• Nenhum resultado encontrado

Az 5. Tézishez kapcsolódó publikációk listája

10.2 Konferencia kiadványok

1. Máté Szieberth and Gábor Radócz, Investigation of the energy correlations of spallation neutrons by the MCNPX code, International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, May 8-12, 2011.

2. A. Gerényi, G. Radócz, I. Szalóki, Simultaneous application of X-Ray fluorescence and gamma spectrometer for analysis of radioactive waste material, 26th Symposium of AER on VVER Reactor Physics and Reactor Safety, p. 8-12, ISBN: 978-963-7351-27-3, Helsinki, Finland, October 10-14, 2016.

3. G. Radócz, A. Gerényi, I. Szalóki, Monte-Carlo calculation of 24Na, 42K and 16N isotopes in the coolant of WWER-440 nuclear reactors, 26th Symposium of AER on VVER Reactor Physics and Reactor Safety, 26th Symposium of AER on VVER Reactor Physics and Reactor Safety, Helsinki 10.-14. October, 2016, p. 617, ISBN: 978-963-7351-26-6 10.3 Előadások nemzetközi konferenciákon

1. Máté Szieberth and Gábor Radócz, Investigation of the energy correlations of spallation neutrons by the MCNPX code, International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, Rio de Janeiro, Brazil, May 8-12, 2011.

2. A. Gerényi, V. Czech, G. Radócz, I. Szalóki, In-vivo XANES study of As in cucumber hypocotyls, EXRS2014, European Conference on X-Ray Spectrometry, Bologna, Italy, June 15-20, 2014.

3. I. Szalóki, A. Gerényi, G. Radócz, Development of fundamental parameter model for portable X-ray fluorescence spectrometer, EXRS2014, European Conference on X-Ray Spectrometry, Bologna, Italy, June 15-20, 2014.

4. G. Radócz, A. Gerényi, Sz. Czifrus and I. Szalóki, New Monte-Carlo method for quantitative determination of radioactive isotopes in concrete, 8th International Conference on High Levels of Natural Radiation and Radon Areas, Prague, Czech Republic, September 1-5, 2014.

5. I. Szalóki, A. Gerényi, M. Balla, G. Radócz, D. Légrády, Confocal XRF analysis of art and archaeological objects, TECHNART2015, Non-destructive and micro-analytical techniques in art and cultural heritage, Catania, Italy, April 27-30, 2015.

6. I. Szalóki, G. Radócz, A. Gerényi, Confocal X-ray fluorescence spectrometer and commercial 3D printer, EXRS 2016, European Conference on X-Ray Spectrometry, Gothenburg, Sweden, June 19-24, 2016.

7. I. Szalóki, G. Radócz, A. Gerényi, Simultaneous application of SDD and CZT detectors in combined X-ray fluorescence and gamma spectrometer, IWORID, 2016, International Workshop on Radiation Imaging Detectors, Barcelona, Spain, AXA Convention Centre, July 3-7, 2016.

8. A. Gerényi, G. Radócz, I. Szalóki, Simultaneous application of X-ray fluorescence and gamma spectrometer for analysis of radioactive waste material, 26th Symposium of AER on VVER Reactor Physics and Reactor Safety, Helsinki, Finland, October 10-14, 2016.

9. G. Radócz, A. Gerényi, I. Szalóki, Monte-Carlo calculation of 24Na, 42K and 16N isotopes in the coolant of WWER-440 nuclear reactors, 26th Symposium of AER on VVER Reactor Physics and Reactor Safety, 26th Symposium of AER on VVER Reactor Physics and Reactor Safety, Helsinki, Finland, 10.-14. October, 2016.

10. Szalóki I., Gerényi A., Radócz G., Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotóp-szelektív radioaktivitása egyidejű meghatározására, XV. Nukleáris Technikai Szimpózium, Erzsébet Nagyszálloda, 7030 Paks, Szent István tér 2., 2016. December 8-9.

11. I. Szalóki, G. Radócz, A. Gerényi, 3D macro X-ray fluorescence spectrometer on commercial 3D printer, Colloquium Spectroscopicum Internationale XL, CSI-XL, Palazzo dei Congressi, Via Giacomo Matteotti 1, Pisa, Italy, June 11-16, 2017.

