• Nenhum resultado encontrado

6.4 Obtenção de α-amino éster

6.4.2 Caracterização do composto sintetizado

6.4.2.1 {2-[(2E)-3-(4-clorofenil)prop-2-enoil]anilino}acetato de metila (17)

Obtido como um sólido amarelo, sem purificação adicional.

Rendimento: 25%

IV (ATR, νmáx, cm-1): 3268 (H–N), 1743 (C=O, éster), 1640 (C=O, cetona), 1562 (C=C). RMN-1H (500 MHz, DMSO, ppm): δ 9,33 (t, J = 5,5 Hz, 1H, aromático), 8,21 (t, J = 1 Hz, 1H, aromático), 8,02 (d, J = 15,5 Hz, 1H, Hβ), 7,90 (d, J = 8,5 Hz, 2H, aromáticos), 7,65 (d, J = 15,5 Hz, 1H, Hα), 7,51 (d, J = 8,5 Hz, 2H, aromáticos), 7,43 (t, J = 8 Hz, 2H, aromáticos), 6,73-6,68 (m, 1H, aromático), 4,18 (d, 2H, CH2), 3,71 (s, 3H, CH3). RMN-13C (125 MHz, DMSO, ppm): δ 190,80 (C), 170,86 (C), 150,49 (C), 140,99 (C), 135,30 (C), 134,73 (C), 134,00 (CH), 132,23 (CH), 130,45 (CH), 128,97 (CH), 124,14 (CH), 118,24 (CH), 115,03 (CH), 112,08 (CH), 52,03 (CH2) 44,08 (CH3).

7 REFERÊNCIAS

[1] Abbott, A. Dementia: a problem of our age. Nature 2011, 475, S2-S4.

[2] Alzheimer’s Association. 2017 Alzheimer’s disease facts and figures. Alzheimer’s Dement,

2017, 13(4), 325-373.

[3] Verheijen, J., Sleegers, K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends in Genetics – Cell Press, 2018, 34(6), 434-447.

[4] Sanabria-Castro, A., Alvarado-Echeverría, I., Monge-Bonilla, C. Molecular pathogenesis of alzheimer’s disease: An update. Ann. Neurosci, 2017, 24, 46–54.

[5] Sosa-Ortiz, A. L., Acosta-Castillo, I., Prince, M. J. Epidemiology of dementias and Alzheimer’s disease. Arch. Med. Res, 2012, 43(8), 600-608.

[6] Prince, M., Comas-Herrera, A., Kanpp, M., Guerchet, M., Karagiannidou, M. World Alzheimer report 2016. Improving healthcare for people living with dementia. Alzheimer’s Disease International, 2016, 140 p.

[7] Prince, M., Wimo, A., Guerchet, M., Ali, G-C., Wu, Y-T., Prina, M. World Alzheimer report 2015. The global impact of dementia. Alzheimer’s Disease International, 2015, 87 p.

[8] Brayne, C., Miller, B. Dementia and aging populations – A global priority for contextualized research and health policy. PLoS Med., 2017, 14(3), e1002275.

[9] Cole, J. H., Franke, K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci., 2017, 40(2), 681-690.

[10] Liochev, S. I. Which is the most significant cause of aging? Antioxidants (Basel), 2015, 4(4), 793-810.

[11] Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 2018, 14(3), 367-429.

[12] Anand, R., Gill, K. D., Mahdi, A. A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014, 76, 27-50.

[13] Barros, A. C., Lucatelli, J. F., Maluf, S. W., Andrade, F. M. Genetic influence on late onset Alzheimer’s disease. Rev. Psiquiatr. Clín., 2009, 36(1), 16-24.

[14] Isik, A. T. Late onset Alzheimer’s disease in older people. Clin. Interv. Aging, 2010, 5, 307-311.

[15] Villemagne, V. L., Chételat, G. Neuroimaging biomarkers in Alzheimer’s disease and other dementias. Ageing Res. Rev., 2016, 30, 4-16.

[16] Amtul, Z. Why therapies for Alzheimer’s disease do not work: do we have consensus over the path to follow? Ageing Res. Rev., 2016, 70-84.

[17] Janus, C., Westaway, D. Physiol. Behav., 2001, 73, 873.

