• Nenhum resultado encontrado

Akeda, Y., and Galán, J.E. (2005). Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915.

Anderson, D.M., and Schneewind, O. (1997). A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278, 1140–1143.

Auvray, F., Thomas, J., Fraser, G.M., and Hughes, C. (2001). Flagellin polymerisation control by a cytosolic export chaperone1 1Edited by I. B. Holland. J. Mol. Biol. 308, 221–229.

Auvray, F., Ozin, A.J., Claret, L., and Hughes, C. (2002). Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. J. Mol. Biol. 318, 941–

950.

Bachmann, A., Wildemann, D., Praetorius, F., Fischer, G., and Kiefhaber, T. (2011). Mapping backbone and side-chain interactions in the transition state of a coupled protein folding and binding reaction. Proc. Natl. Acad. Sci. U. S. A. 108, 3952–3957.

Badger, J., Sauder, J.M., Adams, J.M., Antonysamy, S., Bain, K., Bergseid, M.G., Buchanan, S.G., Buchanan, M.D., Batiyenko, Y., Christopher, J.A., et al. (2005). Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins 60, 787–796.

Baldwin, R.L., and Rose, G.D. (2013). Molten globules, entropy-driven conformational change and protein folding. Curr. Opin. Struct. Biol. 23, 4–10.

Bange, G., Kummerer, N., Engel, C., Bozkurt, G., Wild, K., and Sinning, I. (2010). FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system.

Proc. Natl. Acad. Sci. 107, 11295–11300.

Blocker, A., Komoriya, K., and Aizawa, S.-I. (2003). Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl. Acad. Sci. U. S. A. 100, 3027–3030.

Bruch, M.D., McKnight, C.J., and Gierasch, L.M. (1989). Helix formation and stability in a signal sequence. Biochemistry (Mosc.) 28, 8554–8561.

Buttner, D. (2012). Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria. Microbiol.

Mol. Biol. Rev. 76, 262–310.

Chevance, F.F.V., and Hughes, K.T. (2008). Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465.

Chilcott, G.S., and Hughes, K.T. (1998). The type III secretion determinants of the flagellar anti- transcription factor, FlgM, extend from the amino-terminus into the anti-sigma28 domain. Mol.

Microbiol. 30, 1029–1040.

83

Claret, L., Calder, S.R., Higgins, M., and Hughes, C. (2003). Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly: Flagellar ATPase. Mol. Microbiol. 48, 1349–

1355.

Costa, T.R.D., Felisberto-Rodrigues, C., Meir, A., Prevost, M.S., Redzej, A., Trokter, M., and Waksman, G. (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359.

Diepold, A., and Armitage, J.P. (2015). Type III secretion systems: the bacterial flagellum and the injectisome. Philos. Trans. R. Soc. B Biol. Sci. 370, 20150020.

Ehrbar, K., Winnen, B., and Hardt, W.-D. (2006). The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Mol. Microbiol. 59, 248–264.

Eisenbach, Michael (2011). Bacterial Chemotaxis. ELS John Wiley Sons Ltd Chichester.

http://www.els.net (doi: 10.1002/9780470015902.a0001251.pub3).

Erhardt, M., Namba, K., and Hughes, K.T. (2010). Bacterial Nanomachines: The Flagellum and Type III Injectisome. Cold Spring Harb. Perspect. Biol. 2, a000299–a000299.

Evans, L.D.B., Stafford, G.P., Ahmed, S., Fraser, G.M., and Hughes, C. (2006). An escort mechanism for cycling of export chaperones during flagellum assembly. Proc. Natl. Acad. Sci.

103, 17474–17479.

Evans, L.D.B., Hughes, C., and Fraser, G.M. (2014). Building a flagellum outside the bacterial cell.

Trends Microbiol. 22, 566–572.

Evdokimov, A.G., Phan, J., Tropea, J.E., Routzahn, K.M., Peters, H.K., Pokross, M., and Waugh, D.S. (2003). Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion. Nat. Struct. Biol. 10, 789–793.

Fan, F., and Macnab, R.M. (1996). Enzymatic characterization of FliI. An ATPase involved in flagellar assembly in Salmonella typhimurium. J. Biol. Chem. 271, 31981–31988.

Ferris, H.U., Furukawa, Y., Minamino, T., Kroetz, M.B., Kihara, M., Namba, K., and Macnab, R.M.

(2005). FlhB regulates ordered export of flagellar components via autocleavage mechanism. J.

Biol. Chem. 280, 41236–41242.

Fraser, G.M., Bennett, J.C., and Hughes, C. (1999). Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol. Microbiol. 32, 569–

580.

Fraser, G.M., Hirano, T., Ferris, H.U., Devgan, L.L., Kihara, M., and Macnab, R.M. (2003a).

Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol. Microbiol. 48, 1043–1057.

Fraser, G.M., González-Pedrajo, B., Tame, J.R.H., and Macnab, R.M. (2003b). Interactions of FliJ with the Salmonella type III flagellar export apparatus. J. Bacteriol. 185, 5546–5554.

Galán, J.E., and Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573.

84

Galeva, A., Moroz, N., Yoon, Y.-H., Hughes, K.T., Samatey, F.A., and Kostyukova, A.S. (2014).

Bacterial Flagellin-Specific Chaperone FliS Interacts with Anti-Sigma Factor FlgM. J. Bacteriol.

196, 1215–1221.

González-Pedrajo, B., Fraser, G.M., Minamino, T., and Macnab, R.M. (2002). Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol. Microbiol. 45, 967–982.

Hara, N., Morimoto, Y.V., Kawamoto, A., Namba, K., and Minamino, T. (2012). Interaction of the Extreme N-Terminal Region of FliH with FlhA Is Required for Efficient Bacterial Flagellar Protein Export. J. Bacteriol. 194, 5353–5360.

Hirano, T., Minamino, T., Namba, K., and Macnab, R.M. (2003). Substrate specificity classes and the recognition signal for Salmonella type III flagellar export. J. Bacteriol. 185, 2485–2492.

Homma, M., Fujita, H., Yamaguchi, S., and Iino, T. (1984). Excretion of unassembled flagellin by Salmonella typhimurium mutants deficient in hook-associated proteins. J. Bacteriol. 159, 1056–

1059.

Hu, B., Morado, D.R., Margolin, W., Rohde, J.R., Arizmendi, O., Picking, W.L., Picking, W.D., and Liu, J. (2015). Visualization of the type III secretion sorting platform of Shigella flexneri. Proc.

Natl. Acad. Sci. 112, 1047–1052.

Ibuki, T., Imada, K., Minamino, T., Kato, T., Miyata, T., and Namba, K. (2011). Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat.

Struct. Mol. Biol. 18, 277–282.

Iino, T., Komeda, Y, Kutsukake, K., Macnab, R.M., Matsumura, P., Parkinson, J.S., Simon, M.I., and Yamaguchi, S. (1988). New Unified Nomenclature for the Flagellar Genes of Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 52, 533–535.

Ikeda, T., Kamiya, R., and Yamaguchi, S. (1983). Excretion of flagellin by a short-flagella mutant of Salmonella typhimurium. J. Bacteriol. 153, 506–510.

Imada, K., Minamino, T., Tahara, A., and Namba, K. (2007). Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc. Natl. Acad. Sci. 104, 485–490.

Imada, K., Minamino, T., Kinoshita, M., Furukawa, Y., and Namba, K. (2010). Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners. Proc. Natl. Acad. Sci. 107, 8812–8817.

Jehl, M.-A., Arnold, R., and Rattei, T. (2011). Effective--a database of predicted secreted bacterial proteins. Nucleic Acids Res. 39, D591–D595.

Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.

Karavolos, M.H., Roe, A.J., Wilson, M., Henderson, J., Lee, J.J., Gally, D.L., and Khan, C.M.A.

(2005). Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence. J. Bacteriol. 187, 1559–1567.

85

Kawamoto, A., Morimoto, Y.V., Miyata, T., Minamino, T., Hughes, K.T., Kato, T., and Namba, K.

(2013). Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 3.

Kazetani, K., Minamino, T., Miyata, T., Kato, T., and Namba, K. (2009). ATP-induced FliI hexamerization facilitates bacterial flagellar protein export. Biochem. Biophys. Res. Commun.

388, 323–327.

Kiianitsa, K., Solinger, J.A., and Heyer, W.-D. (2003). NADH-coupled microplate photometric assay for kinetic studies of ATP-hydrolyzing enzymes with low and high specific activities. Anal.

Biochem. 321, 266–271.

Kinoshita, M., Hara, N., Imada, K., Namba, K., and Minamino, T. (2013). Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament: Interactions of flagellar chaperones with FlhA. Mol. Microbiol. 90, 1249–1261.

Kjaergaard, M., Teilum, K., and Poulsen, F.M. (2010). Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc. Natl. Acad. Sci. U. S. A. 107, 12535–12540.

Kojima, S., Furukawa, Y., Matsunami, H., Minamino, T., and Namba, K. (2008). Characterization of the Periplasmic Domain of MotB and Implications for Its Role in the Stator Assembly of the Bacterial Flagellar Motor. J. Bacteriol. 190, 3314–3322.

Komoriya, K., Shibano, N., Higano, T., Azuma, N., Yamaguchi, S., and Aizawa, S.I. (1999). Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34, 767–779.

