• Nenhum resultado encontrado

Esse trabalho foi realizado com a colaboração de diferentes departamentos e instituições, as quais foram fundamentais para a obtenção dos resultados e alcance dos objetivos. Durante o período de doutoramento foram utilizados laboratórios de grupos de pesquisa da Universidade Católica de Pelotas, os quais possuem colaborações com o Programa de Pós-Graduação em Ciência e Engenharia de Materiais.

A aluna foi bolsista Capes (Demanda Social) durante 1 ano e 9 meses e também participou de dois programas de doutorado sanduíche no exterior. A aluna conquistou uma bolsa de doutorado do programa Erasmus BE Mundus, financiado pela União Europeia, onde desenvolveu atividades durante 6 meses na Universidade Tecnológica da Silésia em Gliwice, Polônia. Além disso, a aluna conquistou uma segunda bolsa de doutorado sanduíche do Programa de Líderes Emergentes nas Américas financiada pelo governo do Canadá, onde desenvolveu atividades durante 5 meses na Universidade McMaster em Hamilton, Canadá. Além desse período, a aluna desenvolveu atividades na Universidade McMaster por mais 7 meses. Durante o período no exterior a aluna teve a oportunidade de participar de diversas palestras e congressos.

Referências

AGARWAL, S.; WENDORFF, J. H.; GREINER, A. Use of electrospinning technique for biomedical applications. Polymer, v. 49, n. 26, p. 5603–5621, 2008.

AREIAS, A. C. et al. Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(l-lactide) electrospun mats. Soft Matter, v. 8, n. 21, p. 5818–5825, 2012.

ARMENTANO, I. et al. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, v. 95, n. 11, p. 2126– 2146, 2010.

ATHIRA, K. S.; SANPUI, P.; CHATTERJEE, K. Fabrication of poly(caprolactone) nanofibers by electrospinning. Journal of Polymer and Biopolymer Physics

Chemistry, v. 2, n. 4, p. 62–66, 2014.

BALAGANGADHARAN, K.; DHIVYA, S.; SELVAMURUGAN, N. Chitosan based nanofibers in bone tissue engineering. International Journal of Biological

Macromolecules, v. 104, p. 1372–1382, 2017.

BHUSHAN, B. Introduction to nanotechnology. Springer handbook of

nanotechnology, p. 1–13, 2010.

BINULAL, N. S. et al. PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering.

Journal of Biomaterials Science, Polymer Edition, v. 25, n. 4, p. 325–340, 2014.

BONADIO, T. G. M. et al. Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite. Journal of Applied

Physics, v. 113, n. 22, 2013.

BOSE, S.; ROY, M.; BANDYOPADHYAY, A. Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, v. 30, n. 10, p. 546–554, 2012.

BOTTCHER-HABERZETH;, S.; THOMAS, B.; REICHMANN, E. Tissue engineering of skin. Burns, v. 36, n. 4, p. 450–460, 2010.

BRAGA, A N. S. et al. Síntese de zeólitas pelo método hidrotérmico assistido por microondas : Uma revisão da literatura. Revista Eletronica de Materiais e

BYRAPPA, K.; ADSCHIRI, T. Hydrothermal technology for nanotechnology.

Progress in Crystal Growth and Characterization of Materials, v. 53, n. 2, p. 117

166, 2007.

CAI, Y. et al. Role of hydroxyapatite nanoparticle size in bone cell proliferation.

Journal of Materials Chemistry, v. 17, n. 36, p. 3780–3787, 2007.

CAMPARDELLI, R. et al. Encapsulation of titanium dioxide nanoparticles in PLA microspheres using supercritical emulsion extraction to produce bactericidal nanocomposites. Journal of Nanoparticle Research, v. 15, n. 10, 2013.

CAO, S.-W.; ZHU, Y.-J. Iron oxide hollow spheres: Microwave–hydrothermal ionic liquid preparation, formation mechanism, crystal phase and morphology control and properties. Acta Materialia, v. 57, n. 7, p. 2154–2165, 2009.

