• Nenhum resultado encontrado

108

109 10. Beutel S, Henkel S. In situ sensor techniques in modern bioprocess monitoring. Appl

Microbiol Biotechnol. 2011;91(6):1493-1505. doi:10.1007/s00253-011-3470-5

11. Teixeira AP, Oliveira R, Alves PM, Carrondo MJT. Advances in on-line monitoring and control of mammalian cell cultures: Supporting the PAT initiative. Biotechnol Adv.

2009;27(6):726-732. doi:10.1016/J.BIOTECHADV.2009.05.003

12. Claßen J, Aupert F, Reardon KF, Solle D, Scheper T. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Anal Bioanal Chem. 2017;409(3):651-666. doi:10.1007/s00216-016-0068-x

13. Cozzolino D, Parker M, Dambergs RG, Herderich M, Gishen M. Chemometrics and Visible-Near Infrared Spectroscopic Monitoring of Red Wine Fermentation in a Pilot Scale. Biotechnol Bioeng. 2006;95(6):1102-1107. doi:10.1002/bit

14. Skibsted E, Lindemann C, Roca C, Olsson L. On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. J Biotechnol.

2001;88(1):47-57. doi:10.1016/S0168-1656(01)00257-7

15. Veale EL, Irudayaraj J, Demirci A. An on-line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnol Prog. 2007;23(2):494-500.

doi:10.1021/bp060306v

16. Párta L, Zalai D, Borbély S, Putics Á. Application of dielectric spectroscopy for monitoring high cell density in monoclonal antibody producing CHO cell cultivations.

Bioprocess Biosyst Eng. 2014;37(2):311-323. doi:10.1007/s00449-013-0998-z

17. Abu-Absi NR, Martel RP, Lanza AM, Clements SJ, Borys MC, Li ZJ. Application of spectroscopic methods for monitoring of bioprocesses and the implications for the manufacture of biologics. Pharm Bioprocess. 2014;2(3):267-284.

doi:10.4155/pbp.14.24

18. De Beer T, Burggraeve A, Fonteyne M, Saerens L, Remon JP, Vervaet C. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm. 2011;417(1-2):32-47. doi:10.1016/j.ijpharm.2010.12.012 19. Nielsen J. Production of biopharmaceutical proteins by yeast. Bioengineered.

2013;4(4):207-211. doi:10.4161/bioe.22856

20. Fan Y, Jimenez Del Val I, Müller C, et al. Amino acid and glucose metabolism in fed- batch CHO cell culture affects antibody production and glycosylation. Biotechnol Bioeng. 2015;112(3):521-535. doi:10.1002/bit.25450

21. Butler M, Spearman M. The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol. 2014;30:107-112.

110 doi:10.1016/J.COPBIO.2014.06.010

22. Rajalahti T, Kvalheim OM. Multivariate data analysis in pharmaceutics: A tutorial review. Int J Pharm. 2011;417(1-2):280-290. doi:10.1016/J.IJPHARM.2011.02.019 23. Mercier SM, Diepenbroek B, Wijffels RH, Streefland M. Multivariate PAT solutions for

biopharmaceutical cultivation: current progress and limitations. Trends Biotechnol.

2014;32(6):329-336. doi:10.1016/J.TIBTECH.2014.03.008

24. Mercier SM, Diepenbroek B, Dalm MCF, Wijffels RH, Streefland M. Multivariate data analysis as a PAT tool for early bioprocess development data. J Biotechnol.

2013;167(3):262-270. doi:10.1016/J.JBIOTEC.2013.07.006

25. Rajalahti T, Kvalheim OM. Multivariate data analysis in pharmaceutics: A tutorial review. Int J Pharm. 2011;417(1-2):280-290. doi:10.1016/j.ijpharm.2011.02.019 26. Mercier SM, Diepenbroek B, Wijffels RH, Streefland M. Multivariate PAT solutions for

biopharmaceutical cultivation: current progress and limitations. Trends Biotechnol.