[18] (a) Kung H. F. The β-amyloid hypothesis in Alzheimer’s disease: seeing is believing. ACS Med. Chem. Lett., 2012, 3, 265-267; (b) Dahlgren K. K, Manelli A. M., Stine Jr W. B., Baker L. K., Krafft G. A., LaDu M. J. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem., 2002, 277, 32046-32053.

[19] Zatta, P., Drago, D., Bolognin, S., Sensi, S. L. Alzheimer´s disease, metal ions and metal homeostatic therapy, Trends Pharmacol. Sci., 2009, 30(7), 346

[20] (a) Gaggelli E., Kozlowski H., Valensin D., Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev.,2006, 106, 1995-2044; (b) Bolognin S., Messori L., Drago D., Gabbiani C., Cendron L., Zatta P. Aluminum, copper, iron and zinc differentially alter amyloid Aβ1-42 aggregation and toxicity. Int. J. Biochem. Cell. Biol., 2011, 43, 877-885.

[21] Gil-Bea, F. J., Garcia-Alloza, M., Domínguez, J., Marcos, B., Ramírez, M. J. Evaluation of cholinergic markers in Alzheimer’s disease and in a model of cholinergic deficit. Neurosci. Lett., 2005, 375(1), 37-41.

[22] Pepeu, G., Giovannini, M. G. The fate of the brain cholinergic neurons in neurodegenerative disease. Brain Res., 2017, 1670, 173-184.

[23] Groleau, M., Chamoun, M., Vaucher, E. Stimulation of acetylcholine release and pharmacological potentiation of cholinergic transmission affect cholinergic receptor expression differently during visual conditioning. Neuroscience, 2018, 386, 79-90.

[24] Picciotto M. R., Higley, M. J., Mineur, Y. S. Acetylcholine as a neuromodulator: cholinergic signaling shapes, nervous function and behavior. Neuron., 2012, 76, 116-129. [25] Dineley, K. T., Pandya, A. A., Yakel, J. L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends in Pharmacol. Sci., 2015, 36(2), 96-108.

[26] Leiser, S. C., Bowlby, M. R., Comery, T. A., Dunlop, J. A cog in cognition: how the α7 nicotinic acetylcholine receptor is geared towards improving cognitive deficits. Pharmaco. Ther., 2009, 122(3), 302-311.

[27] Vallés, A. S., Barrantes, F. J. Chaperoning 7-neuronalnicotinicacetylcholine receptors. Biochem. Biophys. Acta, 2012, 1818, 718-729.

[28] Mulugeta, E., Karlsson, E., Islam, A., Kalaria, R., Mangat, H., Winblad, B., Adem, A. Loss of muscarinic M4 receptors in hippocampus of Alzheimer patients. Brain Res., 2003, 960(1-2),

259-262.

[29] Lebois, E. P., Thorn, C., Edgerton, J. R., Popiolek, M., Xi, S. Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer’s disease. Neuropharmacology, 2018, 136(C), 362-373.

[30] Agatonovic-Kustrin, S., Kettle, C., Morton, D. W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565.

[31] Parikh, V., Bernard, C. S., Naughton, S. X., Yegla, B. Interactions between Aβ oligomers and presynaptic cholinergic signaling: age-dependent effects on attentional capacities. Behav. Brain Res., 2014, 274, 30-42.

[32] Morley, J. E., Farr, S. A., Nguyen, A. D. (in press) Alzheimer disease. Clin. Geriat. Med.,

2018.

[33] Fink, H. A., Jutkowitz, E., McCarten, J. R., Hemmy, L. S., Butler, M., Davila, H., Ratner, E., Calvert, C., Barclay, T. R., Brasure, M., Nelson, V. A., Kane, R. L. Pharmacologic interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer- type dementia. Ann. Intern. Med., 2018, 168, 39-51.

[34] Niranjan, R. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem. Int., 2018, 120, 13-20.

[35] Wenzel, T. J., Klegeris, A. Novel multi-target directed ligand-based strategies for reducing neuroinflammation in Alzheimer’s disease. Life Sci., 2018, 207, 314-322.