CASTNER, D. G.; RATNER, B. D. Biomedical surface science: Foundations to frontiers. Surface Science, v. 500, n. 1–3, p. 28–60, 2002.

CHAN, X. et al. Effect of niobium oxide phase on the furfuryl alcohol dehydration.

Catalysis Communications, v. 97, n. November 2016, p. 65–69, 2017.

CHEN, J.; CHANG, Y. Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of

mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, v. 86, n. 1, p. 169–175, 2011.

CHEN, L. et al. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology, v. 22, n. 10, 2011.

CHONG, E. J. et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia, v. 3, n. 3, p. 321–330, 2007.

CIPITRIA, A. et al. Design, fabrication and characterization of PCL electrospun scaffolds - A review. Journal of Materials Chemistry, v. 21, n. 26, p. 9419–9453, 2011.

CLARK, R. A. F.; GHOSH, K.; TONNESEN, M. G. Tissue engineering for cutaneous wounds. Journal of Investigative Dermatology, v. 127, n. 5, p. 1018–1029, 2007.

CLOUPEAU, M. Recipes for use of EHD spraying in cone-jet mode and notes on corona discharge effects. Journal of Aerosol Science, v. 25, n. 6, p. 1143–1157, 1994.

CLOUPEAU, M.; PRUNET-FOCH, B. Electrostatic spraying of liquids: Main functioning modes. Journal of Electrostatics, v. 25, n. 2, p. 165–184, 1990.

COLEMAN, J. E. Structure and mechanism of alkaline phosphatase. Annual Review

of Biophysics and Biomolecular Structure, v. 21, n. 1, p. 441–483, 1992.

CUI, W.; ZHOU, Y.; CHANG, J. Electrospun nanofibrous materials for tissue

engineering and drug delivery. Science and Technology of Advanced Materials, v. 11, n. 1, p. 014108, 2010.

DASH, J. K. et al. A simple growth method for Nb2O5 films and their optical properties. RSC Advances, v. 5, n. 45, p. 36129–36139, 2015.

DENRY, I. L. et al. Effect of niobium content on the microstructure and thermal properties of fluorapatite glass-ceramics. Journal of Biomedical Materials

Research - Part B Applied Biomaterials, v. 75, n. 1, p. 18–24, 2005.

DING, G. J. et al. Porous microspheres of amorphous calcium phosphate: Block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery. Journal of Colloid and Interface Science, v. 443, n. February 2016, p. 72–79, 2015.

DOROZHKIN, S. V; EPPLE, M. Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, v. 41, n. 17, p. 3130– 3146, 2002.

EISENBARTH, E. et al. Nanostructured niobium oxide coatings influence osteoblast adhesion. Journal of Biomedical Materials Research Part A, v. 79A, n. 1, p. 166– 175, 2006.

FALK, G. et al. Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films. Journal of Materials Research, v. 32, n. 17, p. 3271–3278, 2017.

FUJIHARA, K.; KOTAKI, M.; RAMAKRISHNA, S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers.

FULMER, M. T. et al. Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials, v. 23, n. 3, p. 751–755, 2002.

GAUTAM, S.; DINDA, A. K.; MISHRA, N. C. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Materials Science and Engineering C, v. 33, n. 3, p. 1228–1235, 2013.

GEETHA, M. et al. Ti based biomaterials, the ultimate choice for orthopaedic

implants - A review. Progress in Materials Science, v. 54, n. 3, p. 397–425, 2009.

GHASEMI-MOBARAKEH, L. et al. Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, v. 29, n. 34, p. 4532–4539, 2008.

GÓMEZ-GUILLÉN, M. C. et al. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science and Technology, v. 20, n. 1, p. 3–16, 2009.

GRACE, J. M.; MARIJNISSEN, J. C. M. A review of liquid atomization by electrical means. Journal of Aerosol Science, v. 25, n. 6, p. 1005–1019, 1994.

GREENWOOD, N. N.; EARNSHAW, A. Chemistry of the Elements. Elsevier, v. 2, 2012. 1600 p.

