• Nenhum resultado encontrado

O presente estudo demonstra que, em animais SHAM expostos ao treinamento, as respostas da aorta à Ang II são moduladas por NO de origem endotelial liberado em consequência da ativação de receptores AT2. Já nos animais 2R1C, este mecanismo

modulador endotelial é suprimido, possivelmente pelo elevado estresse oxidativo que é característico deste modelo experimental.

42

REFERÊNCIAS

1. Cifkova R, Fodor G, Wohlfahrt P. Changes in hypertension prevalence, awareness, treatment, and control in high, middle, and low-income countries: an update. Curr Hypertens Rep. 2016;18(8): 62.

2. Lyra Júnior, DP. A farmacoterapia no idoso: revisão sobre a abordagem multiprofissional no controle da hipertensão arterial sistêmica. Latino-am Enfermagem. 2006;14(3): 435-41. 3. Alves TCA, Braz JRC, Vianna PTG. α2-Agonistas em anestesiologia: aspectos clínicos e

farmacológicos. Rev Bras Anestesiol. 2000;50(5): 396-404.

4. Neto MA, Rascado RR, Brendhack LM. Receptores β-adrenérgicos no sistema cardiovascular. Medicina. 2006;39(1): 3-12.

5. Felizzola LR, Sobrinho JRR, Zorn WGW, Bellen BV. O papel do endotélio vascular na fisiologia circulatória. Cir Vasc Agiol. 1996;(12): 129-36.

6. Carvalho MHC, Nigro N, Lemos VS, Tostes RCA, Fortes ZB. Hipertensão arterial: o endotélio e suas múltiplas funções. Rev Bras Hipertens. 2001;8: 76-88.

7. Kuo L, Hein TW. Vasomotor regulation of coronary microcirculation by oxidative stress: role of arginase. Frontiersin. 2013;4(237): 1-12.

8. Ozkor, M A., Quyyumi, AA. Endothelium-Derived Hyperpolarizing Factor and Vascular Function. Cardiology Research and Practice [Internet]. 2011[citado em 29 dez 2016]. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3157651.pdf.

9. Radenković M, Stojanović M, Nešić IM, Prostran M. Angiotensin receptor blockers & endothelial dysfunction: Possible correlation & therapeutic implications. Indian J Med Res. 2016;144: 154-168.

10. Konukoglu D, Uzun H. Endothelial Dysfunction and Hypertension. Adv Exp Med Biol. 2016. DOI: 10.1007/5584_2016_90.

11. Bleeker MW P, Kooijman M, Rongen GA, Hopman MTE, Smits P. Integrative control of coronary resistance vessel tone by endothelin and angiotensin II is altered in swine with a recent myocardial infarction. J Physiol. 2005;565(2): 685-94.

12. Brandão AF, Pinge MCM. Alteração do óxido nítrico na função cardiovascular pelo treinamento físico. Semina: Ciên Biol e Saúde. 2007;28(1): 53-68.

13. Bahia L, De Aguiar LGK, Villela NR, Borttino D, Bouskela E. Endotélio e aterosclerose. Revista da SOCERJ. 2004;17(1): 26-32.

14. Silva AS, Zanesco A. Exercício físico, receptores β-adrenérgicos e resposta vascular. J Vasc Bras. 2010;9(2): 47-56.

15. Batlouni M. Anti-inflamatórios não esteroides: efeitos cardiovasculares, cérebro- vasculares e renais. Arq Bras Cardiol. 2010;94(4): 556-63.

43

16. Batlouni M. Endotélio e hipertensão arterial. Rev. Bras. Hipertens. 2001;8: 328-38. 17. Carvalho WA, Carvalho RDS, Rios-Santos F. Analgésicos inibidores específicos da ciclooxigenase-2: avanços terapêuticos. Rev Bras Anestesiol. 2004;54(3): 448-64.

18. Ruan Ke-He, Wijaya C, Cervantes V, Wu J. Characterization of the prostaglandin H2 mimic: Binding to the purified human thromboxane A2 receptor in solution+. Arch Biochem Biophys. 2008;477(2): 396-403.