[36] White, J. A., Manelli, A. M., Holmberg, K. H., Eldik, L. J. V., LaDu, M. J. Differential effects of oligomeric and fibrillar amyloid-B1-42 on astrocyte-mediated inflammation. Neurobiol. Dis., 2005, 18(3), 459-465.

[37] Swanson, A., Wolf, T., Sitzmann, A., Willette, A. Neuroinflammation in Alzheimer’s disease: pleiotropic roles for cytokines and neuronal pentraxins. Behav. Brain Res., 2018, 347, 49-56.

[38] Allaman, I., Bélanger, M., Magistretti, P. J. Astrocyte-neuron metabolic relationships: for better and for worse. Trens in Neurosci., 2011, 34(2), 76-87.

[39] Hensley, K. Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic

consequences, and potential for therapeutic manipulation. J. Alzheimers Dis., 2010, 21(1), 1-14.

[40] Rodriguez, J. J., Olabarria, M., Chvatal, A., Verkhratsky, A. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ., 2009, 16, 378-385.

[41] Poddar, J., Pradhan, M., Ganguly, G., Chakrabarti, S. (in press). Biochemical deficits and cognitive decline in brain aging: intervention by dietary supplements. J. Chem. Neuroanat., 2018.

[42] Wan, H. I., Jacobsen, S., Rutkowsky, J. L., Feuerstein, G. Z. Translational medicine lessons from Flurizan’s failure in Alzhemeir’s disease (AD) trial: implication for future drug discovery and development for AD. Clin. Transl. Sci., 2009, 12, 242-247.

[43] Wyss-Coray, T., Mucke, L. Ibuprofen, inflammation and Alzheimer disease. Nature Med.,

2000, 6, 973-974.

[44] McKee, A. C., Carreras, I., Hossain, L., Ryu, H., Klein, W. L., Oddo, S., LaFerla, F. M., Jenkins, B. G., Kowall, N. W., Dedeoglu, A. Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Res., 2008, 1207, 225-236.

[45] Hung, S.-Y., Fu, W.-M. Drugs in clinical trials for Alzheimer’s disease. J. Biomed. Sci.,

[46] Zimmermann, G. R., Lehár, J., Keith, C. T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today, 2007, 12, 34-42.

[47] Schyf, C. J. V. The use of multi-target drugs in the treatment of neurodegenerative diseases. Expert. Rev. Clin. Pharmacol., 2011, 4, 293-298.

[48] Basurto-Islas, G. Luna-Muñoz, J., Guillozet-Bongaarts, A. L., Binder, L. I., Mena, R., García-Sierra, F. Accumulation of aspartic acid421-and glutamic acid-391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer’s disease. J. Neuropathol. Exp. Neurol., 2008, 67, 470-483.

[49] Eftekharzadeh, B., Daigle, J. G., Kapinos, L. E., Coyne, A., Schiantarelli, J., Carlomagno, Y., Cook, C., Miller, S. J., Dujardin, S., Amaral, A. S., Grima, J. C., Bennet, R. E., Tepper, K., DeTure, M., Vanderburgh, C. R., Corjuc, B. T., DeVos, S. L., Gonzales, J. A., Chew, J., Vidensky, S., Gage, F. H., Mertens, J., Troncoso, J., Mandelkow, E., Salvatella, X., Lim, R. Y. H., Petrucelli, L., Wegmann, S., Rothstein, J. D., Hyman, B. T. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron, 2018, 99(5), 925-940.

[50] Bussière, T., Briée-Scherrer, V., Delacourte, A., Hof, P. R. Tau Protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev., 2000, 33, 95-130. [51] Jouanne, M., Rault, S., Voisin-Chiret, A.-S. Tau protein aggregation in Alzheimer’s disease: an attractive target for the development of novel therapeutic agents. Eur. J. Med. Chem., 2017, 139, 153-167.

[52] Ittner, A., Ittner, L. M. Dendritic tau in Alzheimer’s disease. Neuron, 2018, 99(1), 13-27. [53] Kolarova, M., García-Sierra, F., Bartos, A., Ricny, J., Ripova, D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimers Dis., 2012, 2012, 731526.

[54] Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A., Hof, P. R. Brain Res. Rev., 2000, 33(1), 95-130.