2014;32(6):329-336. doi:10.1016/J.TIBTECH.2014.03.008

27. Sasic S. Pharmaceutical Applications of Raman Spectroscopy.; A JOHN WILEY &

SONS, INC. 2005. doi:10.1021/ed082p575

28. Iversen JA, Ahring BK. Monitoring lignocellulosic bioethanol production processes using Raman spectroscopy. Bioresour Technol. 2014;172:112-120.

doi:10.1016/j.biortech.2014.08.068

29. Wang Q, Li Z, Ma Z, Liang L. Real time monitoring of multiple components in wine fermentation using an on-line auto-calibration Raman spectroscopy. Sensors Actuators B. 2014;202:426-432. doi:10.1016/j.snb.2014.05.109

30. Cannizzaro C, Rhiel M, Marison I, Von Stockar U. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol Bioeng. 2003;83(6):668-680. doi:10.1002/bit.10698

31. Lee HLT, Boccazzi P, Gorret N, Ram RJ, Sinskey AJ. In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vib Spectrosc. 2004;35(1- 2):131-137. doi:10.1016/J.VIBSPEC.2003.12.015

32. Sivakesava S, Irudayaraj J, Ali D. Simultaneous determination of multiple components in lactic acid fermentation using FT-MIR, NIR, and FT-Raman spectroscopic techniques.

Process Biochem. 2001;37(4):371-378. doi:10.1016/S0032-9592(01)00223-0

33. Oh S-K, Yoo SJ, Jeong DH, Lee JM. Real-time estimation of glucose concentration in algae cultivation system using Raman spectroscopy. Bioresour Technol. 2013;142:131- 137. doi:10.1016/J.BIORTECH.2013.05.008

111 34. Abu-Absi NR, Kenty BM, Cuellar ME, et al. Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng. 2011;108(5):1215-1221. doi:10.1002/bit.23023

35. Martínez JL, Liu L, Petranovic D, Nielsen J. Pharmaceutical protein production by yeast:

towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol. 2012;23(6):965-971. doi:10.1016/J.COPBIO.2012.03.011

36. Shaw AD, Kaderbhai N, Jones A, et al. Noninvasive, On-Line Monitoring of the Biotransformation by Yeast of Glucose to Ethanol Using Dispersive Raman Spectroscopy and Chemometrics. Appl Spectrosc. 1999;53(11):1419-1428.

37. Iversen JA, Berg RW, Ahring BK. Quantitative monitoring of yeast fermentation using Raman spectroscopy. Anal Bioanal Chem. 2014;406(20):4911-4919.

doi:10.1007/s00216-014-7897-2

38. Picard A, Daniel I, Montagnac G, Oger P. In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles. 2007;11(3):445-452. doi:10.1007/s00792-006-0054-x

39. Sivakesava S, Irudayaraj J, Demirci A. Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy. J Ind Microbiol Biotechnol.

2001;26(4):185-190. doi:10.1038/sj.jim.7000124

40. Ávila TC, Poppi RJ, Lunardi I, Tizei PAG, Pereira GAG. Raman spectroscopy and chemometrics for on-line control of glucose fermentation by Saccharomyces cerevisiae.

Biotechnol Prog. 2012;28(6):1598-1604. doi:10.1002/btpr.1615

41. Gray SR, Peretti SW, Lamb HH. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy. Biotechnol Bioeng. 2013;110(6):1654- 1662. doi:10.1002/bit.24849

42. Schalk R, Braun F, Frank R, et al. Non-contact Raman spectroscopy for in-line monitoring of glucose and ethanol during yeast fermentations. Bioprocess Biosyst Eng.

2017;40(10):1519-1527. doi:10.1007/s00449-017-1808-9

43. Ashton L, Xu Y, Brewster VL, et al. The challenge of applying Raman spectroscopy to monitor recombinant antibody production. Analyst. 2013;138(22):6977-6985.

doi:10.1039/c3an01341c

44. André S, Cristau L Saint, Gaillard S, Devos O, Calvosa É, Duponchel L. In-line and real- time prediction of recombinant antibody titer by in situ Raman spectroscopy. Anal Chim Acta. 2015;892:148-152. doi:10.1016/j.aca.2015.08.050

45. Mehdizadeh H, Lauri D, Karry KM, Moshgbar M. Generic Raman-based calibration

112 models enabling real-time monitoring of cell culture bioreactors. Biotechnol Prog.