12. A. Gerényi, G. Radócz and I. Szalóki, FPM model for X-ray tube and SDD based X- ray fluorescent spectrometer, EXSA Quantitative methods in X-ray spectrometry Autumn school and workshop, European X-ray Spectrometry Association (EXSA), Berlin, Germany, October 9-13, 2017.

13. I. Szalóki, G. Radócz, A. Gerényi, Development of macro confocal X-ray fluorescence spectrometer using 3D printer, ICXOM24 24th International Congress on X- ray Optics and Microanalysis, Palazzo dei Congressi della Stazione Marittima Trieste Molo Bersaglieri, 3, 34133, Trieste, Italy, September 25-29, 2017.

14. G. Radócz, A. Gerényi and I. Szalóki, Monte-Carlo based efficiency calibration of portable Cube527 CdZnTe micro spectrometer for gamma spectrometry of radioactive waste material, 19th International Workshop on Radiation Imaging Detectors, IWORID2017, AGH University of Science and Technolog, Faculty of Physics and Applied Computer Science Building D-10 Reymonta St. 1930-059, Krakow, Poland, July 2-6, 2017.

15. Szalóki I., Gerényi A., Radócz G., Röntgen-gamma spektrométer radioaktív anyagok elemi összetétele és izotóp-szelektív radioaktivitása meghatározására, XVI. Nukleáris Technikai Szimpózium, Budapest, Gellért Szálloda, 2017. November 23-24.

16. I. Szalóki, G. Radócz and A. Gerényi, Analytical characterization of 3D macro confocal X-ray fluorescence spectrometer, EXRS2018, Ljubljana Exhibition and Convention Centre, Ljubljana, Slovenia, June 24-29, 2018.

17. G. Radócz, A. Gerényi and I. Szalóki, Characterization of CdZnTe gamma detector for Monte-Carlo based efficiency calibration of in situ gamma spectrometry on radioactive waste materials, Symposium on International Safeguards: Building Future Safeguards Capabilities, IAEA Headquarters, Vienna, Austria, November 5-8, 2018.

18. I. Szalóki, G. Radócz and A. Gerényi, Development of a new confocal-macro X-ray fluorescence spectrometer built on 3D printer, Symposium on International Safeguards:

Building Future Safeguards Capabilities, IAEA Headquarters, Vienna, Austria, November 5-8, 2018.

11 Hivatkozások

[1] Gordon Gilmore, Practical Gamma-ray Spectrometry, Ed. John Wiley & Sons Ltd., (2008), ISBN-13: 978-0470861967

[2] Knoll, G. F., Radiation Detection and Measurement, 3rd Edition., Wiley: New York, NY, USA, (1999), 354-404.

[3] Michael F. L’Annunziata, Handbook of Radioactivity Analysis, 3rd Edition, Elsevier, (2012).

[4] R. E. Van Grieken, A. A. Markowicz, Handbook of X-Ray Spectrometry, Marcel Dekker Inc., New York, (2002).

[5] Osán János, Kurunczi Sándor, Török Szabina, Varga Imre, Röntgenfluoreszcens spektrometria, Az elemanalitika korszerű módszerei, Szerk.: Záray Gyula, Akadémiai Kiadó, Budapest (2006).

[6] S. Mobilio et al., Synchrotron Radiation, Springer-Verlag Berlin Heidelberg, (2015), DOI: 10.1007/978-3-642-55315-8_1

[7] Massimo Altarelli, Annual Report of 2014, European X-ray Free-Electron Laser Facility Gmbh. (2014), p. 10.

[8] B. Laforce, B. Vermeulen, J. Garrevoet, B. Vekemans, L. Van Hoorebeke, C. Janssen, and L. Vincze, Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science, Anal. Chem., (2016) 88, 3386−3391.

[9] Aleksey Bolotnikov, New developments in wide bandgap CdZnTe (CZT) semiconductor detectors, Link, Utolsó elérés: 2019.03.21.

[10] R. Redus, Application Note Charge Trapping in XR-100T-CdTe and -CZT Detectors, Review ANCZT-2, AMPTEK, (2007).