[55] Laurent, C., Buée, L., Blum, D. Tau and neuroinflammation: what impact for Alzheimer’s disease and tauopathies? Biomed. J., 2018, 41(1), 21-33.

[56] Massey, P. V., Bashir, Z. I. Long-term depression: multiple forms and implications for brain functions. Trends Neurosci., 2007, 30, 176-184.

[57] Villemagne, V. L., Burnham, S., Bourgeat, P., Brown, B., Ellis, K. A., Salvado, O., Szoeke, C., Macaulay, S. L., Martins, R., Maruff, P., Ames, D., Rowe, C. C., Mestres, C. L. Lancet. Neurol., 2013, 12(4), 357-367.

[58] Hardy, J., Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.

[59] Oddo, S., Caccamo, A., Tran, L., Lambert, M. P., Glabe, C. G., Klein, W. L., LaFerla, F. M., Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J. Biol. Chem., 2006, 281(3), 1599-1604. [60] Klein, W. L., Stine, W. B. Jr., Teplow, D. B., Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol. Aging., 2004, 25(5), 569-580.

[61] Mullane, K., Williams, M. (in press) Alzheimer’s disease (AD) therapeutics – 1: repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem. Pharmacol., 2018.

[62] Cacquevel, M., Aeschbach, L., Houacine, J., Fraering, P. C. Alzheimer's disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS One., 2012, 7(4), 1-13.

[63] Barnwell, E., Padmaraju, V., Baranello, R., Pacheco-Quinto, J., Crosson, C., Ablonczy, Z., Eckman, E., Eckman, C. B., Ramakrishnan, V., Greig, N. H., Pappolla, M. A., Sambamurti, K. Evidence of novel mechanism for partial γ-secretase inhibition induced paradoxical increase in secreted amyloid β protein. PLoS One., 2014, 9(3), e91531.

[64] Nhan, H. S., Chiang, K., Koo, E. K. H. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol., 2015, 129, 1-19. [65] Barage, S. H., Sonawane, K. D. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.

[66] Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., Morgan, T. E., Trommer, B., Viola, K. L., Wals, P., Zhang, C., Finch, C. E., Krafft, G. A.,

Klein, W. L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 6448-6453.

[67] Ahmed, M., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliot, J. I., Van Nostrand, W. E., Smith, S. O. Structural conversion of neurotoxic amyloid-beta (1-42) oligomers to fibrils. Nat. Struct. Mol. Biol., 2010, 17(5), 561-567.

[68] Kuruva, C. S., Reddy P. H. Amyloid beta modulators and neuroprotection in Alzheimer’s disease: a critical appraisal. Drug Discov. Today, 2017, 22(2), 223-233.

[69] Zemek, F., Drtinova, L., Nepovimova, E., Sepsova, V., Korabecny, J., Klimes, J., Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Exp. Opin. Drug Safety, 2014, 13(6), 759-774.

[70] Folch, J., Busquets, O., Ettcheto, M., Sánchez-López, E., Castro-Torres, R. D., Verdaguer, E., Garcia, M. L., Olloquequi, J., Casadesús, G., Beas-Zarate, C., Pelegri, C., Vilaplana, J., Auladell, C., Camins, A. Memantine for the treatment of dementia: a review on its current and future applications. J. Alzheimers Dis, 2018, 62(3), 1223-1240.

[71] Zhang, B., Carroll, J., Trojanowski, J. Q., Yao, Y., Iba, M., Potuzak, J. S., Hogan, A. M. L., Xie, S. X., Ballatore, C., III, A. B. S., Lee, V. M. Y., Brunden, K. R. The microtubule- stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J. Neurosci., 2012, 32(11), 3601-3611.

[72] Fitzgerald, D. P., Emerson, D. L., Qian, Y., Anwar, T. Liewehr, D. J., Steinberg, S. M., Silberman, S., Palmieri, D., Steeg, P. S. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol. Cancer Ther., 2012, 11(9), 1959-1967. [73] Panza, F., Solfrizzi, V., Seripa, D., Imbimbo, B. P., Lozupone, M., Santamato, A., Zecca, C., Barulli, M. R., Bellomo, A., Pilotto, A., Daniele, A., Greco, A., Logroscino, G. Tau-centric targets and drugs in clinical development of the treatment of Alzheimer’s disease. Biomed. Res. Int., 2016, 3245935.