2015;31(4):1004-1013. doi:10.1002/btpr.2079

46. Liu YJ, André S, Saint Cristau L, et al. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW). Anal Chim Acta.

2017;952(2017):9-17. doi:10.1016/j.aca.2016.11.064

47. Li MY, Ebel B, Paris C, Chauchard F, Guedon E, Marc A. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Biotechnol Prog. 2018;34(2):486-493. doi:10.1002/btpr.2604 48. Berry B, Moretto J, Matthews T, Smelko J, Wiltberger K. Cross-scale predictive

modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Biotechnol Prog. 2015;31(2):566-577.

49. Whelan J, Craven S, Glennon B. In Situ Raman Spectroscopy for Simultaneous Monitoring of Multiple Process Parameters in Mammalian Cell Culture Bioreactors.

Biotechnol Prog. 2012;28(5):1355-1362.

50. Cravena S, Whelan J, Glennon B. Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J Process Control. 2014;24(4):344-357.

51. Matthews TE, Berry BN, Smelko J, Moretto J, Moore B. Closed Loop Control of Lactate Concentration in Mammalian Cell Culture by Raman Spectroscopy Leads to Improved Cell Density, Viability, and Biopharmaceutical Protein Production. Biotechnol Bioeng.

2016;113(11):2416-2424.

52. SalehHudin HS, Mohamad EN, Mahadi WNL, Muhammad Afifi A. Multiple-jet electrospinning methods for nanofiber processing: A review. Mater Manuf Process.

2018;33(5):479-498. doi:10.1080/10426914.2017.1388523

53. Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11(8):1165-1188. doi:10.1016/j.arabjc.2015.11.015 54. Drosou CG, Krokida MK, Biliaderis CG. Encapsulation of bioactive compounds through

electrospinning/electrospraying and spray drying: A comparative assessment of food- related applications. Dry Technol. 2017;35(2):139-162.

doi:10.1080/07373937.2016.1162797

55. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies.

Nanotechnology. 2006;17(14):R89-R106. doi:10.1088/0957-4484/17/14/R01

113 56. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of

Nanofibers. J Appl Polym Sci. 2005;96:557-569. doi:10.1002/app.21481

57. Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chemie - Int Ed. 2007;46(30):5670-5703.

doi:10.1002/anie.200604646

58. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer (Guildf). 2008;49(26):5603-5621.

doi:10.1016/j.polymer.2008.09.014

59. Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue

engineering. Biomaterials. 2008;29(13):1989-2006.

doi:10.1016/J.BIOMATERIALS.2008.01.011

60. Rutledge GC, Fridrikh S V. Formation of fibers by electrospinning. Adv Drug Deliv Rev.

2007;59(14):1384-1391. doi:10.1016/J.ADDR.2007.04.020

61. Salalha W, Kuhn J, Dror Y, Zussman E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology. 2006;17(18):4675-4681. doi:10.1088/0957- 4484/17/18/025

62. Baker BM, Handorf AM, Ionescu LC, Li W-J, Mauck RL. New directions in nanofibrous scaffolds for soft tissue engineering and regeneration. Expert Rev Med Devices.

2009;6(5):515-532. doi:10.1586/erd.09.39

63. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices. 2006;3(6):835-851.

64. Lu T, Li Y, Chen T. Techniques for fabrication and contruction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine. 2013;8:337-350.

doi:10.2147/IJN.S38635

65. Fereshteh Z. Freeze-Drying Technologies for 3D Scaffold Engineering. Elsevier Ltd;

2017. doi:10.1016/B978-0-08-100979-6.00007-0

66. Sofokleous P, Chin MHW, Day R. Phase-Separation Technologies for 3D Scaffold Engineering. Elsevier Ltd; 2017. doi:10.1016/B978-0-08-100979-6.00005-7

67. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing.