19. Waib PH, Burini RC. Fundamentos bioquímicos da modulação do tono vascular. Arq Bras Cardiol.1991;56(5): 407-12.

20. Blanco-Rivero J, Cachofeiro V, Lahera V, Aras-Lopez R, Ma´rquez-Das I, Salaices M, Xavier FE, Ferrer M, Balfago´n G. Participation of prostacyclin ineEndothelial dysfunction induced by aldosterone in normotensive and hypertensive rats. Hypertension. 2005;46: 107- 12.

21. Silva PM. Modulação da função endotelial: um objectivo a prosseguir na terapêutica cardiovascular. Ver Port Clin Geral. 2000;16: 293-311.

22. Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimulis. Pharmacol Rev. 2015;67(4): 754- 819.

23. Sanjuliani AF, Torres MRSG, Paula LN, Bassan FB. Eixo renina-angiotensina- aldosterona: bases fisiológicas e fisiopatológicas. Revista do Hosp Univ Pedro Ernesto, UERJ. 2011;(10): 20-30.

24. Widdop RE, Jones ES, Hannan RE, Gaspari TA. REVIEW Angiotensin AT2 receptors: cardiovascular hope or hype? British Journal of Pharmacology. 2003;140: 809–24.

25. Rodrigues MC, Campagnole-Santos MJ, Machado RP, Silva ME, Rocha JLM, Ferreira PM, Santos RAS, Alzamora AC. Evidence for a role of AT2 receptors at the CVLM in the cardiovascular changes induced by low-intensity physical activity in renovascular hypertensive rats. Peptides. 2007;(28): 1372-82.

26. Silva DMR, Gomes-Filho A, Olivon VC, Santos, TMS, Becker LK, Santos RAS, Lemos VS. Swimming training improves the vasodilator effect of angiotensin-(1–7) in the aorta of spontaneously hypertensive rat. J Appl Physiol. 2011;(111): 1272-77.

27. Dasgupta C, Zhang L. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov Today. 2011;16(1-2): 22-34.

28. Rigatto KV, Böhlke M, Irigoyen MC. Sistema renina angiotensina: da fisiologia ao tratamento. Rev da Soci de Cardio do Rio Grande do Sul. 2004;13(3).

29. Marte AP, Santos RD. Bases fisiopatológicas da dislipidemia e hipertensão arterial. Rev Bras Hipertens. 2007;14(4): 252-57.

44

30. Batista MC. Sistema renina-angiotensina-aldosterona e acidente vascular encefálico. Ver. Bras. Hipertens. 2000;3: 243-49.

31. Costa-Hong V, Bortolotto LA, Jorgetti V, Consolim-Colombo F, Krieger EM, Lima JJG. Estresse Oxidativo e Disfunção Endotelial na Doença Renal Crônica. Arq. Bras. Cardiol. 2009;92(5): 413-18.

32. Sabri A, Levy BI, Poitevin P, Caputo L, Faggin E, Marotte F, Rappaport L, Samuel JL. Differential Roles of AT and AT Receptor Subtypes in Vascular Trophic and Phenotypic Changes in Response to Stimulation With Angiotensin II. Arteriosclerosis, Thrombosis, and Vascular Biology. 1997;17: 257-64.

33. Duke LM, Evans RG, Widdop RE. AT2 receptors contribute to acute blood pressure- lowering and vasodilator effects of AT1 receptor antagonism in conscious normotensive but not hypertensive rats. Am J Physiol Heart Circ Physiol. 2005;288: H2289–97.

34. Samson R, Lee A, Lawless S, Hsu R, Sander G. Novel Pathophysiological Mechanisms in Hypertension. Adv Exp Med Biol. 2016. DOI 10.1007/5584_2016_96.

35. Danyel LA, Schmerler P, Paulis L, Unger T, Steckelings UM. Impact of AT2-receptor stimulation on vascular biology, kidney function, and blood pressure. Integrated Blood Pressure Control. 2013;6: 153–61.

36. Delp MD, O'leary DS. Integrative control of the skeletal muscle microcirculation in the maintenance of arterial pressure during exercise. J. Appl. Physiol. 2004;97: 1112-18.

37. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol. Rev. 2008;88: 1009-86.