[11] Del Sordo, S., Abbene, L., Caroli, E., Mancini, A. M., Zappettini, A., Ubertini, P., Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors, (2009) 9(5), 3491-3526.

[12] Safeguards techniques and equipment, 2011 edition, Vienna, IAEA, (2011), IAEA/NVS/1/2011 (Rev. 2) ISBN 978-92-0-118910-3

[13] J. Szlachetko, M. Cotte, J. Morse, M. Salomé, P. Jagodzinski, J.-C. Dousse, J.

Hoszowska, Y. Kayser and J. Susini, Wavelength-dispersive spectrometer for X-ray microfluorescence analysis at the X-ray microscopy beamline ID21 (ESRF), J.

Synchrotron Rad., (2010) 17, 400-408.

[14] Ábra link, Utolsó elérés: 2019.04.12.

[15] ORTEC, ANGLE4 USER GUIDE: Advanced Gamma-Spectrometry Software Efficiency Calculations for Semiconductor and Scintillation Detectors, ANGLE4 manual, Utolsó elérés: 2019.03.23.

[16] Lépy, M.-C., Brun, P., Collin, C., Plagnard, J. Experimental validation of coincidence summing corrections computed by the ETNA software, Applied Radiation and Isotopes, (2006) 64(10-11), 1340–1345.

[17] Szentmiklósi, L., Belgya, T., Maróti, B., Kis, Z. Characterization of HPGe gamma spectrometers by geant4 Monte-Carlo simulations, J. Radioanal. Nucl. Chem., (2014) 300(2), 553-558.

[18] S. Agostinelli, et. al., Geant4 - a simulation toolkit, Nucl. Instrum. Meth. A, (2003) 506, 250–303.

[19] F. Salvat, J. M. Fernandez-Varea, E. Acosta and J. Sempau, PENELOPE, A Code System for Monte-Carlo Simulation of Electron and Photon Transport, Proceedings of a Workshop/Training Course, OECD/NEA 5-7 November 2001 NEA/NSC/DOC(2001) 19. ISBN:92-64-18475-9

[20] Denise B. Pelowitz, MCNP6 TM User’s Manual, Version 1.0, Manual Rev. 0, Editor:

LA-CP-13-00634; (2013).

[21] Sima, O., Arnold, D., Dovlete, C., GESPECOR: a versatile tool in gamma-ray spectrometry, J. Radioanal. Nucl. Chem., (2001) 248(2), 359-364.

[22] Szalóki Imre, Radócz Gábor, Gerényi Anita, Balla Márta, A BME NTI Oktatóreaktor épülete radiológiai állapotának felmérése, BME-NTI- 627/2013.

[23] I. Szalóki, G. Radócz, T. Pintér, jnr. I. Szalóki and A. Gerényi, Novel XRF-Raman spectrometer and FPM model for surface analysis of objects and liquid substances, J. Anal. At. Spectrom., (elfogadva, 2019).

[24] Szalóki I., Gerényi A., Radócz G., Oláh Zita, Hordozható gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotóp-szelektív radioaktivitása egyidejű kvantitatív elemzésére, valamint dörzsminták alfa-sugárzó hasadóanyag- tartalmának meghatározása és az alkalmazott radiokémiai eljárás módszertani továbbfejlesztése, BME NTI, OAH-ABA-16/14-M, (2014).

[25] Canberra Industries Inc.: Genie 2000 Spectroscopy Software: User’s Manual, (2009).

[26] A. L. Schwarz, R. A. Schwarz, and L.L. Carter: MCNP/MCNPX Visual Editor Computer Code Manual For Vised Version 24E, Released February, (2011).

[27] Williams JG, Vehar DW, Ruddy FH, Gilliam DM, Reactor Dosimetry: Radiation Metrology and Assessment, (2001), DOI: 10.1520/STP1398-EB

[28] Dr. Zsolnay Éva, Dr. Czifrus Szabolcs, Dr. Kis Dániel, Horváth András:

REAKTORDOZIMETRIA. Paksi Atomerőmű 2. számú reaktorblokk, reaktortartály

felügyeleti pozíció, 4 éven át (28.-31. számú reaktorkampány) besugárzott neutronmonitorok (UHEP2 mintafűzér) válaszának kiértékelése, Tanulmány: BME-NTI-857/2018. Budapest, (2018).