Mater Today. 2013;16(12):496-504. doi:10.1016/j.mattod.2013.11.017

68. Karaman O, Celik C, Urkmez AS. Self-Assembled Biomimetic Scaffolds for Bone Tissue Engineering.; 2017. doi:10.4018/978-1-5225-3158-6.ch021

69. Jun I, Han HS, Edwards JR, Jeon H. Electrospun fibrous scaffolds for tissue engineering:

Viewpoints on architecture and fabrication. Int J Mol Sci. 2018;19(3):745-759.

114 doi:10.3390/ijms19030745

70. Hasan A, Memic A, Annabi N, et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014;10(1):11-25. doi:10.1016/j.actbio.2013.08.022 71. Zhou Y, Chyu J, Zumwalt M. Recent Progress of Fabrication of Cell Scaffold by

Electrospinning Technique for Articular Cartilage Tissue Engineering. Int J Biomater.

2018;2018:1-10. doi:10.1155/2018/1953636

72. Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res - Part A.

2008;84A(4):1078-1086. doi:10.1002/jbm.a.31498

73. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering — In vivo and in vitro applications. Adv Drug Deliv Rev. 2011;63(4-5):352- 366. doi:10.1016/J.ADDR.2011.01.005

74. Francis MP, Moghaddam-White YM, Sachs PC, et al. Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells. Electrospinning. 2016;1(1):10-19. doi:10.1515/esp-2016-0002 75. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res - Part A. 2010;94A(4):1312-1320. doi:10.1002/jbm.a.32756

76. Aliakbarshirazi S, Talebian A. Electrospun gelatin nanofibrous scaffolds for cartilage tissue engineering. Mater Today Proc. 2017;4(7):7059-7064.

doi:10.1016/J.MATPR.2017.07.038

77. Girão AF, Semitela Â, Ramalho G, Completo A, Marques PAAP. Mimicking nature:

Fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications. Compos Part B Eng. 2018;154:99-107.

doi:10.1016/J.COMPOSITESB.2018.08.001

78. Zong X, Bien H, Chung C-Y, et al. Electrospun fine-textured scaffolds for heart tissue

constructs. Biomaterials. 2005;26(26):5330-5338.

doi:10.1016/J.BIOMATERIALS.2005.01.052

79. Browning MB, Dempsey D, Guiza V, et al. Multilayer vascular grafts based on collagen- mimetic proteins. Acta Biomater. 2012;8(3):1010-1021.

doi:10.1016/J.ACTBIO.2011.11.015

80. Lee SJ, Kim H-J, Heo M, et al. In vitro and in vivo assessments of an optimal polyblend composition of polycaprolactone/gelatin nanofibrous scaffolds for Achilles tendon tissue engineering. J Ind Eng Chem. March 2019. doi:10.1016/J.JIEC.2019.03.036

115 81. Nivedhitha Sundaram M, Deepthi S, Mony U, Shalumon KT, Chen J-P, Jayakumar R.

Chitosan hydrogel scaffold reinforced with twisted poly(l lactic acid) aligned microfibrous bundle to mimic tendon extracellular matrix. Int J Biol Macromol.

2019;122:37-44. doi:10.1016/J.IJBIOMAC.2018.10.151

82. Nichol JW, Khademhosseini A. Modular tissue engineering: Engineering biological tissues from the bottom up. Soft Matter. 2009;5(7):1312-1319. doi:10.1039/b814285h 83. Castells-Sala C, Alemany-Ribes M, Fernández-Muiños T, et al. Current Applications of

Tissue Engineering in Biomedicine. J Biochips Tissue Chips. 2013;s2.

doi:10.4172/2153-0777.S2-004

84. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4(4):359-365.

doi:10.1038/nmeth1015

85. Lim SH, Mao H-Q. Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev.

2009;61(12):1084-1096. doi:10.1016/J.ADDR.2009.07.011

86. Li W-J, Cooper JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(α-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2(4):377-385. doi:10.1016/J.ACTBIO.2006.02.005 87. Murugan R, Ramakrishna S. Nano-Featured Scaffolds for Tissue Engineering: A Review

of Spinning Methodologies. Tissue Eng. 2006;12(3):435-447.

doi:10.1089/ten.2006.12.435

88. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering.