38. Musch TI, Friedman DB, Pitetti KH, Haidet GC, Stray-Gundersen J, Mitchell JH, Ordway GA. Regional distribution of blood flow of dogs during graded dynamic exercise. J. Appl. Physiol. 1987a;63: 2269-77.

39. Musch TI, Haidet GC, Ordway GA, Longhurst JC, Mitchell JH. Training effects on regional blood flow response to maximal exercise in foxhounds. J. Appl. Physiol. 1987b;62: 1724-32.

40. Laughlin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J. Appl. Physiol. 2008;104: 588- 600.

41. Souza Junior TP, Asano RY, Prestes J, De Ssales MPM, Coelho J M DE O, Simões HG. Óxido nítrico e exercício: uma revisão. Rev. Educ. Fis/UEM. 2012;23(3): 469-81.

42. Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, Nerem RM, Harrison DG. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am. J. Physiol. 1995;269: C1371-78.

45

43. Xiao Z, Zhang Z, Diamond SL. Shear stress induction of the endothelial nitric oxide synthase gene is calcium-dependent but not calcium-activated. J. Cell. Physiol. 1997;171: 205-11.

44. Cattaruzza M, Guzik TJ, Slodoski W, Pelvan A, Becker J, Halle M, Buchwald AB, Channon KM, Hecker R M. Shear stress insensitivity of endothelial nitric oxide synthase expression as a genetic risk factor for coronary heart disease. Circ. Res. 2004;95: 841-47. 45. Inoue H, Taba Y, Miwa Y, Yokota C, Miyagi M, Sasaguri T. Transcriptional and posttranscriptional regulation of cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2002;22: 1415-20.

46. Di Francesco L, Totani L, Dovizio M, Piccoli A, Di Francesco A, Salvatore T, Pandolfi A, Evangelista V, Dercho RA, Seta F, Patrignani P. Induction of prostacyclin by steady laminar shear stress suppresses tumor necrosis factor-alpha biosynthesis via heme oxygenase- 1 in human endothelial cells. Circ. Res. 2009;104: 506-13.

47. Howard MG, Dicarlo SE, Stallone JN. Acute exercise attenuates phenylephrine-induced contraction of rabbit isolated aortic rings. Med. Sci. Sports Exerc. 1992;24: 1102-07.

48. Delp MD, Mcallister RM, Laughlin MH. Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta. J. Appl. Physiol. 1993;75: 1354-63.

49. Jansakul C. Effect of swimming on vascular reactivity to phenylephrine and KCl in male rats. Br. J. Pharmacol. 1995;115: 587-94.

50. Chen HI, Chiang IP. Chronic exercise decreases adrenergic agonist-induced vasoconstriction in spontaneously hypertensive rats. Am. J. Physiol. 1996;271: H977-83. 51. Spier SA, Laughlin MH, Delp MD. Effects of acute and chronic exercise on vasoconstrictor responsiveness of rat abdominal aorta. J. Appl. Physiol. 1999;87: 1752-57. 52. Donato AJ, Lesniewski LA, Delp MD. Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles. J. Physiol. 2007;15: 115-25.

53. Dinenno FA, Joyner MJ. Combined NO and PG inhibition augments alpha-adrenergic vasoconstriction in contracting human skeletal muscle. Am. J. Physiol. Heart. Circ. Physiol. 2004;287: H2576-84.

54. Husain K, Ortiz MV, Lalla J. Physical training ameliorates chronic alcohol-induced hypertension and aortic reactivity in rats. Alcohol & Alcoholism. 2006;41(3): 247-53.

55. Moraes C, Davel APC, Rossoni LV, Antunes E, Zanesco A. Exercise training improves relaxation response and SOD-1expression in aortic and mesenteric rings from high caloric diet-fed rats. BMC Physiology. 2008;8.

56. Santos-Parker JR, Larocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ. 2014;38: 296-307.

46

57. Maeda S, Iemitsu M, Jesmin S, Miyauchi T. Acute exercise causes an enhancement of tissue renin-angiotensin system in the kidney in rats. Acta Physiol. Scand. 2005;185: 79-86.