Kornacker, M.G., and Newton, A. (1994). Information essential for cell-cycle-dependent secretion of the 591-residue Caulobacter hook protein is confined to a 21-amino-acid sequence near the N-terminus. Mol. Microbiol. 14, 73–85.

Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galán, J.E., and Aizawa, S.I. (1998). Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605.

Kuwajima, G., Kawagishi, I., Homma, M., Asaka, J., Kondo, E., and Macnab, R.M. (1989). Export of an N-terminal fragment of Escherichia coli flagellin by a flagellum-specific pathway. Proc. Natl.

Acad. Sci. U. S. A. 86, 4953–4957.

Lam, W.W.L., Woo, E.J., Kotaka, M., Tam, W.K., Leung, Y.C., Ling, T.K.W., and Au, S.W.N. (2010).

Molecular interaction of flagellar export chaperone FliS and cochaperone HP1076 in Helicobacter pylori. FASEB J. 24, 4020–4032.

Lipschultz, C.A., Li, Y., and Smith-Gill, S. (2000). Experimental design for analysis of complex kinetics using surface plasmon resonance. Methods San Diego Calif 20, 310–318.

Lloyd, S.A., Norman, M., Rosqvist, R., and Wolf-Watz, H. (2001). Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol. Microbiol. 39, 520–531.

Macnab, R.M. (2003). How Bacteria Assemble Flagella. Annu. Rev. Microbiol. 57, 77–100.

86

Majander, K., Anton, L., Antikainen, J., Lång, H., Brummer, M., Korhonen, T.K., and Westerlund- Wikström, B. (2005). Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus. Nat. Biotechnol. 23, 475–481.

Micsonai, A., Wien, F., Kernya, L., Lee, Y.-H., Goto, Y., Réfrégiers, M., and Kardos, J. (2015).

Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 112, E3095–E3103.

Minamino, T. (2014). Protein export through the bacterial flagellar type III export pathway.

Biochim. Biophys. Acta BBA - Mol. Cell Res. 1843, 1642–1648.

Minamino, T., and Macnab, R.M. (2000a). Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J. Bacteriol. 182, 4906–4914.

Minamino, T., and Macnab, R.M. (2000b). FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol.

Microbiol. 37, 1494–1503.

Minamino, T., and Macnab, R.M. (2000c). Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol. 35, 1052–1064.

Minamino, T., and Namba, K. (2008). Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451, 485–488.

Minamino, T., Chu, R., Yamaguchi, S., and Macnab, R.M. (2000). Role of FliJ in Flagellar Protein Export in Salmonella. J. Bacteriol. 182, 4207–4215.

Minamino, T., Gonzalez-Pedrajo, B., Kihara, M., Namba, K., and Macnab, R.M. (2003). The ATPase FliI Can Interact with the Type III Flagellar Protein Export Apparatus in the Absence of Its Regulator, FliH. J. Bacteriol. 185, 3983–3988.

Minamino, T., Kazetani, K., Tahara, A., Suzuki, H., Furukawa, Y., Kihara, M., and Namba, K. (2006).

Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. J. Mol. Biol. 360, 510–519.

Minamino, T., Imada, K., and Namba, K. (2008a). Mechanisms of type III protein export for bacterial flagellar assembly. Mol. Biosyst. 4, 1105.

Minamino, T., Imada, K., and Namba, K. (2008b). Molecular motors of the bacterial flagella. Curr.

Opin. Struct. Biol. 18, 693–701.

Minamino, T., Yoshimura, S.D.J., Morimoto, Y.V., González-Pedrajo, B., Kami-ike, N., and Namba, K. (2009). Roles of the extreme N-terminal region of FliH for efficient localization of the FliH–FliI complex to the bacterial flagellar type III export apparatus: Localization of Salmonella FliH–FliI complex. Mol. Microbiol. 74, 1471–1483.

Minamino, T., Morimoto, Y.V., Hara, N., and Namba, K. (2011). An energy transduction mechanism used in bacterial flagellar type III protein export. Nat. Commun. 2, 475.

Minamino, T., Kinoshita, M., Imada, K., and Namba, K. (2012). Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export: Interaction between FliI and FliT. Mol. Microbiol. 83, 168–178.

87

Minamino, T., Morimoto, Y.V., Kinoshita, M., Aldridge, P.D., and Namba, K. (2014). The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci. Rep. 4, 7579.

Mok, K.H., Nagashima, T., Day, I.J., Hore, P.J., and Dobson, C.M. (2005). Multiple subsets of side- chain packing in partially folded states of alpha-lactalbumins. Proc. Natl. Acad. Sci. U. S. A. 102, 8899–8904.