Biomaterials. 2005;26(15):2603-2610. doi:10.1016/J.BIOMATERIALS.2004.06.051 89. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure:

A novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–621.

doi:10.1002/jbm.10167

90. Jang J-H, Castano O, Kim H-W. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61(12):1065-1083.

doi:10.1016/J.ADDR.2009.07.008

91. Cho SJ, Jung SM, Kang M, Shin HS, Youk JH. Preparation of hydrophilic PCL nanofiber scaffolds via electrospinning of PCL/PVP-b-PCL block copolymers for enhanced cell

biocompatibility. Polymer (Guildf). 2015;69:95-102.

doi:10.1016/J.POLYMER.2015.05.037

92. Zhao W, Li J, Jin K, Liu W, Qiu X, Li C. Fabrication of functional PLGA-based

116 electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C.

2016;59:1181-1194. doi:10.1016/J.MSEC.2015.11.026

93. Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL. Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning. J Macromol Sci - Pure Appl Chem. 2001;38 A(12):1231-1243.

doi:10.1081/MA-100108380

94. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532-4539.

doi:10.1016/J.BIOMATERIALS.2008.08.007

95. Mo X., Xu C., Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation.

Biomaterials. 2004;25(10):1883-1890. doi:10.1016/J.BIOMATERIALS.2003.08.042 96. Phipps MC, Clem WC, Catledge SA, et al. Mesenchymal stem cell responses to bone-

mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS One. 2011;6(2):1-8.

doi:10.1371/journal.pone.0016813

97. Sombatmankhong K, Sanchavanakit N, Pavasant P, Supaphol P. Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3- hydroxyvalerate) and their blend. Polymer (Guildf). 2007;48(5):1419-1427.

doi:10.1016/J.POLYMER.2007.01.014

98. Warne NW. Development of high concentration protein biopharmaceuticals: The use of platform approaches in formulation development. Eur J Pharm Biopharm.

2011;78(2):208-212. doi:10.1016/j.ejpb.2011.03.004

99. Bronshtein V. Compositions containing ambient-temperature stable, inactivated therapeutically active biopharmaceuticals and methods for formulation thereof. 2017.

100. Maa Y-F, Prestrelski S. Biopharmaceutical Powders Particle Formation and Formulation Considerations. Curr Pharm Biotechnol. 2005;1(3):283-302.

doi:10.2174/1389201003378898

101. Langford A, Bhatnagar B, Walters R, Tchessalov S, Ohtake S. Drying of Biopharmaceuticals: Recent Developments, New Technologies and Future Direction.

Japan J Food Eng. 2018;19(1):15-24. doi:10.11301/jsfe.18514

102. Vass P, Démuth B, Hirsch E, et al. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release. 2019;296:162-178.

117 doi:10.1016/j.jconrel.2019.01.023

103. Broeckx G, Vandenheuvel D, Claes IJJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics.

Int J Pharm. 2016;505(1-2):303-318. doi:10.1016/j.ijpharm.2016.04.002

104. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488(1-2):136-153. doi:10.1016/J.IJPHARM.2015.04.053

105. Huang S, Vignolles ML, Chen XD, et al. Spray drying of probiotics and other food-grade bacteria: A review. Trends Food Sci Technol. 2017;63:1-17.

doi:10.1016/j.tifs.2017.02.007

106. Angkawinitwong U, Sharma G, Khaw PT, Brocchini S, Williams GR. Solid-state protein formulations. Ther Deliv. 2015;6(1):59-82. doi:10.4155/tde.14.98

107. Emami F, Vatanara A, Park EJ, Na DH. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10(131):1-22.

doi:10.3390/pharmaceutics10030131

108. Grasmeijer N, Stankovic M, de Waard H, Frijlink HW, Hinrichs WLJ. Unraveling protein stabilization mechanisms: Vitrification and water replacement in a glass transition temperature controlled system. Biochim Biophys Acta - Proteins Proteomics.