HABIBOVIC, P.; GROOT, K. DE. Osteoinductive biomaterials – properties and relevance in bone repair. Journal of Tissue Engineering and Regenerative

Medicine, v. 1, n. 1, p. 25–32, 2007.

HAN, J. K. et al. Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Materials Chemistry and Physics, v. 99, n. 2–3, p. 235–239, 2006.

HASHEMZADEH, F.; RAHIMI, R.; GAFFARINEJAD, A. Photocatalytic degradation of methylene blue and rhodamine B dyes by niobium oxide nanoparticles synthesized via hydrothermal method. International Journal of Applied Chemical Sciences

Research, v. 1, n. 7, p. 95–102, 2013.

HE, J. et al. Hydrothermal growth and optical properties of Nb2O5 nanorod arrays.

HELMUS, M. N.; TWEDEN, K. Encyclopedic handbook of biomaterials and bioengineering. Part A, v. 1, p. 27-59, 1995.

HENCH, LARRY L.; WILSON, J. An introduction to bioceramics. World Scientific, p. 1-24, 1993.

HENN, S. et al. Characterization of an antimicrobial dental resin adhesive containing zinc methacrylate. Journal of Materials Science: Materials in Medicine, v. 22, n. 8, p. 1797–1802, 2011.

HU, X.; YU, J. C. Continuous aspect-ratio tuning and fine shape control of

monodisperse α-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method. Advanced Functional Materials, v. 18, n. 6, p. 880–887, 2008.

HUANG, W. et al. PHBV microspheres - PLGA matrix composite scaffold for bone tissue engineering. Biomaterials, v. 31, n. 15, p. 4278–4285, 2010.

IGNATOVA, M. et al. Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromolecular Bioscience, v. 9, n. 1, p. 102–111, 2009.

JAHNO, Vanusca Dalosto. Síntese e caracterização do poli (L-ácido láctico) para

uso como biomaterial. 2005. 94f. Dissertação (Metrado em Engenharia de Minas,

Metalúrgica e de Materiais) - Escola de Engenharia. Universidade Federal do Rio Grande do Sul. Porto Alegre, 2005.

JAUL, E.; BARRON, J. Age-related diseases and clinical and public health

implications for the 85 years old and over population. Frontiers in Public Health, v. 5, p. 335, 2017.

JAYAKUMAR, R. et al. Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. International Journal of Biological

Macromolecules, v. 49, n. 3, p. 274–280, 2011.

JIANG, T. et al. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies.

Acta Biomaterialia, v. 6, n. 9, p. 3457–3470, 2010.

JONES, I.; CURRIE, L.; MARTIN, R. A guide to biological skin substitutes. British

KALWAR, K. et al. Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity.

Reactive and Functional Polymers, v. 107, p. 87–92, 2016.

KANANI, G. A.; BAHRAMI, H. S. Review on electrospun nanofibers scaffold and biomedical applications. Trends in Biomaterials and Artificial Organs, v. 24, n. 2, p. 93–115, 2010.

KARLINSEY, R. L. et al. Bioactivity of novel self-assembled crystalline Nb2O5

microstructures in simulated and human salivas. Biomedical Materials, v. 1, n. 1, p. 16–23, 2006.

KATAOKA, Francini Pizzinato. Estudo da eficiência fotocatalítica em função da

morfologia de nanoestruturas de TiO2 sintetizadas pelo método hidrotérmico.

2011. 104f. Dissertação (Mestrado em Ciência e Tecnologia dos Materiais) -

Faculdade de Ciências. Universidade Estadual Paulista Júlio de Mesquita Filho. Baurú, 2011.

KAYACI, F. et al. Antibacterial electrospun poly(lactic acid) (pla) nano fi brous webs incorporating triclosan/cyclodextrin inclusion complexes. Journal of Agricultural

and Food Chemistry, v. 61, p. 3901−3908, 2013.

KENAWY, E. et al. Release of tetracycline hydrochloride from electrospun

poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. Journal of Controlled Release, v. 81, n. 1-2, p. 57-64, 2002.

KENAWY, E. R. et al. Processing of polymer nanofibers through electrospinning as drug delivery systems. Materials Chemistry and Physics, v. 113, n. 1, p. 296–302, 2009.