Muskotál, A., Király, R., Sebestyén, A., Gugolya, Z., Végh, B.M., and Vonderviszt, F. (2006).

Interaction of FliS flagellar chaperone with flagellin. FEBS Lett. 580, 3916–3920.

Namba, K. (2001). Roles of partly unfolded conformations in macromolecular self-assembly.

Genes Cells Devoted Mol. Cell. Mech. 6, 1–12.

Nelson, J.W., and Kallenbach, N.R. (1986). Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins 1, 211–217.

Ohnishi, K., Ohto, Y., Aizawa, S., Macnab, R.M., and Iino, T. (1994). FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J. Bacteriol. 176, 2272–2281.

Ozin, A.J., Claret, L., Auvray, F., and Hughes, C. (2003). The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiol. Lett. 219, 219–224.

Pallen, M.J. (2006). Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases. Protein Sci.

15, 935–941.

Parrish, J.R., Yu, J., Liu, G., Hines, J.A., Chan, J.E., Mangiola, B.A., Zhang, H., Pacifico, S., Fotouhi, F., DiRita, V.J., et al. (2007). A proteome-wide protein interaction map for Campylobacter jejuni.

Genome Biol. 8, R130.

Paul, K., Erhardt, M., Hirano, T., Blair, D.F., and Hughes, K.T. (2008). Energy source of flagellar type III secretion. Nature 451, 489–492.

Pervushin, K., Vamvaca, K., Vögeli, B., and Hilvert, D. (2007). Structure and dynamics of a molten globular enzyme. Nat. Struct. Mol. Biol. 14, 1202–1206.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. J.

Comput. Chem. 25, 1605–1612.

Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., et al. (2013). GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinforma. Oxf. Engl. 29, 845–854.

Radics, J., Königsmaier, L., and Marlovits, T.C. (2013). Structure of a pathogenic type 3 secretion system in action. Nat. Struct. Mol. Biol. 21, 82–87.

Rain, J.C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schächter, V., et al. (2001). The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215.

88

Ranjbar, B., and Gill, P. (2009). Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem. Biol. Drug Des. 74, 101–120.

Roche, D.B., Buenavista, M.T., Tetchner, S.J., and McGuffin, L.J. (2011). The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction. Nucleic Acids Res. 39, W171–W176.

Samudrala, R., Heffron, F., and McDermott, J.E. (2009). Accurate Prediction of Secreted Substrates and Identification of a Conserved Putative Secretion Signal for Type III Secretion Systems. PLoS Pathog. 5, e1000375.

Scheurwater, E.M., and Burrows, L.L. (2011). Maintaining network security: how macromolecular structures cross the peptidoglycan layer. FEMS Microbiol. Lett. 318, 1–9.

Schraidt, O., and Marlovits, T.C. (2011). Three-Dimensional Model of Salmonella’s Needle Complex at Subnanometer Resolution. Science 331, 1192–1195.

Silva-Herzog, E., and Dreyfus, G. (1999). Interaction of FliI, a component of the flagellar export apparatus, with flagellin and hook protein. Biochim. Biophys. Acta 1431, 374–383.

Singer, H.M., Erhardt, M., and Hughes, K.T. (2014). Comparative analysis of the secretion capability of early and late flagellar type III secretion substrates. Mol. Microbiol. 93, 505–520.

Sun, Y.-H., Rolán, H.G., and Tsolis, R.M. (2007). Injection of flagellin into the host cell cytosol by Salmonella enterica serotype Typhimurium. J. Biol. Chem. 282, 33897–33901.

Thomas, J., Stafford, G.P., and Hughes, C. (2004). Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc. Natl. Acad. Sci.

101, 3945–3950.

Tsien, R.Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

Vamvaca, K., Vögeli, B., Kast, P., Pervushin, K., and Hilvert, D. (2004). An enzymatic molten globule: efficient coupling of folding and catalysis. Proc. Natl. Acad. Sci. U. S. A. 101, 12860–

12864.

Végh, B.M., Gál, P., Dobó, J., Závodszky, P., and Vonderviszt, F. (2006). Localization of the flagellum-specific secretion signal in Salmonella flagellin. Biochem. Biophys. Res. Commun. 345, 93–98.

Vogler, A.P., Homma, M., Irikura, V.M., and Macnab, R.M. (1991). Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J. Bacteriol. 173, 3564–3572.

Vonderviszt, F., Kanto, S., Aizawa, S.-I., and Namba, K. (1989). Terminal regions of flagellin are disordered in solution. J. Mol. Biol. 209, 127–133.

Vonderviszt, F., Ishima, R., Akasaka, K., and Aizawa, S. (1992). Terminal disorder: a common structural feature of the axial proteins of bacterial flagellum? J. Mol. Biol. 226, 575–579.

Documentos relacionados