• Nenhum resultado encontrado

Ambos os precursores LaNiO3 e La2NiO4 formam uma mistura de NiO, La2O3,

LaNiO3 e La2NiO4, a qual reduz em Ni e La2O3.

As altas taxas de conversão de CH4 e CO2 podem ser atribuídas à formação

do La2O2CO3.

A rota de síntese empregada mostrou resultados de conversão e rendimento superiores aos obtidos por impregnação com ácido cítrico.

46

REFERÊNCIAS BIBLIOGRÁFICAS

ABBAS, H.F.; WAN DAUD, W.M.A. Hydrogen production by methane decomposition: A review. International Journal of Hydrogen Energy, v. 35, p. 1160–1190, 2010. http://dx.doi.org/10.1016/j.ijhydene.2009.11.036

Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2015. Disponível em: <http://www.anp.gov.br/?dw=78135> Acesso em: 29 de agosto de 2016.

ALIPOUR, Z.; REZAEI, M.; MESHKANI, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Journal of Industrial and

Engineering Chemistry, v. 20, p. 2858–2863, 2014. http://dx.doi.org/10.1016/j.jiec.2013.11.018

ALOTAIBI, R.; ALENAZEY, F.; ALOTAIBI, F.; ALOTAIBI, F.; WEI, N.; AL-FATESH, A.; FAKEESHA, A. Ni catalysts with different promoters supported on zeolite for dry reforming of methane. Applied Petrochemical Research, v. 5, p. 329–337, 2015. http://dx.doi.org/10.1007/s13203-015-0117-y

ARMOR, J.N. The multiple roles for catalysis in the production of H2. Applied

Catalysis A: General, v. 176, p. 159–176, 1999. http://dx.doi.org/10.1016/S0926- 860X(98)00244-0

ASHIK, U.P.M.; WAN DAUD, W.M.A.; ABBAS, H.F.; Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane – A review. Renewable and Sustainable Energy Reviews, v. 44, p. 221–256, 2015.

http://dx.doi.org/10.1016/j.rser.2014.12.025

BARROS, B.S.; KULESZA, J.; MELO, D.M.A.; KIENNEMAN, A. Nickel-Based catalyst precursor prepared via microwave-induced combustion method: themodynamics of sythesis and performance in dry reforming of CH4. Material Research, v.18, p. 732-739, 2015. http://dx.doi.org/10.1590/1516-1439.018115 BATIOT-DUPEYRAT, C.; SIERRA GALLEGO G.A.; MONDRAGON, F.; BARRAULT, J.; TATIBOUTËT, J.-M. CO2 reforming of methane over LaNiO3 as precursor

material. Catalysis Today, v. 107–108, p. 474–480, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.014

BAUDOUIN, D.; RODEMERCK, U.; KRUMEICH, F.; MALLMANN, A.; SZETO, K.C.; MÉNARD, H.; VEYRE, L.; CANDY, J.-P.; WEBB, P.B.; THIEULEUX, C.; COPÉRET, C. Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, v. 297, p. 27–34, 2013. http://dx.doi.org/10.1016/j.jcat.2012.09.011

DECOURT, B.; LAJOIE, B.; DEBARRE, R.; SOUPA, O. Hydrogen-Based Energy Conversion, More than Storage: System Flexibility, SBC Energy Institute, 2014, Paris. Disponível em: <http://www.4is-cnmi.com/feasability/doc-added-4-2014/SBC- Energy-Institute_Hydrogen-based-energy-conversion_Presentation.pdf> Acesso em: 29 de agosto de 2016.

BRASIL, Lei 9.478 de 06 de agosto de 1997.

CHAMBRIARD, M. Perspectivas para o Gás Natural, Agência Nacional de Petróleo (ANP), 17 de outubro de 2012. Disponível em: <www.anp.gov.br/?dw=66342> Acesso em: 18 de agosto de 2016.

CIESIELCZUK, T.; POLUSZYNSKA, J.; ROSIK-DULEWSKA, C.; SPOREK, M.; LENKIEWICZ, M. Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological Engineering, V. 95, p. 485–491, 2016.

http://dx.doi.org/10.1016/j.ecoleng.2016.06.100

CIOLA, R. Fundamentos da Catálise. Universidade de São Paulo: Editora da Universidade de São Paulo: São Paulo, 1981.

COSTA, C.C.; MELO, D.M.A.; MARTINELLI, A.E.; FONTES, M.S.B.; MELO, M.A.F.; BARROS, J.M.F. Adsorption of CO2 in MCM-41 synthesized using mixed surfactants.

Applied Mechanics and Materials, v. 830, p. 11-18, 2016. http://dx.doi.org/10.4028/www.scientific.net/AMM.830.11

DIAS, J.A.C.; ASSAF, J.M. Influence of calcium content in Ni/CaO/-Al2O3 catalysts for CO2-reforming of methane. Catalysis Today, v. 85, p. 59–68, 2003.

http://dx.doi.org/10.1016/S0920-5861(03)00194-9

DUTTA, S. A review on production, storage of hydrogen and its utilization as an energy resource Journal of Industrial and Engineering Chemistry, v. 20, p. 1148– 1156, 2014. http://dx.doi.org/10.1016/j.jiec.2013.07.037

EWBANK, J.L.; KOBARIK, L.; DIALLO, F.Z.; SIEVERS, C. Effect of metal–support interactions in Ni/Al2O3 catalysts with low metal loading for methane dry reforming.