58. Chies AB, Corrêa FM, Andrade CR, Rosa-e-Silva AA, Pereira FC, Oliveira AM.

Vascular non-endothelial nitric oxide induced by swimming exercise stress in rats. Clin Exp Pharmacol Physiol. 2003;30(12) :951-57

59. Chies AB, Rossignoli PS, Baptista RF, de Lábio RW, Payão SL. Exercise reduces angiotensin II responses in rat femoral veins. Peptides. 2013;44: 47-54.

60. Chies AB, Oliveira PB, Rossignoli PS, Baptista RF, Lábio RW, Payão SLM. Prostanoids counterbalance the synergism between endothelin-1 and angiotensin II in mesenteric veins of trained rats. Peptides. 2017;88: 67-73.

61. Lee Y, Kwak HB, Hord J, Kim JH, Lawler JM. Exercise training attenuates age- dependent elevation of angiotensin II type 1 receptor and Nox2 signaling in the rat heart. Exp Gerontol. 2015;70: 163-73.

62. Izawa T 1 , Morikawa M , Inoue M , Mizuta T , Yamashita H , Ohno H , Komabayashi T

. Acute or chronic exercise alters angiotensin II-induced contraction of rat aorta. Jpn J Physiol. 1995;45(6): 1093-100.

63. Caniffi C, Cerniello FM, Gobetto MN, Sueiro ML, Costa MA, Arranz C. Vascular Tone Regulation Induced by C-Type Natriuretic Peptide: Differences in Endothelium- Dependent and –Independent Mechanisms Involved in Normotensive and Spontaneously Hypertensive Rats. Plos One. 2016;11(12).

64. Fazan Jr. R, Silva VJD, Salgado HC. Modelos de hipertensão arterial. Rev Bras Hipertens. 2001;8(1).

65. Hiyoshi H, Kyayama K, Takano M, Okamoto H. Angiotensin type 2 receptor–Mediated phosphorylation of eNOS in the aortas of mice with 2-Kidney, 1-Clip hypertension. Hypertension [internet]. 2005 [citado 05 set 2015]. Disponível em: http://www.hypertensionaha.org.pdf.

66. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. the production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med. 1934;59(3): 347-79.

67. Martinez-Maldonado M. Pathophysiology of renovascular hypertension. Hypertension. 1991;17(5): 707-19.

68. Nakada T, Iijima Y, Kubota Y, Watanabe M, Ishigooka M, Suzuki H. Increased vascular collagen and noncollagenous protein synthesis contributes to sustain chronic phase of two- kidney, one-clip renovascular hypertension. J. Urol. 1996;156(3): 1180-85.

69. Campagnaro BP, Tonini CL, Nogueira BV, Casarini DE, Vasquez EC, Meyrelles SS. DNA damage and augmented oxidative stress in bone marrow mononuclear cells from Angiotensin-dependent hypertensive mice. Int J Hypertens. 2013;(2013). DOI: 10.1155/2013/305202.

47

70. Kumral ZNO, Sener G, Ozgur S, Koc M, Suleymanoglu S, Hurdag C, Yegen BC. Regular exercise alleviates renovascular hypertension induced cardiac/endothelial dysfunction and oxidative injury in rats. Jorn of Physio and Pharmaco. 2016;67(1): 45-55.

71. Ceron CS, Castro MM, Rizzi E, Montenegro MF, Fontana V, Salgado MC, Gerlach RF, Tanus-Santos JE. Spironolactone and hydrochlorothiazide exert antioxidant effects and reduce vascular matrix metalloproteinase-2 activity and expression in a model of renovascular hypertension. Br. J. Pharmacol. 2010;160(1): 77-87.

72. Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP. gp91phox- containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation. 2004;109(14): 1795-801.

73. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid. J. Physiol. Pharmacol. 2013;64(4): 409-21.

74. Fouda Abdel-Kader, Marazzi A, Boillat N, Sonnay M, Guillain H, Atkinson J. Changes in the vascular reativity of the isolates tail arteries of spontaneous and renovascular hypertensive rats to endogenous and exogenous noradrenaline. Blood Vessels. 1987;24: 53- 75.

75. Gaoa J, Belliena J, Gomeza E, ; Henrya Jean-Paul, Dautreauxa B, Bounoured F, Skbad M, Thuilleza C, Richarda V. Soluble epoxide hydrolase inhibition prevents coronary endothelial dysfunction in mice with renovascular hypertension. Lippincott Williams & Wilkins. J Hypertens. 2011;29(6): 1128-35.