KESSLER, M. et al. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions. Journal of Biomedical Materials Research Part B:

Applied Biomaterials, n. August, p. n/a-n/a, 2015.

KHIL, M. et al. Electrospun nanofibrous polyurethane membrane as wound dressing.

Journal of Biomedical Materials Research Part B: Applied Biomaterials, p. 675

679, 2003.

KO, E. I.; WEISSMAN, J. G. Structures of niobium pentoxide and their implications on chemical behavior. Catalysis Today, v. 8, n. 1, p. 27–36, 1990.

KOHN, DAVID H.; DUCHEYNE, P. Materials for bone and joint replacement.

KOKUBO, T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Materialia, v. 46, n. 7, p. 2519–2527, 1998.

KOKUBO, T.; TAKADAMA, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, v. 27, n. 15, p. 2907–2915, 2006.

KOUTSOPOULOS, S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials

Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, v. 62, n. 4, p. 600–612, 2002.

KULKARNI, R. K. et al. Polylactic acid for surgical implants. Walter Reed Army Medical Center Washington DC Army Medical Biomechanical Research Lab, 1966.

KUSHWAHA, M. et al. Differentiation of human mesenchymal stem cells on niobium- doped fluorapatite glass-ceramics. Dental Materials, v. 28, n. 3, p. 252–260, 2012.

LEE, B. E. J. et al. Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants. Applied Surface Science, v. 441, p. 1034–1042, 2018.

LEITE, E. R. et al. Synthesis of niobia nanocrystals with controlled morphology.

Journal of Physical Chemistry B, v. 110, n. 37, p. 18088–18090, 2006.

LEITUNE, V. C. B. et al. The addition of nanostructured hydroxyapatite to an experimental adhesive resin. Journal of Dentistry, v. 41, n. 4, p. 321–327, 2013.

LI, D. et al. Enhanced biocompatibility of PLGA nanofibers with gelatin/nano- hydroxyapatite bone biomimetics incorporation. ACS Applied Materials and

Interfaces, v. 6, n. 12, p. 9402–9410, 2014a.

LI, S. et al. Comparison of amorphous, pseudohexagonal and orthorhombic Nb2O5 for high-rate lithium ion insertion. CrystEngComm, v. 18, n. 14, p. 2532–2540, 2016a.

LI, W. et al. Preparation and characterization of electrospun PLA/PU bilayer nanofibrous membranes for controlled drug release applications. Integrated

Ferroelectrics, v. 179, n. 1, p. 104–119, 2017.

LI, Y. et al. New developments of Ti-based alloys for biomedical applications.

LI, Y. et al. Titanium-niobium pentoxide composites for biomedical applications.

Bioactive Materials, v. 1, n. 2, p. 127–131, 2016b.

LIANG, D.; HSIAO, B. S.; CHU, B. Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews, v. 59, n. 14, p. 1392– 1412, 2007.

LIEBERMAN, Jay R.; FRIEDLAENDER, Gary E. (Ed.). Bone regeneration and

repair: biology and clinical applications. Humana Press, 2005.

LOPES, Osmando Ferreira. Síntese e caracterização de nanopartículas de Nb2O5

e estudo de suas propriedades fotocatalíticas. 2013. 89f. Dissertação (Mestrado em Química) - Departamento de Química. Universidade Federal de São Carlos. São Carlos, 2013.

LOPES, O. F.; PARIS, E. C.; RIBEIRO, C. Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A

mechanistic study. Applied Catalysis B: Environmental, v. 144, n. July, p. 800– 808, 2014.

LUU, Y. K. et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. Journal of Controlled

Release, v. 89, n. 2, p. 341–353, 2003.

MA, Z. et al. Chondrocyte behaviors on poly-L-lactic acid (PLLA) membranes containing hydroxyl, amide or carboxyl groups. Biomaterials, v. 24, n. 21, p. 3725– 3730, 2003.

MA, Z. et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue

engineering, v. 11, n. 1, p. 202–209, 2005.