[29] Riffaud, J., et al., Improvement of 93mNb and 103mRh activity measurement methodology for reactor dosimetry, EPJ Web of Conferences, (2017) 153.

[30] Moench, Jens Ingolf, Ingrid Stephan, and Alfred Koethe. High purity niobium for neutron activation detectors, Materials Transactions, (2000) JIM 41.1, 67-70.

[31] Szalóki, I., et al., An improved method for the determination of the neutron fluence in fission power reactors based on the 93Nb (n, n′) 93mNb reaction, Ann. Nucl. Energy, (1988) 15(10-11), 523-525.

[32] NAÜ Nuklid táblázat

[33] Mirion Technologies, Model S573 ISOCS*™ Calibration Software, Link, Utolsó elérés: 2019.03.23.

[34] Mirion Technologies, Model S574 LabSOCS*™ Calibration Software, Link, Utolsó elérés: 2019.03.23.

[35] Jonas Boson, Göran Agren, Lennart Johansson, A detailed investigation of HPGe detector response for improved Monte-Carlo efficiency calculations, Nuc. Instrum.

Meth. A, (2008) 587, 304-314.

[36] Pavel Dryak, Petr Kovar, Experimental and MC determination of HPGe detector efficiency in the 40–2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm, Appl. Radiat. Isotopes, (2006) 64, 1346-1349.

[37] Helmer, R. G., Hardy, J.C., Iacob, V.E., Sanchez-Vega, M., Neilson, R. G., Nelson, J., The use of Monte-Carlo calculations in the determination of a Ge detector efficiency curve, Nuc. Instrum. Meth. A, (2003) 511, 360-381.

[38] Koleška, M., Viererbl, L., Marek, M., Development of the MCNPX model for the portable HPGe detector, Radiat. Phys. Chem., (2014) 104, 351-354.

[39] Elanique, A., Marzocchi, O., Leone, D., Hegenbart, L., Breustedt, B., Oufni, L., Dead layer thickness characterization of an HPGe detector by measurements and Monte- Carlo simulations, Appl. Radiat. Isotopes, (2012) 538-542.

[40] Chuong, H. D., Thanh, T. T., Ngoc Trang, L. T., Nguyen, V. H., Estimating thickness of the inner dead-layer of n-type HPGe detector, Appl. Radiat. Isotopes, (2016) 116, 174-177.

[41] R. Luı’s, J. Bento, G. Carvalhal, P. Nogueira, L. Silva, P. Teles, P. Vaz, Parameter optimization of a planar BEGe detector using Monte-Carlo simulations, Nuc. Instrum. Meth. A, (2010) 623, 1014-1019.

[42] Guerra, J. G., Rubiano, J. G., Winter, G., Guerra, A. G., Alonso, H., Arnedo, M. A., Bolivar, J. P., A simple methodology for characterization of germanium coaxial detectors by using Monte-Carlo simulation and evolutionary algorithms, J Environ Radioact, (2015) 149, 8-18.

[43] Link, Utolsó elérés: 2019.03.30.

[44] Link, Utolsó elérés: 2019.03.30.

[45] CUBE527 Micro-gamma-spectrometer datasheet, Link, Utolsó elérés: 2019.03.04.

[46] https://www.gbs-elektronik.de/en/downloads/downloads-nuclear-measurements.php, Utolsó elérés: 2019.03.04.

[47] http://www.ritec.lv/files/RitecAbout.pdf

[48] https://www.comsol.com/paper/download/44415/Toney_pres.pdf [49] https://wwwndc.jaea.go.jp/NuC/ Utolsó elérés: 2019.02.03.

[50] https://www.webelements.com/ Utolsó elérés: 2019.02.03.

[51] K. Tsuji, K. Nakano, Development of a new confocal 3D-XRF instrument with an X- ray tube, J. Anal. At. Spectrom., (2011) 26, 305-309.

[52] I. Szalóki, A. Gerényi, G. Radócz, Confocal X-ray fluorescence spectrometer on commercial 3D printer, X-ray Spectrom., (2017) 46, 497-506.

