• Nenhum resultado encontrado

94

95

AlSi10MnMg(Fe) Test Parts Manufactured by Vacuum Assisted High Pressure Die Casting Technology, Materialstoday Proceedings, 2/10. pp. 4931-4938., 2015.

[19] NADCA, Standards for High Integrity and Structural Die Casting Process, NADCA Publication 6th Edition, 2-3. fejezet, 2015.

[20] Lia X., Xiong S.M., Guo Z.; Improved mechanical properties in vacuum-assist high pressure die casting of AZ91D alloy, J. Material Process Technol., pp. 1-7., 2016.

[21] Dong Xixi, Xiangzhen Zhu, Shouxun Ji: Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys, Journal of Materials Processing Tech., 266, 105-113., 2019.

[22] J.R. Davis: Aluminium and Aluminimum Alloys – ASM International, 351-416 oldal, 2001.

[23] ASM Handbook: Aluminum and Aluminum Alloys - ISBN_0-87170-496-X, 5. fejezet., 1995.

[24] Pásztor Gedeon, Szepessy Andrásné, Siklósi Péter, Osvald Zoltán: Könnyűfémek metallurgiája – Budapest, Tankönyvkiadó, 3-4. fejezet., 1991.

[25] Kékesi Tamás: Primer és szekunder alumínium-metallurgia, ME, 2019

[26] dr.-Ing. Werner Hesse, Key to Aluminium Alloys (Aluminium-Verlag, Düsseldorf) p. 88., 2008.

[27] MSZ EN 1780-1:2003, Alumínium és alumíniumötvözetek. Ötvözött alumíniumtömbök, segédötvözetek és -öntvények jelölése. 1. rész: Számjeles jelölési rendszer, 2003.

[28] Molnár Dániel: Öntészet alapjai, előadás jegyzet, ME, 2020.

[29] Verő József: Fémtan, Tankönyvkiadó, Budapest, 1969.

[30] M.A. Talamates-Silva, A. Rodriguez, J. Talamantes-Silva, S. Valtierra, Rafael Colás, Characterization of an Al–Cu cast alloy, Materials Characterization, Volume 60, Issue 9, 1071- 72., 2009.

[31] Rheinfelden Alloy GmbG & Co. KG: Alloys for Pressure Die Casting (Rheinfelden Alloys) – D-79618 Rheinfelden, Friedrichstrasse 80., 2015.

[32] Varga Ferenc: Öntészeti Kézikönyv Műszaki Könyvkiadó, Budapest, 1985.

[33] Dobránszky J, Bernáth A, Orbulov I: Magnézium: a fém, mely nagyon könnyű, de fontosnak találtatott (1. rész) BKL-Kohászat, 5. sz., 33-40. oldal, 2005.

[34] Dobránszky J, Bernáth A, Orbulov I: Magnézium: a fém, mely nagyon könnyű, de fontosnak találtatott (2. rész) BKL-Kohászat, 6. sz., 33-40. oldal, 2005.

[35] Gácsi Zoltán, Mertinger Valéria, Fémtan, Educatio Társadalmi Szolgáltató Nonprofit Kft.

https://www.tankonyvtar.hu/hu/tartalom/tamop425/2011_0001_531_femtan/index.html 2019.

96

[36] Artinger I., Kator L., Ziaja Gy., Új fémes szerkezetei anyagok és technológiák, Műszaki Könyvkiadó, Budapest, 1974.

[37] Artinger István, Kator Lajos, Romvári Pál, Fémek technológiája, Műszaki Könyvkiadó, Budapest, 1975.

[38] Johan A. Taylor, The effect of iron in Al-Si casting alloys, 35th Australian Foundry Institute National Conference, 2004.

[39] Lewis T., Fasoyinu F.A., Thomas J., Cousineau D., Castles T., Sahoo M., Casting characteristics of Al-Mg alloy 535 cast in permanent moulds, Material Science, V36, 27., 2002.

[40] Zsoldos Ibolya: Alumínium és ötvözetei, Korszerű anyagok és technológiák – Miskolci Egyetem, 2016.

[41] B. Suarez-Pena, J. Asensio-Lozano, Influence of Sr modification and Ti grain refinement on the morphology of Fe-rich precipitates in eutectic Al–Si die cast alloys, Scripta Material, Volume 54., Issue 9., 1543-1548., 2006.

[42] Kittiphan B., Effect of Oxide film, Fe-rich phase, Porosity and their Interactions on Tensile Properties of Cast Al-Si-Mg Alloys - PhD thesis, The University of Birmingham 2005.

[43] Fegyverneki György: Alumínium hengerfej öntvények repedés érzékenysége, PhD értekezés, ME, 2007.