Applied Catalysis A: General, v. 494, p. 57–67, 2015. http://dx.doi.org/10.1016/j.apcata.2015.01.029

FAN, M.-S.; ABDULLAH, A.Z.; BHATIA, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem, v.1, p. 192–208, 2009. http://dx.doi.org/10.1002/cctc.200900025

FARAMAWY, S.; ZAKI, T.; SAKR, A.A.-E. Natural gas origin, composition, and processing: A review. Journal of Natural Gas Science and Engineering, v. 34, p. 34– 54, 2016. http://dx.doi.org/10.1016/j.jngse.2016.06.030

GALLEGO, G.S.; MONDRAGÓN, F.; TATIBOUËT, J.-M.; BARRAULT, J.; BATIOT- DUPEYRAT, C. Carbon dioxide reforming of methane over La2NiO4 as catalyst

precursor—Characterization of carbon deposition. Catalysis Today, v. 133–135, p. 200–209, 2008. http://dx.doi.org/10.1016/j.cattod.2007.12.075

GHONIEM, A.F. Needs, resources and climate change: Clean and efficient

conversion technologies. Progress in Energy and Combustion Science, v. 37, p. 15- 51, 2011. http://dx.doi.org/10.1016/j.pecs.2010.02.006

GIL, M.V.; FERMOSO, J.; RUBIERA, F.; CHEN, D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology.

48

Catalysis Today, v. 242, p. 19–34, 2015. http://dx.doi.org/10.1016/j.cattod.2014.04.018

GRANDELL, L.; LEHTILÄ, A.; KIVINEN, M.; KOLJONEN, T.; KIHLMAN, S.; LAURI, L.S. Role of critical metals in the future markets of clean energy technologies. Renewable Energy, v. 95, p. 53-62, 2016.

http://dx.doi.org/10.1016/j.renene.2016.03.102

GUO, J.; LOU, H.; ZHAO, H.; CHAI, D.; ZHENG, X. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, v. 273, p. 75–82, 2004. http://dx.doi.org/10.1016/j.apcata.2004.06.014 HE, N.; LU, Z.; YUAN, C.; HONG, J.; YANG, C.; BAO, S.; XU, Q. Effect of trivalent elements on the thermal and hydrothermal stability of MCM-41 mesoporous

molecular materials. Supramolecular Science, v. 5, p. 553-558, 1998. http://dx.doi.org/10.1016/S0968-5677(98)00073-X

HÖHLEIN, B.; MENZER, R.; RANGE, J. High temperature methanation in the long- distance nuclear energy transport system. Applied Catalysis, v. 1, p. 125-139, 1981. http://dx.doi.org/10.1016/0166-9834(81)80001-2

HUANG, F.; WANG, R.; YANG, C.; DRISS, H.; CHU, W.; ZHANG, H. Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. Journal of Energy Chemistry, v. 25, p. 709–719, 2016.

http://dx.doi.org/10.1016/j.jechem.2016.03.004

HÜBERT, T.; BOON-BRETT, L.; BLACK, G.; BANACH, U. Hydrogen sensors – A review. Sensors and Actuators B, v. 157, p. 329–352, 2011.

http://dx.doi.org/10.1016/j.snb.2011.04.070

Inorganic Crystal Structure Database. Disponível em: < https://icsd.fiz- karlsruhe.de/search/index.xhtml> Acesso em: 01 de setembro de 2016

International Energy Agency - IEA. Hydrogen and FuelCells. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016.

http://dx.doi.org/10.1787/9789264239760-en

International Energy Agency - IEA. Wourld Energy Outlook 2015. OECD Publishing, 2015, Paris. Acesso dia 13 de setembro de 2016. http://dx.doi.org/10.1787/weo- 2015-en

International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2015. OECD Publishing, 2015, Paris. Acesso em 13 de setembro de 2016.

http://dx.doi.org/10.1787/co2_fuel-2015-en

International Energy Agency – IEA. CO2 Emissions From Fuel Combustion 2013. IEA, 2013, Paris. Acesso em 13 de setembro de 2016.

KOTHARI, R.; TYAGI, V.V.; PATHAK, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renewable and Sustainable Energy Reviews, v. 14, p. 3164-3167, 2010. http://dx.doi.org/10.1016/j.rser.2010.05.005 KRESGE, C.T.; LEONOWICZ, M.E.; ROTH, W.J.; VARTULI, J.C.; BECK, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, v. 359, p. 710-712, 1992. http://dx.doi.org/10.1038/359710a0 LEVALLEY, T.L.; RICHARD, A.R.; FAN, M. The progress in water gas shift and steam reforming hydrogen production technologies e A review. International Journal of Hydrogen Energy, v. 39, p. 16983-17000, 2014.