[53] I. Szalóki, A. Gerényi, G. Radócz, A. Lovas, B. De Samber, L. Vincze, FPM model calculation for micro X-ray fluorescence confocal imaging using synchrotron radiation, J. Anal. Atom. Spect., (2017) 32, 334-344.

[54] L. Xiaoyan, W. Zhihong, S. Tianxi, P. Qiuli, D. Xunliang, Characterization and applications of a new tabletop confocal micro X-ray fluorescence setup, Nucl. Instrum. Meth. B, (2008) 266, 2638-2642.

[55] I. Mantouvalou, K. Lange, T. Wolff, D. Grötzsch, L. Lühl, M. Haschke, O. Hahn and B. Kanngießer, A compact 3D micro X-ray fluorescence spectrometer with X-ray tube excitation for archaeometric applications, J. Anal. At. Spectrom., (2010) 25, 554-561.

[56] T. Yonehara, D. Orita, K. Nakano, S. Komatani, S. Ohzawa, A. Bando, H. Uchihara, K.

Tsuji, Development of a transportable μ-XRF spectrometer with polycapillary half lens, X-Ray Spectrom., (2010) 39, 78-82.

[57] Gerényi Anita, Méréstechnikai és módszertani fejlesztések a röntgenspektrometria analitikai alkalmazásaiban, PhD értekezés, Fizikai Doktori Iskola, BME TTK, (2018).

[58] Fábián Margit, Nátrium-boroszilikát alapú üvegek szerkezete: neutrondiffrakció és fordított Monte-Carlo modellezés, PhD disszertáció, ELTE Kémia Doktori Iskola, (2009).

[59] R. L. McGreevy, L. Pusztai, Reverse Monte-Carlo Simulation: A New Technique for the Disordered Structures, Molecular Simulation, (1988) 1(6), 359-367.

[60] I. Szalóki, J. Osán, Chul-Un Ro, R. Van Grieken, Quantitative characterization of individual aerosol particles by thin-window electron probe microanalysis combined with iterative simulation, Spectrochim. Acta B, (2000) 55, 1017-1030.

[61] I. Szalóki, Chul-Un Ro, J. Osán, J. de Hoog, R. Van Grieken, Speciation and Surface Analysis of Single Particles Using Electron-Excited X-Ray Emission Spectrometry, in X-Ray Spectrometry: Recent Technological Advances, New Applications, Ed. Kouichi Tsuji, Jasna Injuk and Rene Van Grieken, Publisher: John Wiley & Sons, Ltd., ISBN:

0-471-4864-X., (2004) 570-592.

[62] W. K. Luo, E. Ma, EXAFS measurements and reverse Monte-Carlo modeling of atomic structure in amorphous Ni80P20 alloys, J. Non-Crystall. Solids, (2008) 354, 945–955.

[63] T. Schoonjans, V. A. Solé, L. Vincze, M. S.del Rio, K. Appel and C. Ferrero, A general Monte-Carlo simulation of energy-dispersive X-ray fluorescence spectrometers, part 6:

quantification through iterative simulations, Spectrochim Acta B, (2003) 82, 36-41.

[64] C. U. Ro, J. Osán I. Szalóki J. de Hoog, A. Worobiec, R. Van Grieken, A Monte-Carlo Program for Quantitative Electron-Induced X-ray Analysis of Individual Particles, Anal. Chem., (2003) 75, 851-859.

[65] M. Czyzycki, M. Bielewski, M. Lankosz, Quantitative elemental analysis of individual particles with the use ofmicro-beam X-ray fluorescence method and Monte-Carlo simulation, X-Ray Spectrom., (2009), 38, 487-491.

[66] I. Szalóki, A. Somogyi, M. Braun, A. Tóth, Investigation of Geochemical Composition of Lake Sediments Using ED-XRF and ICP-AES Techniques, X-Ray Spectrom., (1999) 28, 399-405.

[67] I. Mantouvalou, T. Lachmann, S. P. Singh, K. Vogel-Mikuš, B. Kanngießer, Advanced Absorption Correction for 3D Elemental Images Applied to the Analysis of Pearl Millet Seeds Obtained with a Laboratory Confocal Micro X‑ray Fluorescence Spectrometer, Anal. Chem., (2017) 89, 5453-5460.