2013;1834(4):763-769. doi:10.1016/J.BBAPAP.2013.01.020

109. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WLJ. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur J Pharm Biopharm. 2017;114:288-295.

doi:10.1016/j.ejpb.2017.01.024

110. Vigh T. Application of Continuous Technologies to Manufacture Solid Dispersions of Active Pharmaceutical Ingredients. Budapesti Műszaki és Gazdaságtudományi Egyetem, 2015.

111. Jiang H, Wang L, Zhu K. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J Control Release. 2014;193:296-303.

doi:10.1016/J.JCONREL.2014.04.025

112. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12-21.

doi:10.1016/J.JCONREL.2014.04.018

113. Nagy ZK, Wagner I, Suhajda Á, et al. Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polym Lett. 2014;8(5):352-361.

doi:10.3144/expresspolymlett.2014.39

118 114. Wagner I, Nagy ZK, Vass P, et al. Stable formulation of protein-type drug in electrospun polymeric fiber followed by tableting and scaling-up experiments. Polym Adv Technol.

2015;26(12):1461-1467. doi:10.1002/pat.3569

115. Karthikeyan K, Krishnaswamy VR, Lakra R, Kiran MS, Korrapati PS. Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA. J Mater Sci Mater Med.

2015;26(101):1-8. doi:10.1007/s10856-015-5439-x

116. Angkawinitwong U, Awwad S, Khaw PT, Brocchini S, Williams GR. Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater.

2017;64:126-136. doi:10.1016/j.actbio.2017.10.015

117. Bazilevsky A V., Yarin AL, Megaridis CM. Co-electrospinning of core-shell fibers using a single-nozzle technique. Langmuir. 2007;23(5):2311-2314. doi:10.1021/la063194q 118. Zhang Y, Huang Z, Xu X, Lim CT, Ramakrishna S. Preparation of Core-Shell Structured

PCL-r-Gelatin Bi-Component Nanofibers by coaxial electrospinning. Chem Maters.

2004;16(18):3406-3409.

119. Démuth B, Nagy ZK, Balogh A, et al. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int J Pharm. 2015;486(1- 2):268-286. doi:10.1016/j.ijpharm.2015.03.053

120. Blasi P, D’Souza SS, Selmin F, DeLuca PP. Plasticizing effect of water on poly(lactide-

co-glycolide). J Control Release. 2005;108(1):1-9.

doi:10.1016/J.JCONREL.2005.07.009

121. Breen ED, Curley JG, Overcashier DE, Hsu CC, Shire SJ. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm Res.

2001;18(9):1345-1353. doi:10.1023/A:1013054431517

122. Kaialy W, Khan U, Mawlud S. Influence of mannitol concentration on the physicochemical, mechanical and pharmaceutical properties of lyophilised mannitol. Int J Pharm. 2016;510(1):73-85. doi:10.1016/J.IJPHARM.2016.05.052

123. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules. 2005;6:2017-2024. doi:10.1021/bm015533u 124. Sipos E, Szabó ZI, Rédai E, Szabó P, Sebe I, Zelkó R. Preparation and characterization

of nanofibrous sheets for enhanced oral dissolution of nebivolol hydrochloride. J Pharm Biomed Anal. 2016;129:224-228. doi:10.1016/J.JPBA.2016.07.004

125. Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol Mater Eng.

2013;298(5):504-520. doi:10.1002/mame.201200290

119 126. Theron SA, Yarin AL, Zussman E, Kroll E. Multiple jets in electrospinning: Experiment and modeling. Polymer (Guildf). 2005;46(9):2889-2899.

doi:10.1016/j.polymer.2005.01.054

127. Zhou F, Gong R, Porat I. Mass production of nanofibre assemblies by electrostatic spinning. Polym Int. 2009;58:331-342. doi:10.1002/pi.2521

128. Yu M, Dong R, Yan X, et al. Recent Advances in Needleless Electrospinning of Ultrathin Fibers : From Academia to Industrial Production. Macromol Mater Eng.