[74] Hung, S-Y., Fu, W-M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci., 2017, 24(47), 47-58.

[75] Grontvedt, G. R., Schröder, T. N., Sando, S. B., White, L., Brathen, G., Doeller, C. F. Alzheimer’s disease. Current Biology – Cell Press, 2018, 28(11), R645-R649.

[76] Jedrziewski, M, K., Lee, V., M-Y., Trojanowski, J. Q. Lowering the risk of Alzheimer’s disease: evidence-based practices emerge from new research. Alzheimer’s & Dementia, 2005, 1(2), 152-160.

[77] Shen, Y., Li, R. What do we know from clinical trials on exercise and Alzheimer’s disease? Journal of Sport and Health Science, 2016, 5(4), 397-399.

[78] Piñero J., Temporal, R. M., Silva-Gonçalves, A. J., Jiménez, I. A., Bazzocchi, I. L., Oliva, A., Pereira, A., Leon, L. L., Valladares, B. New administration model of trans-chalcone biodegradable polymers for the treatment of experimental leishmaniasis. Acta Trop., 2006, 98, 59-65.

[79] Diáz-Tielas, C., Graña, E., Reigosa, M. J., Sánchez-Moreiras, A. M. Biological activities and novel applications of chalcones. Planta daninha, 2016, 34, 607-616.

[80] Yoon, G., Jung, Y. D., Cheon, S. H. Cytotoxic allyl retrochalcone from the roots of Glycyrrhiza inflata. Chem. Pharm. Bull., 2005, 53(6), 694-695.

[81] Cho, Y. C., Lee, S. H., Yoon, G., Kim, H. S., Na, J. Y., Choi, H. J., Cho, C. W., Cheon, S. H., Kang, B. Y. Licochalcone E reduces chronic allergic contact dermatitis and inhibits IL- 12p40 production through down-regulation of NF-κB. Int. J. Immunopharmacol, 2010, 10(9), 1119-1126.

[82] Dewick, P. M. Medicinal Natural Products: a biosynthetic approach. 3rd ed. Chichester: Wiley, 2009.

[83] Dao, T. T. H., Linthorst, H. J. M., Verpoorte, R. Chalcone synthase and its functions in plant resistance. Phytochem. Rev., 2011, 10, 397-412.

[84] Bukhari, S., Jasamai M., Jantan I. Synthesis and biological evaluation of chalcone derivatives. Mini-Rev. Med. Chem., 2012, 12, 1394-1403.

[85] Rahman, M. A. Chalcone: A Valuable Insight into the Recent Advances and Potential Pharmacological Activities. Chem. Sci. J., 2011, SCJ-29, 1-16.

[86] Lahtchev, K. L., Batovska, D. I., Parushev, St. P., Ubiyvovk, V. M., Sibirny, A. A. Antifungal Activity of Chalcones: a mechanistic study using various yeast strains. European J. Med. Chem., 2008, 43, 2220-2228.

[87] Silva, W. A.,Andrade, C. K. Z., Napolitano, H. B., Vencato, I., Lariucci, C., de Castro, M. R. C., Camargo, A. J. Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi. J. Braz. Chem. Soc., 2013, 24, 133-144.

[88] Rücker, H., Al-Rifari, N., Rasele, A., Gottfried, E., Brodziak-Jarosk, L., Gerhäuser, C., Dick, T. P., Amslinger, S. Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site. Org. Biomol. Chem., 2015, 13, 3040-3047.

[89] Ng, H.-L., Ma, X., Chew, E.-H, Chui, W.-K. Design, Synthesis, and Biological Evaluation of Coupled Bioactive Scaffolds as Potential Anticancer Agents for Dual Targeting of Dihydrofolate Reductase and Thioredoxin Reductase. J. Med. Chem., 2017, 60, 1734−1745. [90] Pacheco, D. J., Trilleras, J., Quiroga, J., Gutiérrez, J., Prent, L., Coavas, T., Marín, J. C., Delgado, G. N-(4-((E)-3-arylacryloyl)phenyl)acetamide derivatives and their antileishmanial activity. J. Braz. Chem. Soc., 2013, 24, 1685-1690.