[68] Thomas E. Booth, Genesis of the Weight Window and the Weight Window Generator in MCNP – A Personal History, Link, Utolsó elérés: 2019.04.29.

[69] Computer Manual Series No. 21, Quantitative X-Ray Analysis System, User’s Manual and Guide to X-Ray Fluorescence Technique, IAEA (2009).

[70] www.brightspec.be (Utolsó elérés: 2019.04.02)

[71] MCNP6 TM User’s Manual, Version 1.0, Manual Rev. 0, Editor: Denise B. Pelowitz, Los Alamos National Laboratory, series: LA-CP-13-00634, REV. 0, (2013).

[72] Nguyen C. T., Almási I., Hlavathy Z., Zsigrai J., Lakosi L., Nagy P., Parkó T. and Pós I., Monitoring Burn-Up of Spent Fuel Assemblies by Gamma Spectrometry, IEEE T. Nucl. Sci., (2013) 60(2), 1107-1110.

[73] Mora, M. V., Padilla, A. G., Castro Palomino, J. L., Non-destructive burnup measurements by gamma-ray spectroscopy on spent fuel elements of the RP-10 research reactor, Prog. Nuc. Energ., (2011) 53, 344-353.

[74] Koleška, M., Viererbl, L., Marek, M., Ernest, J., Šunka, M., Determination of IRT-2M fuel burnup by gamma spectrometry, Appl. Radiat. Isotopes, (2006) 107, 92-97.

[75] Almási, I., Nguyen, C.T., Zsigrai, J., Lakosi, L., Hlavathy, Z., Nagy, P., Buglyó, N., Verification of 235U enrichment of fresh VVER-440 fuel assemblies, Appl. Radiat. Isotopes, (2012) 70, 2403-2408.

[76] Karimzadeh, S., Khan, R., Böck, H., Gamma spectrometry inspection of TRIGA MARK II fuel using caesium isotopes, Nucl. Eng. Des., (2011) 241, 118-123.

[77] Koleška, M., Viererbl, L., Marek, M., Calibration of spent fuel measurement assembly, Radiat. Phys. Chem., (2014) 104, 420-423.

[78] Vaccaro, S., Tobin, S.J., Favalli, A., Grogan, B., Jansson, P., Liljenfeldt, H., Mozin, V., Hu, J., Schwalbach, P., Sjöland, A., Trellue, H., Vo D., PWR and BWR spent fuel assembly gamma spectra measurements, Nuc. Instrum. Meth. A, (2014) 833, 208-225.

[79] Hellesen, C., Grape, S., Jansson, P., Jacobsson Svärd, S., Åberg Lindell, M., Andersson, P., Nuclear spent fuel parameter determination using multivariate analysis of fission product gamma spectra, Ann. Nucl. Energy, (2017) 110, 886-895.

[80] Åberg Lindell, M., Andersson, P., Grape, S., Håkansson, A., Thulin, M., Estimating irradiated nuclear fuel characteristics by nonlinear multivariate regression of simulated gamma-ray emissions, Nuc. Instrum. Meth. A, (2018) 897, 85-91.

[81] Rutkowski, W., Szteka, W., Wieczorkowski, M., Ek-10 dispersion fuel elements for experimental and university reactors, Report No. 585/XIV/R, Instytut Badan Jadrowych, Institute of Nuclear Research, Warsaw, (1964).

[82] Clayton, A. M., Kingscott, C., Preliminary Evaluation of Spent Fuel Storage at Magurele Romania, European Commission, Report No. AEAT-6453, (2000).

[83] Argonne National Laborathory: Natural Decay Series: Uranium, Radium and Thorium, Human Health Fact Sheet, (2005), Link , Utolsó elérés: 2018.08.01.

[84] Chadwick, M. B., Herman, M., Oblozinsky, P., ENDF/B-VII.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets, (2011) 112(12), 2887-2996.

[85] Genin, J. B., Leuthrot, C., Parrat, D., Ridoux, P., Harrer, A., DIADEME: A computer code to assess in operation defective fuel characteristics and primary circuit contamination, In Proc. Int. Conf. Water Chemistry of Nuclear Reactor Systems, (2002).