2017;201700002:1-19. doi:10.1002/mame.201700002

129. Niu H, Lin T. Fiber generators in needleless electrospinning. J Nanomater.

2012;2012:13. doi:10.1155/2012/725950

130. Lin T. Needleless Electrospinning: A Practical Way to Mass Production of Nanofibers.

J Text Sci Eng. 2012;2(6):2-4. doi:10.4172/2165-8064.1000e109

131. Nieminen HJ, Laidmäe I, Salmi A, et al. Ultrasound-enhanced electrospinning. Sci Rep.

2018;8(4437):1-6. doi:10.1038/s41598-018-22124-z

132. Yan G, Niu H, Lin T. Needle-Less Electrospinning. Vol 2. Elsevier Inc.; 2019.

doi:10.1016/b978-0-323-51270-1.00007-8

133. Balogh A, Cselkó R, Démuth B, et al. Alternating current electrospinning for preparation of fibrous drug delivery systems. Int J Pharm. 2015;495(1):75-80.

doi:10.1016/j.ijpharm.2015.08.069

134. Liu W, Yao Y, Lin Y, et al. Electrospinning assisted by gas jet for preparing ultrafine poly(vinyl alcohol) fibres. Iran Polym J. 2009;18(1):89-96.

135. Pokorny P, Kostakova E, Sanetrnik F, et al. Effective AC needleless and collectorless electrospinning for yarn production. Phys Chem Chem Phys. 2014;16(48):26816-26822.

doi:10.1039/x0xx00000x

136. Nagy ZK, Balogh A, Démuth B, et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int J Pharm. 2015;480(1- 2):137-142. doi:10.1016/j.ijpharm.2015.01.025

137. Pataki H, Markovits I, Vajna B, Nagy ZK, Marosi G. In-line monitoring of carvedilol crystallization using raman spectroscopy. Cryst Growth Des. 2012;12(11):5621-5628.

doi:10.1021/cg301135z

138. Csontos I, Pataki H, Farkas A, et al. Feedback control of oximation reaction by inline raman spectroscopy. Org Process Res Dev. 2015;19(1):189-195.

doi:10.1021/op500015d

139. Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A. Poly(vinyl alcohol)

120 Nanofibers by Electrospinning as a Protein Delivery System and the Retardation of Enzyme Release by Additional Polymer Coatings. Biomacromolecules. 2005;6:1484- 1488. doi:10.1021/bm0492576

140. Vajdai A, Szabó B, Süvegh K, Zelkó R, Újhelyi G. Tracking of the viability of Stenotrophomonas maltophilia bacteria population in polyvinylalcohol nanofiber webs by positron annihilation lifetime spectroscopy. Int J Pharm. 2012;429(1-2):135-137.

doi:10.1016/J.IJPHARM.2012.03.018

141. Vajna B. Sokváltozós görbefelbontási és regressziós módszerek a Raman-térképezésben.

Budapesti Műszaki és Gazdaságtudományi Egyetem, 2012.

142. Tömösközi S. Élelmiszeranalitika gyors és automatizált módszerei. 2011.

143. Mohai M. XPS MultiQuant: Multimodel XPS quantification software. Surf Interface Anal. 2004;36(8):828-832. doi:10.1002/sia.1775

144. Shukla TP, Wierzbicki LE. Beta-galactosidase technology: A solution to the lactose problem. C R C Crit Rev Food Technol. 1975;5(3):325-356.

doi:10.1080/10408397509527178

145. Prenosil JE, Stuker E, Bourne JR. Formation of oligosaccharides during enzymatic lactose: Part I: State of art. Biotechnol Bioeng. 1987;30:1019-1025.