[91] Borchhardt, D. M., Mascarello, A., Chiaradia, L. D., Nunes, R. J., Oliva, G., Yunes, R. A., Andricopulo, A. D. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi. J. Braz. Chem. Soc., 2010, 21, 142-150.

[92] Ng, H-L., Ma, X., Chew, E-H., Chui, W-K. Design, synthesis and biological evaluation of coupled bioactive scaffolds as potential anticancer agents for dual targeting of dihydrofolate reductase and thioredoxin reductase. J. Med. Chem., 2017, 60, 5, 1734-1745.

[93] Tavares L. C., Johann S., Alves T. M. A., Guerra J. C., Fagundes E. M. S., Cisalpino P. S., Bortoluzzi A. J., Giovanni F., Piccoli R. M. C., Hugo T. S., Mara E. F. B., Moacir B., Pizzolatti G. Quinolinyl and quinolinyl N-oxide chalcones: Synthesis, antifungal and cytotoxic activities. Eur. J. Med. Chem. 2011, 46(9), 4448-4456.

[94] Claisen L., Claparede A. Condensationen von Ketonen mit Aldehyden. Ber Dtsch Chem Ges, 1881, 14, 2460-2468.

[95] Mai, C. W., Yaeghoobi, M., Abd-Rahman, N., Kang, Y. B., Pichika, M. R. Chalcones with electron-withdrawing and electron-donating substituents: anticancer activity against TRAIL resistant cancer cells, structureeactivity relationship analysis and regulation of apoptotic proteins. Eur. J. Med. Chem. 2014, 77, 378-387.

[96] Sulpizio, C., Roller, A., Giester, G., Rompel, A. Synthesis, structure, and antioxidant activity of methoxy-and hydroxyl-substituted 2’-aminochalcones. Monatsh. Chem. 2016, 147(10), 1747-1757.

[97] Wang, G., Peng. Z., Zhang, J., Qiu, J., Xie, Z., Gong, Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivates as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg. Chem., 2018, 78, 332-340.

[98] Zenger, K., Dutta, S., Wolff, H., Genton, M. G.; Kraus, B. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells. Toxicology, 2015, 336, 26-33.

[99] Gülden, M., Kähler, D., Seibert, H. Incipient cytotoxicity: a time-independent measure of cytotoxic potency in vitro. Toxicology, 2015, 335, 35-45.

[100] Fotakis, G., Timbrell, J. A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett., 2006, 160(2), 171-177.

[101] Kerns, E. H., Di, L. Drug-like properties: concepts, structure, design and methods from ADME to toxicity optimization. Academic Press. 2008.

[102] Shen, Y-N., Lin, L., Qiu, H-Y. Zou, W-Y., Qian, Y., Zhu, H-L. The design, synthesis, in vitro biological evaluation and molecular modeling of novel benzenesulfonate derivates bearing chalcone moieties as potent anti-microtubulin polymerization agents. RSC. Adv., 2015, 5, 23767-23777.

[103] Ducki, S. Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anti-Cancer Agents Med. Chem., 2009, 9, 336-347.

[104] Syam, S., Abdewahab, S. I., Al-Mamary, M. A., Mohan, S. Synthesis of chalcones with anticancer activities. Molecules, 2012, 17, 6179-6195.

[105] Wang, L., Wang, Y., Tian, Y., Shang, J., Sun, X., Chen, H., Wang, H., Tan, W. Design, synthesis, biological evaluation and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg. Med. Chem., 2017, 25(1), 360-371.

[106] Motta, L. F. Tese de Doutorado, 2012, IQ-UNICAMP.

[107] Motta, L. F.; Almeida, W. P. Quantitative Structure Activity Relationships (QSAR) of a series of ketone derivatives as anti-Candida albicans. Int. J. Drug Discov., 2011, 3, 100-117. [108] Sakata, R. P.; Figueiró, M.; Kawano, D. F. Almeida, W. P. Effect on Acetylcholinesterase and Anti-oxidant Activity of Synthetic Chalcones having a Good Predicted Pharmacokinetic Profile. Med. Chem., 2017, 13, 654-663.