[44] A. Niklas, A. Bakedano, S. Orden, M. da Silva, E. Nogués, A. I. Fernández-Calco, Effect of Microstructures and Casting Defects on the fatigue behavior of the high-pressure die-cast AlSi9Cu3(Fe), Procedia Structural Integrity, 7. 505-512. 2017.

[45] CEN/TR 16749:2020, Aluminium and aluminium alloys. Classification of Defects and Imperfections in High Pressure, Low Pressure and Gravity Die Cast Products, 2020.

[46] Franco Bonollo, Nicola Gremegna, The MUSIC guide to key-parameters in High Pressure Die Casting, Music Consortium, 2015.

[47] X.G. Hu, Q. Zhu, S.P. Midson, H.V. Atkinson, H.B. Dong, Z. Zhang, Y.L. Kang, Blistering in semi-solid die casting of aluminum alloys and its avoidance, Acta Materialia, 124. 446-455.

(2017)

[48] Q. Mingfan, K. Yonglin, T. Wenchuan, Q. Quanquan, L. Baoshun, Mictrostructure, mechanical properties and corrosion behavior of Rheo-HPDC a novel Al-8Si-Fe alloy, Materials Letters, 213. 378-382. (2018)

[49] Gyarmati Gábor, Fegyverneki György, Tokár Mónika, Mende Tamás, Alumíniumolvadékok kettős oxidhártya-tartalmának minősítése komputertomográfia segítségével, BKL, 153., 4., 2020.

[50] Xinjin Cao, John Campbell: Oxide inclusion defects in Al-Si-Mg cast alloys, Canadian Metallurgical Quarterly, 44/4, p. 435-448., 2005. https://doi.org/10.1179/cmq.2005.44.4.435 [51] Q.G. Wang, D. Apelian, D.A. Lados, Fatigue behavior of A356-T6 aluminum cast alloys.

Part I. Effect of casting defects, Journal of Light Metals, Volume 1., Issue 1., 73-84., 2001.

97

[52] Ghasem Eisaabadi B. Naser Varahram, Parviz Davami, Shae K.K., Effect of oxide bifilms on the mechanical properties of cast Al–7Si–0.3Mg alloy and the roll of runner height after filter on their formation, Material Science and Engineering: A, Volume 548, 99-105., 2012.

[53] Gyarmati, Gábor et al.: Controlled precipitation of intermetallic (Al,Si)3Ti compound particles on double oxide films in liquid aluminum alloys, Materials Characterization, 181, 2021.

[54] Q.G.Wang, P.N.Crepeau, C.J. Davidson, J.R.Griffiths, Oxide films, pores and the fatigue lives of cast aluminum alloys, Metallurgical and Materials Trans. B., 37., 887-895., 2006.

[55] J.H.Horng et al., The fracture behaviour of A356 alloys with different iron contents under resonant vibration, International Journal of Cast Metals, Volume 13., Issue 4, 2000.

[56] A. Zyska, Z. Konopka, M. Lagiewka, M. Nadolski, Porosity of Castings Procedure by the Vacuum Assisted Pressure Die Casting Method, Foundry Engineering, 1. 125-130., 2015.

[57] Szombatfalvy Anna, Járműipari öntészeti AlSi-ötvözetek tulajdonságainak vizsgálata, PhD értekezés, ME, 2012.

[58] C. Hanxue, H. Mengyao, S. Chao, L. Peng, The influence of different vacuum degree on the porosity and mechanical properties of aluminum die casting, Vacuum, 146. 278-281., 2017.

[59] ISO 68505-15: Standard Reference Radiographs for Inspection of Aluminum and Magnesium Die Castings, 2015.

[60] VDG P201: Volume Deficit of Non-Ferrous Metal Castings – VDG Specification, 2002.

[61] VDG P202: Volume Deficit of Castings Made from Aluminium, Magnesium, and Zinc Casting Alloys – VDG Specification, 2014.

[62] Tóth László: Roncsolásmentes vizsgálati módszerek – Miskolci Egyetem kiadó; 6. 7.

fejezet, 1999.

[63] BN-75/4051-10: Porosity of Casting by hydrostatic weighing, 1975.

[64] Z. Shiwei, S. Kun, H. Feng, Z. Fan, A new dropper-type gas flow measuring method based on weighing principle, Vacuum, 145. 203-208. 2017.

[65] ITS-90 Density of Water Formulation for Volumetric Standards Calibration, Journal of Research of the National Institute of Standards and Technology, 97, 3, 336-340. 1992.

[66] EN 1706:2013-12: Aluminium and aluminium alloys – Castings: Chemical composition and mechanical properties, 2013.