76. Souza LE, Magalhães WG, Bezerra FS, Santos RAS, Campagnole-Santos MJ; Isoldi MC, Alzamora AC. Exercise training restores oxidative stress and nitric oxide synthases in the rostral ventrolateral medulla of renovascular hypertensive rats. Res Livre Radic. 2015; 49(11): 1335-43.

77. Boissiere J, Marie-Christine L, Ntier D, Courteix D, Bonnet P. Exercise and vasorelaxing effects of CO-releasing molecules in hypertensive rats. Medicine and Science in Sports and Exercise. 2006;38(4): 652-59.

78. Melo RM, Martinho EJR, Michelini LC. Training-induced, pressure-lowering effect in SHR: wide effects on circulatory profile of exercised and non exercised muscles. Hypertension. 2003;42: 851-7.

79. Machado H, Guerra MO, Peters VM. Implantação e Padronização da Técnica de Aferição Indireta da Pressão Arterial em Ratos Wistar da Colônia do Biotério do Centro de Biologia da Reprodução (CBR). Revista Interdisciplinar de Estudos Experimentais. 2010;2(2): 60-61. 80. BRASIL. Conselho Nacional de Controle de Experimentação Animal (CONCEA) Diretriz da prática de eutanásia do CONCEA [Internet]. Brasília (DF). 2013 [citado 05 fev 2015]. Disponível em: www.mct.gov.br/upd_blob/0238/238014.doc.

48

81. Jiang ZY, Woolard ACS, Wolff SP. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids. 1991;26(10): 853-56.

82. Arab K, Steghens JP. Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal. Biochem. 2004;325(1): 158-63.

83. Benzie IFF; Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a measure of ‘‘Antioxidant Power’’: The FRAP Assay. Analytical Biochemistry. 1996;239: 70-76.

84. Guan S, Fox J, Mitchell KD, Navar GL. Angiotensin and angiotensin converting enzyme

tissue levels in two-kidney, one clip hypertensive rats. Hypertension. 1992;20(6); 763-67. 85. Lu J, Guo, JH, Tu XL, Zhang C, Zhao M, Zhang QW, Gao FH. Tiron Inhibits UVB- Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts. PLoS ONE. 2016;11(8).

86. El-Sherbeeny NA, Hassan ZA, Ateyya H. Tiron ameliorates oxidative stress and inflammation in amurinemodel of airway remodeling. International Immunopharmacology. 2016;39: 172–80.

87. Wong PS, Roberts RE, Randall MD. Hyperoxic gassing with Tiron enhances bradykinin- inducedendothelium-dependent and EDH-type relaxation through generationof hydrogen peroxide. Pharmacological Research. 2015;91: 29–35.

88. Sindler AL, Reyes R, Chen B, Ghosh P, Gurovich AN, Kang LS, Cardounel AJ, Delp MD, Muller-Delp JM. Age and exercise training alter signaling through reactive oxygen species in the endothelium of skeletal muscle arterioles. J Appl Physiol. 2013;114(5): 681-93.

49

APÊNDICES

APÊNDICE A – Composição nutricional da ração consumida "ad libitum" pelos animais estudados

NUVILAB CR-1: Ração para animais de laboratório

Composição básica do produto:

Milho integral moído, farelo de soja, farelo de trigo, carbonato de cálcio, fosfato bicálcico, cloreto de sódio, premix vitamínico mineral e aminoácidos.

Níveis de Garantia por Quilograma do Produto:

Umidade 12,5%, proteína bruta 22,0%, extrato etéreo 4,5%, matéria mineral 10,0%, matéria fibrosa 8,0%, cálcio 1,4% e fósforo 0,8%.

Enriquecimento por Quilograma do Produto:

Vitaminas - vitamina A 25.200,00 UI, vitamina D3 2.100,00 UI, vitamina E 60,00 mg, vitamina K3 12,50 mg, vitamina B1 14,40 mg, vitamina B2 11,00 mg, vitamina B6 12,00 mg, vitamina B12 60,00 mcg, niacina 60,00 mg, ácido pantotênico 112,00 mg, ácido fólico 6,00 mg, biotina 0,26 mg e colina 1.100,00 mg.