[109] Sakata, R. P. Tese de Doutorado, IQ-UNICAMP, 2018.

[110] Mosmann,T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity. J. Immunol. Methods, 1983, 65, 55–63.

[111] Gasteiger J., Rudolph C., Sadowski J. Automatic generation of 3-D atomic coordinates for organic molecules. Tetrahedron Comput. Methodol. 1990, 3, 537–547.

[112] Thompson M.A. Molecular docking using ArgusLab: an efficient shape-based search algorithm and AScore scoring function. Proc Natl Acad Sci USA. 2004, 172 - CINF 42.

[113] Ellman, G.L., Courtney, K.D., Andre V. Jr., Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88– 95.

[114] da Silva GS, Figueiró M, Tormena CF, Coelho F, Almeida WP. Effects of novel acylhydrazones derived from 4-quinolone on the acetylcholinesterase activity and A β 42 peptide fibrils formation. J Enzyme Inhib Med Chem. 2016, 31,1464-1470.

[115] Trott, O., Olson, A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010, 31, 455-461.

[116] Rapin, D. H., Evans, D. A. pKa Table. Disponível em:

[117] Roth, G. J., Heckel, A., Colbatzky, F., Handschuh, S., Kley, J., Lehmann-Lintz, T., Lotz, R., Tontsch-Grunt, U., Walter, R., Hilberg, F. Design, synthesis, and evaluation of indolinoses as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl- substituted indolinone (BIBF 1120). J. Med. Chem., 2009, 52(14), 4466-4480.

[118] Le, Z-G., Chen, Z-C., Hu, Y., Zheng, Q-G. Organic reactions in ionic liquids: N- alkylation of phthalimide and several nitrogen heterocycles. Synthesis, 2004, 2, 208-212. [119] Clayden, J., Greeves, N., Warren, S., Wothers, P. Organic Chemistry. 2nd ed. Oxford Univ. Press: Oxford, 2004.

[120] Yamaki, S., Koga, Y., Nagashima, A., Kondo, M., Shimada, Y., Kadono, K., Moritomo, A., Yoshihara, K. Synthesis and pharmacological evaluation of glycine amide derivatives as novel vascular adhesion protein-1 inhibitors without CYP3A4 and CYP2C19 inhibition. Bioor. Med. Chem., 2017, 25(15), 4110-4122.

[121] Montalbetti, C. A. G. N., Falque, V. Amide bond formation and peptide coupling. Tetrahedron, 2005, 61(46), 10827-10852.

[122] Joullie, M. M., Lassen, K. M. Evolution of amide bond formation. Arkivoc., 2010, 8, 189- 250.

[123] Perjési, P., Kubalkova, J., Chovanova, Z., Marekov, M., Rozmer, Zs., Fodor, K., Chavkova, Z., Tomeskova, V., Guzy, J. Comparison of effects of some cyclic chalcone analogues on selected mitochondrial functions. Pharmazie, 2008, 63, 899-903.

[124] Forman, H. J., Zhang, H., Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30(1-2), 1-12.

[125] Corso, C. R., Acco, A. Glutathione system in animal model of solid tumors: from regulation to therapeutic target. Crit. Rev. Oncol. Hematol., 2018, 128, 43-57.

[126] Couto, N., Wood, J., Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med., 2016, 95, 27-42.

[127] Backos, D. S., Franklin, C. C., Reigan, P. The role of glutathione in brain tumor drug resistance. Biochem. Pharmacol., 2012, 83(8), 1005-1012.

[128]Almeida, W. P., Huber, P. C.; de Fatima, A. Glutathione and related enzymes: Biological roles and importance in pathological processes. Quim. Nova, 2008, 31, 1170-1179.

[129] Mazzetti, A. P., Fiorile, M. C., Primavera, A., Bello, M. L. Glutathione transferases and neurodegenerative diseases. Neurochem. Int., 2015, 82, 10-18.

[130] Brigelius-Flohé, R., Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta,

2013, 1830, 3289-3303.

[131] Franco, R., Cidlowski, J. A. Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ., 2009, 16, 1303-1314.

[132] Ansari, M. A., Scheff, S. W. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J. Neuropathol. Exp. Neurol., 2010, 69, 155-167.