MACNEIL, S. Biomaterials for tissue engineering of skin. Materials Today, v. 11, n. 5, p. 26–35, 2008.

MARINS, N. H. et al. Radiopaque dental adhesive with addition of niobium pentoxide nanoparticles. Polymer Bulletin, p. 1–14, 2017.

MARTINS, A. M. et al. Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: An overview of the last decade. Journal of

MATIAS, C. R. et al. Synthesis and Characterization of Nb2O5:La3+,Eu3+ phosphors obtained by the non‑hydrolytic sol-gel process. Journal of the Brazilian Chemical

Society, v. 26, n. 12, p. 2558–2570, 2015.

MAZUR, M. et al. Determination of structural, mechanical and corrosion properties of Nb2O5 and (NbyCu1 - Y)Ox thin films deposited on Ti6Al4V alloy substrates for dental implant applications. Materials Science and Engineering C, v. 47, p. 211–221, 2015.

MEEJOO, S.; MANEEPRAKORN, W.; WINOTAI, P. Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochimica

Acta, v. 447, n. 1, p. 115–120, 2006.

MENG, Z. X. et al. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Materials Science and

Engineering C, v. 30, n. 8, p. 1204–1210, 2010a.

MENG, Z. X. et al. Fabrication and characterization of three-dimensional nanofiber membrance of PCL-MWCNTs by electrospinning. Materials Science and

Engineering C, v. 30, n. 7, p. 1014–1021, 2010b.

MISTRY, A. S.; MIKOS, A. G. Tissue engineering strategies for bone regeneration.

Regenerative medicine II, p. 1–22, 2005.

MIT‑UPPATHAM, C.; NITHITANAKUL, M.; SUPAPHOL, P.. Ultrafine electrospun polyamide‑6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics, v. 205, n. 17, p. 2327-2338, 2004.

MOHAMED, K. R.; MOSTAFA, A. A. Preparation and bioactivity evaluation of

hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Materials Science

and Engineering C, v. 28, n. 7, p. 1087–1099, 2008.

MURROUGH, J. W. et al. Ketamine for rapid reduction of suicidal ideation: A randomized controlled trial. Psychological Medicine, v. 45, n. 16, p. 3571–3580, 2015.

NAKASHIMA, M.; AKAMINE, A. The application of tissue engineering to regeneration of pulp and dentin in endodontics. Journal of Endodontics, v. 31, n. 10, p. 711–718, 2005.

NAM, T. H.; OGIHARA, S.; KOBAYASHI, S. Interfacial, mechanical and thermal properties of coir fiber-reinforced poly(lactic acid) biodegradable composites.

Advanced Composite Materials, v. 21, n. 1, p. 103–122, 2012.

NORMAN, J. J.; DESAI, T. A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Annals of Biomedical Engineering, v. 34, n. 1, p. 89– 101, 2006.

OBATA, A. et al. Effects of niobium ions released from calcium phosphate invert glasses containing Nb2O5 on osteoblast-like cell functions. ACS Applied Materials

and Interfaces, v. 4, n. 10, p. 5684–5690, 2012.

OLIVARES-NAVARRETE, R. et al. Biocompatibility of niobium coatings. Coatings, v. 1, n. 1, p. 72–87, 2011.

OLIVEIRA, L. M. B. Automatização e controlo de um sistema de electrospinning. 2011. 87f. Universidade do Minho.

PAULINE, S. A.; RAJENDRAN, N. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications. Applied Surface Science, v. 290, p. 448–457, 2014.

PEREIRA, R. F. JR. Nióbio, Agência Nacional de Mineração, DNPM. Disponível em: < http://www.anm.gov.br/dnpm/publicacoes/serie-estatisticas- e-economia-mineral/outras-publicacoes-1/3-3-niobio/@@download/file/3.3%20- %20Ni%C3%B3bio.pdf>. Acesso em: 15 jan. 2019.

PETER, M. et al. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical Engineering

Journal, v. 158, n. 2, p. 353–361, 2010.