Microelementos Minerais - Ferro 50,00 mg; zinco 60,00 mg; cobre 10,00 mg; iodo 2,00 mg; manganês 60,00 mg; selênio 0,05 mg; cobalto 1,50 mg.

Aminoácidos - lisina 100,00 mg; metionina 300,00 mg.

Aditivos:

Antioxidante 100,00 mg.

50

APÊNDICE B – Protocolo de treinamento (10 semanas)

Dias Duração

(min) Aquecimento Endurance Endurance Recuperação

minutos Veloc. Km/h 50% Veloc. máx 60% Veloc. máx minutos Veloc. Km/h 1 15 5 0,3 5 - 5 0,3 2 17 5 0,3 7 - 5 0,3 3 20 5 0,3 10 - 5 0,3 4 25 5 0,3 15 - 5 0,3 5 30 5 0,3 20 - 5 0,3 6 30 5 0,3 20 - 5 0,3 7 30 5 0,3 15 5 5 0,3 8 30 5 0,3 15 5 5 0,3 9 35 5 0,3 15 10 5 0,3 10 40 5 0,3 20 10 5 0,3 11 40 5 0,3 20 10 5 0,3 12 45 5 0,3 25 10 5 0,3 13 45 5 0,3 25 10 5 0,3 14 50 5 0,3 25 15 5 0,3 15 60 5 0,3 30 20 5 0,3 16 45 5 0,3 20 15 5 0,3 17 60 5 0,3 30 20 5 0,3 18 60 5 0,3 30 20 5 0,3 19 60 5 0,3 25 25 5 0,3 20 60 5 0,3 20 30 5 0,3 21 45 5 0,3 15 20 5 0,3 22 60 5 0,3 25 25 5 0,3 23 60 5 0,3 20 30 5 0,3 24 60 5 0,3 15 35 5 0,3 25 60 5 0,3 10 40 5 0,3 26 45 5 0,3 - 35 5 0,3 27 60 5 0,3 - 50 5 0,3 28 60 5 0,3 - 50 5 0,3 29 60 5 0,3 - 50 5 0,3 30 60 5 0,3 - 50 5 0,3 31 30 5 0,5 20 - 5 0,5 32 45 5 0,5 35 - 5 0,5 33 50 5 0,5 40 - 5 0,5 34 55 5 0,5 45 - 5 0,5 35 60 5 0,5 50 - 5 0,5 36 45 5 0,5 35 - 5 0,5 37 60 5 0,5 45 5 5 0,5 38 60 5 0,5 45 5 5 0,5 39 60 5 0,5 40 10 5 0,5 40 60 5 0,5 40 10 5 0,5 41 45 5 0,5 25 10 5 0,5 42 60 5 0,5 40 10 5 0,5 43 60 5 0,5 40 10 5 0,5 44 60 5 0,5 35 15 5 0,5 45 60 5 0,5 30 20 5 0,5 46 45 5 0,5 20 15 5 0,5 47 60 5 0,5 30 20 5 0,5 48 60 5 0,5 30 20 5 0,5 49 60 5 0,5 25 25 5 0,5 50 60 5 0,5 20 30 5 0,5

51

52

APÊNDICE D – Solução nutritiva de Krebs-Henseleit (modificado)

Para preparo de 1000 mL de solução nutritiva de Krebs-Henseleit (modificado):

Sais

[mM]

Peso (g)

NaCl

130

7,61

KCl

4,70

0,35

KH2PO4

1,18

0,16

MgSO4. 7H2O

1,17

0,25

NaHCO3

14,9

1,25

Glicose

11,1

2,00

CaCl2

1,60

0,18

a) Pesar todos os sais, exceto o CaCl2;

b) Em seguida, colocar todos os sais (previamente pesados) em um balão volumétrico de 1000 mL;

c) Completar o volume com água deionizada;

d) Posteriormente, homogeneizar a solução em agitador magnético; e) Adicionar o CaCl2 e homogeneizar novamente;

53

APÊNDICE E - Reatividade Vascular a) Anel de aorta torácica (2mm) b) Transdutor isométrico

c)

Registro de movimentação do vaso na presença do agonista (Ang II)

a

b

Documentos relacionados