doi:10.1002/bit.260300905

146. Mahoney RR. Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chem. 1998;63(2):147-154. doi:10.1016/S0308-8146(98)00020-X

147. Susi H, Ard JS. Laser-Raman spectra of lactose. Carbohydr Res. 1974;37:351-354.

148. Stanbury PF, Whitaker A, Hall SJ. Priniciple of Fermentation Technology.; 1984.

doi:10.1002/jobm.3620280823

149. Cheng NG, Hasan M, Kumoro AC, Ling CF, Tham M. Production of Ethanol by Fed- Batch Fermentation. Pertanika J Sci Technol. 2009;17(2):399-408.

150. Mohd Azhar SH, Abdulla R, Jambo SA, et al. Yeasts in sustainable bioethanol production: A review. Biochem Biophys Reports. 2017;10(March):52-61.

doi:10.1016/j.bbrep.2017.03.003

151. Medline Plus. Adalimumab Injection: MedlinePlus Drug Information. American Society of Health-System Pharmacists. https://www.nlm.nih.gov/medlineplus/druginfo/

meds/a603010.html#side-effects.

Letöltés dátuma: 2019.08.30.

152. Hsu CM, Shivkumar S. N,N-Dimethylformamide additions to the solution for the electrospinning of poly(ε-caprolactone) nanofibers. Macromol Mater Eng.

121 2004;289(4):334-340. doi:10.1002/mame.200300224

153. Janvikul W, Uppanan P, Thavornyutikarn B, Kosorn W, Kaewkong P. Effects of surface topography, hydrophilicity and chemistry of surface-treated PCL scaffolds on chondrocyte infiltration and ECM production. Procedia Eng. 2013;59:158-165.

doi:10.1016/j.proeng.2013.05.106

154. Kosorn W, Thavornyutikarn B, Janvikul W. Effects of Surface Treatments of Polycaprolactone Scaffolds on their Properties. Adv Mater Res. 2013;747:178-181.

doi:10.4028/www.scientific.net/amr.747.178

155. Marmur A. Soft contact: Measurement and interpretation of contact angles. Soft Matter.

2006;2(1):12-17. doi:10.1039/b514811c

156. Románszki L, Mohos M, Telegdi J, Keresztes Z, Nyikos L. A comparison of contact angle measurement results obtained on bare, treated, and coated alloy samples by both dynamic sessile drop and Wilhelmy method. Period Polytech Chem Eng. 2014;58:53- 59. doi:10.3311/PPch.7188

157. Stubbe B, Li Y, Vergaelen M, et al. Aqueous electrospinning of poly(2-ethyl-2- oxazoline): Mapping the parameter space. Eur Polym J. 2017;88:724-732.

doi:10.1016/j.eurpolymj.2016.09.014

158. Briscoe B, Luckham P, Zhu S. The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions. Polymer (Guildf). 2000;41(10):3851-3860.

doi:10.1016/S0032-3861(99)00550-9

159. Tao J, Shivkumar S. Molecular weight dependent structural regimes during the electrospinning of PVA. Mater Lett. 2007;61(11-12):2325-2328.

doi:10.1016/J.MATLET.2006.09.004

160. Nagy ZK, Nyúl K, Wagner I, Molnár K, Marosi G. Electrospun water soluble polymer mat for ultrafast release of donepezil HCL. Express Polym Lett. 2010;4(12):763-772.

doi:10.3144/expresspolymlett.2010.92

161. Balogh A, Farkas B, Verreck G, et al. AC and DC electrospinning of hydroxypropylmethylcellulose with polyethylene oxides as secondary polymer for improved drug dissolution. Int J Pharm. 2016;505(1-2):159-166.

doi:10.1016/j.ijpharm.2016.03.024

162. Borbás E, Balogh A, Bocz K, et al. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFluxTM. Int J Pharm.

2015;491(1-2):180-189. doi:10.1016/j.ijpharm.2015.06.019

163. Hancock BC, Shamblin SL. Water vapour sorption by pharmaceutical sugars. Pharm Sci