PINNA, N.; ANTONIETTI, M.; NIEDERBERGER, M. A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals. Colloids and Surfaces A: Physicochemical and

Engineering Aspects, v. 250, n. 1–3, p. 211–213, 2004.

PONTELLI, Geordana Cornejo. Obtenção por electrospinning e caracterização

da microestrutura e da atividade catalítica de fibras submicrométricas de óxido de cério dopadas com cobre. 2011. 68f. Dissertação (Metrado em Engenharia de

Minas, Metalúrgica e de Materiais) - Escola de Engenharia. Universidade Federal do Rio Grande do Sul. Porto Alegre, 2011.

PRABHAKARAN, M. P.; VENUGOPAL, J.; RAMAKRISHNA, S. Electrospun

nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, v. 5, n. 8, p. 2884–2893, 2009.

PRADHAN, D. et al. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants. Materials Science and

Engineering C, v. 58, p. 918–926, 2016.

PRASAD, B. R. et al. Controlling cellular activity by manipulating silicone surface roughness. Colloids and Surfaces B: Biointerfaces, v. 78, n. 2, p. 237–242, 2010.

RABA, A. M.; BARBA-ORTEGA, J.; JOYA, M. R. The effect of the preparation method of Nb2O5 oxide influences the performance of the photocatalytic activity.

Applied Physics A: Materials Science and Processing, v. 119, n. 3, p. 923–928,

2015.

RABA, A. M.; JOYA, M. R.; SANTANDER, N. Synthesis and structural properties of niobium pentoxide powders: a comparative study of the growth process. Materials

Research, v. 19, n. 6, p. 1381–1387, 2016.

RAGHUVEER, M. S. et al. Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chemistry of

Materials, v. 18, n. 6, p. 1390–1393, 2006.

RAJZER, I. et al. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Materials Science and

Engineering C, v. 44, p. 183–190, 2014a.

RAJZER, I. et al. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. Journal of Materials Science: Materials in

Medicine, v. 25, n. 5, p. 1239–1247, 2014b.

RAMAKRISHNA, S. et al. Electrospun nanofibers: solving global issues. Materials

Today, v. 9, n. 3, p. 40–50, 2006.

RAMESH, N.; MORATTI, S. C.; DIAS, G. J. Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. Journal of Biomedical Materials

Research - Part B Applied Biomaterials, v. 106, n. 5, p. 2046–2057, 2018.

RAN, J. et al. Comparisons among Mg, Zn, Sr, and Si doped nano-

hydroxyapatite/chitosan composites for load-bearing bone tissue engineering applications. Materials Chemical Frontiers, v. 1, n. 5, p. 900–910, 2017.

RANI, R. A. et al. Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. Journal of Materials Chemistry A, v. 2, n. 38, p. 15683–15703, 2014.

REN, K. et al. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Materials Science and Engineering C, v. 78, p. 324–332, 2017.

RENEKER, D. H. et al. Electrospinning of nanofibers from polymer solutions and melts. Advances in Applied Mechanics, v. 41, p. 43-346, 2007.

REZWAN, K. et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, v. 27, n. 18, p. 3413–3431, 2006.

RODRIGUES, A. P. et al. The influence of preparation conditions on the

characteristics of chitosan‑alginate dressings for skin lesions. Journal of Applied

Polymer Science, v. 109, n. 4, p. 2703–2710, 2008.

ROOHANI-ESFAHANI, S. I. et al. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials, v. 31, n. 21, p. 5498–5509, 2010.

SANTANA, B. P. et al. Nano-/microfiber scaffold for tissue engineering: Physical and biological properties. Journal of Biomedical Materials Research - Part A, v. 100, n. 11, p. 3051–3058, 2012.

SCHUMACHER, M. et al. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. Journal of Materials Science: Materials in Medicine, v. 21, n. 11, p. 3039–3048, 2010.

SENCADAS, V. et al. Thermal properties of electrospun poly(lactic acid) membranes.

Journal of Macromolecular Science, Part B: Physics, v. 51, n. 3, p. 411–424,

2012.

SHARMA, C. et al. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.

Materials Science and Engineering C, v. 64, p. 416–427, 2016.

