2003).

[132] Spietz L., Lehnert K. W., Siddiqi I., Schoelkopf R. J.: Primary electronic thermometry using the shot noise of a tunnel junction. Science, 300, 1929–1932 (2016).

[133] Hajimiri A., Lee T. H.: The design of low noise oscillators. Kluwer, Dordrecht (1999).

[134] Balandin A. A.: Low-frequency 1/f noise in graphene devices. Nature Nanotechnology, 8, 549–555 (2013).

[135] Hooge F. N.: 1/f nois sources. IEEE Transactions on Electron Devices, 41, 1926–

1935 (1994).

[136] Forintos N.: Kompozitba építhető elektromosan vezető szenzor alkalmazása.

diplomamunka, Diplomaterv, Budapest Műszaki és Gazdaságtudományi Egyetem, (2016).

[137] Forintos N., Czigány T.: Kompozitba épített elektromosan vezető érzékelő.

Polimerek, 2, 196–199 (2016).

[138] Forintos N., Czigany T.: Üvegszál erősítésű kompozitok deformációjának mérése szénszálak segítségével. in 'OGÉT 2017: XXV. Nemzetközi Gépészeti Konferencia. Kolozsvár, Románia' 147–150 (2017).

[139] Czigany T., Forintos N., Hegedus G.: Health monitoring of high-performance polymer composites with multifunctional fibers. in '21st International Conference on Composite Materials. Xi’an, Kína' 3153/1-3153/8 (2017).

No documento PhD értekezés (páginas 110-121)