[133] Foye’s. Principles of Medicinal Chemistry. Lippincott Williams and Wilkins. 17th ed.

2013.

[134] Miyamoto, T., Yamamoto, I. Glutathione conjugates as the activated form of chalcones for glutathione s-transferase inhibition. J. Pesticide Sci., 1994, 19, 53-58.

[135] Kerns, E. H., Di, L. Drug-Like properties: concepts, structure design and methods from ADME to Toxicity Optimization. 1st ed. Academic Press, Massachusetts, 2008.

[136] Pobudkowska, A., Domanska, U., Jurkowska, B. A., Dymczuk, K. Solubility of pharmaceuticals in water and alcohols. Fluid Phase Equilib., 2015, 392, 56-64.

[137] Jorgensen, W. L., Duffy, E. M. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev., 2002, 54(3), 355-366.

[138] Zalba, S., Hagen, T. L. M. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat. Rev., 2017, 52, 48-57.

[139] Fletcher, A. The cell membrane and receptors. Anaesth. Intensive Care Med., 2017, 18(6), 316-320.

[140] Srejber, M., Navrátilová, V., Paloncýová, M., Bazgier, V., Berka, K., Anzenbacher, P., Otyepka, M. Membrane-attanched mammalian cytochromes P450: an overview of the

membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem., 2018, 183, 117-136.

[141]Hubastsch, I., Ragnarsson, E. G. E., Artursson, P. Determination of drug permeabilityand prediction of drug absorption in Caco-2 monolayers. Nature Protoc., 2007, 2, 2011-2019. [142] Alexander, J. J. Blood-brain barrier (BBB) and the complement landscape. Mol. Immunol., 2018, 102, 26-31.

[143] Chakraborty, A., Wit, N. M., Flier, W. M., Vries, H. E. The blood brain barrier in Alzheimer’s disease. Vascular Pharmacology, 2017, 89, 12-18.

[144] Lancellotti, M. Rôle des variations de la capsule dans la virulence de Neisseria meningitidis. Thèse Doctoral à l'université Paris 5 - René Descartes, 2005.

[145] Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Järvinen, T., Savolainen, J. Prodrugs: design and clinical applications. Nature Rev. Drug Discov., 2008, 7, 255-270. [146] Liu, Y., Peterson, D. A., Kimura, H., Schubert, D. Mechanism of cellular 3-(4,5- dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem., 1997, 69, 581-593.

[147] Prabst, K., Engelhardt, H., Ringgeler, S., Hubner, H. Basic colorimetric proliferation assays: MTT, WST, and Resazurin. Methods Mol. Biol., 2017, 1601, 1-17.

[148] Harel, M., Schalkt, I., Ehret-Sabatiert, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P. H., Silman, I., Sussman, J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Biochemistry, 1993, 90, 9031-9035.

[149] Kryger, G., Silman, I., Sussman, J. L. Structure of acetylcholinesterase complexed with E2020 (Aricept®): implications for the design of new anti-Alzheimer drugs. Structure, 1999, 7(3), 297-307.

Figura 59. Espectro de RMN 1H (CDCl

Figura 60. Espectro de RMN 13C (CDCl

Figura 63. Espectro de RMN 1H (CDCl

Figura 64. Espectro de RMN 13C (CDCl

Figura 67. Espectro de RMN 1H (CDCl

Figura 68. Espectro de RMN 13C (CDCl

Figura 71. Espectro de RMN 1H (CDCl

Figura 72. Espectro de RMN 13C (CDCl

Figura 75. Espectro de RMN 1H (CDCl

Figura 76. Espectro de RMN 13C (CDCl

Figura 79. Espectro de RMN 1H (CDCl

Figura 80. Espectro de RMN 13C (CDCl

Figura 83. Espectro de RMN 1H (CDCl

Figura 84. Espectro de RMN 13C (CDCl

Figura 87. Espectro de RMN 1H (CDCl

Figura 88. Espectro de RMN 13C (CDCl

Figura 91. Espectro de RMN 1H (CDCl

Figura 92. Espectro de RMN 13C (CDCl

Figura 95. Espectro de RMN 1H (CDCl

Figura 96. Espectro de RMN 13C (CDCl

Documentos relacionados