SHI, Q. et al. Mechanical properties and in vitro degradation of electrospun bio-

nanocomposite mats from PLA and cellulose nanocrystals. Carbohydrate Polymers, v. 90, n. 1, p. 301–308, 2012.

SILL, T. J.; VON RECUM, H. A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials, v. 29, n. 13, p. 1989–2006, 2008.

SONG, X. et al. Electrospun hydroxyapatite grafted poly(l-lactide)/poly(lactic-co- glycolic acid) nanofibers for guided bone regeneration membrane. Composites

Science and Technology, v. 79, p. 8–14, 2013.

SPERLING, L. E. et al. Advantages and challenges offered by biofunctional core- shell fiber systems for tissue engineering and drug delivery. Drug Discovery Today, v. 21, n. 8, p. 1243–1256, 2016.

SREETHAWONG, T. et al. Investigation of thermal treatment effect on physicochemical and photocatalytic H2 production properties of mesoporous- assembled Nb2O5 nanoparticles synthesized via a surfactant-modified sol-gel method. Chemical Engineering Journal, v. 215–216, p. 322–330, 2013.

STEVENS, M. M.; GEORGE, J. H. Exploring and Engineering the Cell Surface Interface. Science, v. 310, n. 5757, p. 1135–1138, 2005.

STOJANOVIĆ, Z. et al. Hydrothermal synthesis of nanosized pure and cobalt- exchanged hydroxyapatite. Materials and Manufacturing Processes, v. 24, n. 10– 11, p. 1096–1103, 2009.

SWETHA, M. et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules, v. 47, n. 1, p. 1–4, 2010.

TAYLOR, E. D.; KHAN, Y.; LAURENCIN, C. T. Tissue engineering of bone: A primer for the practicing hand surgeon. Journal of Hand Surgery, v. 34, n. 1, p. 164–166, 2009.

THAKUR, S. et al. Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum, v. 146, p. 396–408, 2017.

THOMAS, R. et al. Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied

Biochemistry and Biotechnology, v. 176, n. 8, p. 2213–2224, 2015.

TORRENT-BURGUES, J.; RODRIGUEZ-CLEMENTE, R. Hydroxyapatite

precipitation in a semibatch process. Crystal Research and Technology, v. 36, n. 8–10, p. 1075–1082, 2001.

UCHIDA, M. et al. Structural dependence of apatite formation on zirconia gels in a simulated body fluid. Journal of the Ceramic Society of Japan, v. 110, n. 1284, p. 710–715, 2002.

UEKAWA, N. et al. Low-temperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. Journal of Colloid and Interface Science, v. 264, n. 2, p. 378–384, 2003.

VALENTE, T. A. M. et al. Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. ACS Applied Materials and

Interfaces, v. 8, n. 5, p. 3241–3249, 2016.

VELTEN, D. et al. Biocompatible Nb2O5 thin films prepared by means of the sol-gel process. Journal of Materials Science: Materials in Medicine, v. 15, n. 4, p. 457– 461, 2004.

VENTURA, W. M. et al. Low temperature liquid phase catalytic oxidation of aniline promoted by niobium pentoxide micro and nanoparticles. Catalysis

Communications, v. 99, p. 135–140, 2017.

VERGROESEN, P. P. A. et al. The use of poly(l-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromolecular Bioscience, v. 11, n. 6, p. 722–730, 2011.

VERMA, S. et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Materials Letters, v. 58, n. 6, p. 1092–1095, 2004.

VERMA, S.; KUMAR, N. Effect of biomimetic 3D environment of an injectable polymeric scaffold on MG-63 osteoblastic-cell response. Materials Science and

Engineering C, v. 30, n. 8, p. 1118–1128, 2010.

VERT, M. et al. Bioresorbability and biocompatibility of aliphatic polyesters. Journal

of Materials Science: Materials in Medicine, v. 3, n. 6, p. 432–446, 1992.

VO, T. N. et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials, v. 83, p. 1–11, 2016.

WANG, Xianyan et al. Electrostatic assembly of conjugated polymer thin layers on

Documentos relacionados