[67] Antonio Rotella, Yves Nadot, Mickael Piellard, Rémi Augustin, Michel Fleuriot: Fatigue limit of a cast Al-Si-Mg alloy (A357-T6) with natural casting shrinkages using ASTM standard X-ray inspection, International Journal of Fatigue, 2018; 114. 177-188.

[68] Qian WAN, Haidong ZHAO, Chun ZOU: Effect of Micro-porosities on Fatigue Behavior in Aluminum Die Castings by 3D X-ray Tomography Inspection, ISIJ International, 2014; 54, 511-515.

98

[69] Gianni Nicoletto, Radomila Konečná, StanislavaFintova, Characterization of microshrinkage casting defects of Al-Si alloys by X-ray computed tomography and metallography, International Journal of Fatigue 2012; 41 39-46.

[70] Szalay Zsolt, Alumínium-szilícium öntvények porozitás-kimutathatóságának pontosságnövelése roncsolásmentes vizsgálati módszerek alkalmazása esetén, BME, ATT, PhD. értekezés, 2001.

[71] David C. Jiles: Introduction to the Principles of Material Evaluation – Wolfson Centre for Magnetics, Institute for Advanced Materials and Energy Systems, Cardiff University, Cardiff, U.K.; Chapter 3., 6., 2007.

[72] ASTM E1695-20, Standard Test Method for Measurement of Computed Tomography (CT) System Performance, 2020.

[73] Alexandra KRAEMER, Gisela LANZA: Methodology for the evaluation of CT image quality in dimensional metrology, 19th World Conference on Non-Destructive Testing (WCNDT 2016), 2016.

[77] Edward M. Mielnik: Metalworking Science and Engineering – ISBN: 0-07-041904-3, McGraw-Hill, 1991.

[75] Krállics György, Anyagszerkezettan és anyagvizsgálat, Törés, előadásjegyzet, BME, 2015.

[76] Gál István: Anyagvizsgálat – Bsc. képzés előadás vázlata – Miskolci Egyetem Mechanikai Technológia Tanszék; 2007.

[77] M. Wicke, A. Brueckner-Foit, T. Kristen, M. Zimmermann, F. Buelbuel, H.-J. Christ:

Near-threshold crack extension mechanism in an aluminum alloy studied by sem and X-ray tomography, International Journal of Fatigue, 2019; 119., 102-111.

[78] Szakítóvizsgálat: MSZ EN ISO 6892-1:2020 – Fémek. Szakítóvizsgálat, 1. rész: Vizsgálat szobahőmérsékleten; 2020.

[79] D. Bin, J. Danyu, G. Jianghong, Is a three-parameter Weibull function really necessary for the characterization of the statistical variation of the strength of brittle ceramics?, Journal of the European Ceramic Society, 2018; 38:4. 2234-2242.

[80] Czoboly Ernő, Fémek és Szerkezetek Törése, Alkalmazott törésmechanika, Gépipari Tudományos Egyesület kiadványa, Budapest, 1986.

[81] Krállics György, Dmitry Malgyn, Fodor Árpád, Experimental Investigations of the Al 6082 Alloy Subjected to Equal-Channel Angular Pressing, Material Science Forum Volume 473, Issue 474, 129-134., 2005.

[82] Claude Bathias, André Pineau: Fatigue of Materials and Structures – Lavoisier, 2009. 1.

fejezet.

[83] M. Brown, K. Miller: Initiation and growth of cracks in biaxial fatigue – Fatigue of Engineering Material and Structures, vol. 1. pp. 231-246, 1979.

99

[84] A. Pineau: Low-cycle Fatigue, a C. Bathias, A. Pineau – Fatigue of Materials and Structures: Fundamentals, ISTE, London, John Wiley & Sons, New York, 2010.

[85] M. Robillard, G. Cailletaud: Directionally defined damage in multiaxial low cycle fatigue:

experimental evidence and tentative modelling – Fatigue Under Biaxial and Multiaxial Fatigue, Stuttgart, Germany, 1991.

[86] FKM Guideline: Analytical Strength Assessment of Components, Made of Steel, Cast Iron and Aluminum Materials in Mechanical Engineering – ISBN: 978-3-8163-0649-8, 6th revised Edition, 2013.

[87] H. Dietmann, T. Bonghibhat, A. Schmid: Multiaxial fatigue behavior of steels under in- phase and out-of-phase loading including different wave forms and frequencies – Third International Conference on Biaxial/Multiaxial Fatigue, Stuttgart, pp. 1-17, 1989.

[88] I. Papadopoulos, V. Panaskaltsis: Invariant formulation of a gradient depend multiaxial high-cycle fatigue criterion – Egineering Fracture Mechanics, vol. 55, no. 4, pp. 513-528, 1996.

[89] G. Sines: Failure of materials under combined repeated stresses with superimposed static stress – Report no. 3495, NACA, 1955.

[90] Peterson, R. E., Analytical approach to stress concentration effects in aircraft materials, U.

S. Air Force – WADC Symposium on Fatigue Metals, Dayton, Ohio, Technical Report 59-507, 1959.

[91] Neuber, H., Theory of Notch Stress, J.W. Edwards, Ann Arbor, MI, 1946.

[92] Heywood, R. B., Designing Against Failure, Chapman & Hall, London, 1962.

[93] Siebel, E. and Stieler, M., Significance of dissimilar stress distributions for cycling loading, VDI-Z., Bd 97, No. 5, 121-126., 1955.

[94] P. Mu, Y. Nadot, I. Serrano-Munoz, , A. Chabod: Multiaxial fatigue design of cast parts:

Influence of complex defect on cast AS7G06-T6, Engineering Fracture Mechanics, (2014), 131, 315-328, https://doi.org/10.1016/j.engfracmech.2014.08.007

[95] P. Mu, Y. Nadot, C. Nadot-Martin, A. Chabod, I. Serrano-Munoz, C. Verdu: Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6, International Journal of Fatigue, (2014), 63, 97-109, https://doi.org/10.1016/j.ijfatigue.2014.01.011

[96] Kobayashi M., Matsui T., Prediction of fatigue strength of aluminum casting alloys by the

√area parameter model, Trans. JSME, ser. A, 62., 594. 341-346., (1996)

[97] Murakami Y., Ikeda H., Toriyama T., Quantitative evaluation of effects of inhomogeneity phases on the fatigue strength of Al-Si new alloys, Proc.Int.Conf.Mech.Behavior Mater., ICM6, Kyoto (Japan), 433-438, (1991)

[98] Kitagawa H., Takahashi S., Applicability of fracture mechanics to very small cracks or cracks in the early stage. In: Proceedings of the second international conference on mech.

behaviour of metals. ASM, 627-631, (1976)

100

[99] Ciavarella M., Monno F., On the possible generalization of the Kitagawa–Takahashi diagram and of the El Haddad equation of finite life, International Journal of Fatigue, 28., 1826- 1837., (2006)

[100] Murakami Y., Materials defects as the basis of fatigue design, International Journal of Fatigue, 41., 2-10., (2012), https://doi.org/10.1016/j.ijfatigue.2011.12.001

[101] H. Rockenschaub, T. Pabel, G. Geier, M. Hopfinger, „Beschleunigung der Auslagerungsvorgänge der Druckgusslegierung AlSi9Cu3(Fe) bei gleichzeitiger Erhöhung der mechanischen Eigenschaften – Teil 1“, Druckguss-Praxis, 3/2005, S. 95-104.

[102] Abdel Illah Nabil Korti, Said Abboudi, Effects of Shot Sleeve Filling on Evolution of the Free Surface and Solidification in the High-Pressure Die Casting Machine, IJMC, 11/2. (2017) DOI 10.1007/s40962-016-0051-5

[103] Jenő DÚL, Zsolt LESKÓ, Effect of composition and wall thickness on mechanical properties of high pressure die castings, Material Science Forum Vols. 790-791, 241-246. old., 2014.

[104] Gianni Nicoletto, Radomila Konečná, StanislavaFintova, Characterization of microshrinkage casting defects of Al-Si alloys by X-ray computed tomography and metallography, International Journal of Fatigue, 41., 39-46., 2012.

[105] VGStudioMAX 3.2 Software (VG.034-EN.v03_B I 11.2014.), Volume Graphics GMBH, Heidelberg, Germany, 2014.

[106] B. Oberdorfer, E. Kaschnitz, D. Habe, H. Holzer, G. Schindelbacher, P. Schumacher:

New method of enhanced quality assessment for Al-castings by computed tomography, Proceedings 5th Conference on Industrial Computed Tomography (iCT), Wels, Austria, Shaker Verlag; 133., 2014.

[107] D. Roylance, K.C. Cohen, C.H. Jenkins, S.K. Khana: Mechanics of materials: A material science perspective, 215/3, p. 141-145., 2001. https://doi.org/10.1243/1464420011544987 [108] Imade Koutiri, Daniel Bellett, Franck Morel, Louis Augustins, Jérome Adrien: High cycle fatigue damage mechanisms in cast aluminum subject to complex loads, International Journal of Fatigue, 47, p. 44-57, 2013. https://doi.org/10.1016/j.ijfatigue.2012.07.008

[109] J. Linder, A. Arvidsson, J. Kron: The influence of porosity on the fatigue strength of high- pressure die cast aluminium, Fatigue & Fracture of Engineering Materilas & Structures, 29/5, p. 357-363, 2006. https://doi.org/10.1111/j.1460-2695.2006.00997.x

[110] EN ISO 6507‒1:2018, Fémek. Vickers-keménységmérése. 1. rész: Mérési eljárás, 2018.

[111] Yung-Li Lee, Jwo Pan, Richard B. Hathaway, Mark E. Barkey, Fatigue Testing and Analysis, Theory and Practice, Elsevier Butterworth-Heinemann, ISBN 0-7506-7719-8, 2005.

[112] Krewerth D., Lippman T., Weidner A., Bierman H., Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime, International Journal of Fatigue, 84., 40- 52., (2016), https://doi.org/10.1016/j.ijfatigue.2015.11.001

101

[113] Murakami Y., Effects of Small Defects and Nonmetallic Inclusion, Metal Fatigue, JSME, 1., (2002)

[114] Rotella A, Nadot Y, Piellard M, Augustin R, Fleuriot M, Influence of defect morphology and position on the fatigue limit of cast Al alloy. MS&Eng. A, 2020; 785.

[115] Murakami Y., Beretta S., Small Defects and Inhomogeneities in Fatigue Strength:

Experient, Model and Statistical Implication, Extremes 2:2, 123-147. (1999)

[116] Linder J., Arvidsson A., Kron J., The influence of porosity on the fatigue strength of high- pressure die cast aluminium, Fatigue Fract. Engng. Material Struct., 29. 357-363., (2006) [117] Linder J, The influence of surrounding environment on the fatigue properties for a high pressure die cast AlSi9Cu3 alloy. Fatigue&Fract. Eng. Material Struct., 2007; 30. 759-765.

102

12.1. A tézisekhez kapcsolódó saját publikációk

[118] Szalva P., Orbulov I.N.: The effect of vacuum on the mechanical properties of die cast aluminum AlSi9Cu3(Fe) alloy, International Journal of Metalcasting (IJMC), 13, 4, 853-864 (2019), DOI: 10.1007/s40962-018-00302-z; IF: 0,779

[119] Szalva P., Orbulov I.N.: The effect of vacuum degree on the porosity and mechanical properties of die cast AlSi9Cu3(Fe) alloy by life data analysis, Resolution and Discovery (RaD), 3, 2, 33-38 (2018), DOI: 10.1556/2051.2018.00061; IF: -

[120] Szalva P., Orbulov I.N.: Influence of vacuum support on the fatigue life of AlSi9Cu3(Fe) aluminum alloy die castings, Journal of Materials Engineering and Performance (JMEP), 29., 9, 5685-5695., (2020) DOI: 10.1007/s11665-020-05050-y; IF: 1,476

[121] Szalva P., Orbulov I.N.: Fatigue testing and non-destructive characterization of AlSi9Cu3(Fe) die cast specimens by computer tomography, Fatigue & Fracture of Engineering Materials & Structures (FFEMS), 43, 9, 1949-1958 (2020) DOI: 10.1111/ffe.13249; IF: 2,555 [122] Szalva P.: Vákuum támogatott nyomásos alumínium öntvények fogyóelektródás védőgázos hegesztése, BKL (Bányászati és Kohászati Lapok) – Kohászat 151., 1., 14-18 (2018) [123] Szalva P.: A vákuumos kilevegőzés hatása a nyomásos alumínium öntvények mechanikai tulajdonságaira, BKL (Bányászati és Kohászati Lapok) – Kohászat 152., 5-6., 9-15 (2019) [124] Szalva P., Orbulov I.N.: A vákuumos kilevegőzés hatása a nyomásos öntéssel gyártott alumíniumöntvények kifáradási tulajdonságaira, BKL (Bányászati és Kohászati Lapok) - Kohászat 153., 4., 23-29 (2020)

[125] Szalva P., Orbulov I.N.: Effects of artificial and natural defects on fatigue strength of a cast aluminum alloy, Fatigue & Fracture of Engineering Materials & Structures (FFEMS), Vol., Issue, 1-5 (2021) DOI: https://doi.org/10.1111/ffe.13564, IF: 3,031

[126] Farkas A., Somoskői G. Szalva P., Nyomásos öntéssel készült autóipari alkatrészek robotos hegesztése, Konferencia kiadvány: 29. Nemzetközi Hegesztési Konferencia (ISBN:

978-963-358-160-5) 99-110 (2018)

103