http://dx.doi.org/10.1016/j.ijhydene.2014.08.041

LIMA, S.M.; SILVA, A.M.; COSTA, L.O.O.; ASSAF, J.M.; JACOBS, G.; DAVIS, B.H.; MATTOS, L.V.; NORONHA, F.B. Evaluation of the performance of Ni/La2O3 catalyst

prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through

steam reforming and oxidative steam reforming of ethanol. Applied Catalysis A: General, v. 377, p. 181–190, 2010 http://dx.doi.org/10.1016/j.apcata.2010.01.036 LIU, B.S.; AU, C.T. Carbon deposition and catalyst stability over La2NiO4/-Al2O3 during CO2 reforming of methane to syngas. Applied Catalysis A: General, v. 244, p. 181–195, 2003. http://dx.doi.org/10.1016/S0926-860X(02)00591-4

LUO, Y; LU, G.Z.; GUO, Y.L.; WANG, Y.S. Study on Ti-MCM-41 zeolites prepared with inorganic Ti sources: Synthesis, characterization and catalysis. Catalysis Communications, v. 3, p. 129–134, 2002. http://dx.doi.org/10.1016/S1566- 7367(02)00069-9

MAKSHINA, E.V.; SIROTIN, S.V.; BERG, M.W.E.; KLEMENTIEV, K.V.; YUSHCHENKO, V.V.; MAZO, G.N.; GRÜNERT, W.; ROMANOVSKY, B.V.

Characterization and catalytic properties of nanosized cobaltate particles prepared by in situ synthesis inside mesoporous molecular sieves. Applied Catalysis A: General, v. 312, p. 59–66, 2006. http://dx.doi.org/10.1016/j.apcata.2006.06.021

MEDEIROS, R.L.B.A.; MACEDO, H.P.; MELO, V.R.M.; OLIVEIRA, A.A.S.; BARROS, J.M.F.; MELO, M.A.F.; MELO, D.M.A. Ni supported on Fe-doped MgAl2O4 for dry

reforming of methane: Use of factorial design to optimize H2 yield. International Journal of Hydrogen Energy, v. 41, p. 14047–14057, 2016.

http://dx.doi.org/10.1016/j.ijhydene.2016.06.246

MEYNEN, V.; COOL, P.; VANSANT, E.F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 12, p. 170–223, 2009. http://dx.doi.org/10.1016/j.micromeso.2009.03.046

NGUYEN, S.V.; SZABO, V.; TRONG-ON, D.; KALIAGUINE, S.; Mesoporous silica supported LaCoO3 perovskites as catalysts for methane oxidation. Microporous and

50

Mesoporous Materials, v. 54, p. 51–61, 2002. http://dx.doi.org/10.1016/S1387- 1811(02)00340-2

NIKOO, M.K.; AMIN, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology, v. 92, p. 678–691, 2011. http://dx.doi.org/10.1016/j.fuproc.2010.11.027

NOWOTNY, J.; VEZIROGLU, T.N. Impact of hydrogen on the environment. International Journal of Hydrogen Energy, v. 36, p. 13218-13224, 2011. http://dx.doi.org/10.1016/j.ijhydene.2011.07.071

OMOREGBE, O.; DANH, H.T.; ABIDIN, S.Z.; SETIABUDI, H.D.; ABDULLAH, B.; VU, K.B.; VO, D.V.N. Influence of Lanthanide Promoters on Ni/SBA-15 Catalysts for Syngas Production by Methane Dry Reforming. Procedia Engineering, v. 148, p. 1388–1395, 2016. http://dx.doi.org/10.1016/j.proeng.2016.06.556

PEÑA, M.A.; GÓMEZ, J.P.; FIERRO, J.L.G. New Catalytic Routes for Syngas and Hydrogen Production. Applied Catalysis A, v. 144, p. 7–57, 1996.

http://dx.doi.org/10.1016/0926-860X(96)00108-1

PENNER, S.S. Steps toward the hydrogen economy. Energy, v. 31, p. 33–43, 2006. http://dx.doi.org/10.1016/j.energy.2004.04.060

PEREÑIGUEZ, R.; CRUZ, G.M.V.; CABALLERO, A. HOLGADO, J.P. LaNiO3 as a

precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an

amorphous NiO phase. Applied Catalysis B: Environmental, v. 123-124, p.324-332. 2012. http://dx.doi.org/10.1016/j.apcatb.2012.04.044

RATNASAMY, P.; KUMAR, R. Ferrisilicate analogs of zeolites. Catalysis Today, v. 9, 10, p. 329-416, 1991. http://dx.doi.org/10.1016/0920-5861(91)80001-P

RATNASAMY, P.; KUMAR, R. Transition metal-silicate analogs of zeolites. Catalysis Letters, v. 22, p. 227-237, 1993. http://dx.doi.org/10.1007/BF00810369

RAUPACH, M.R.; MARLAND, G.; CIAIS, P.; LE QUÉRÉ, C.; CANADELL, J.G.; KLEPPER, G.; FIELD, C.B. Global and regional drivers of accelerating CO2

emissions. Proceedings of the National Academy of Siences of the United States of America – PNAS, v.104, n. 24, p. 10288–10293, 2007. Disponível em:

<www.pnas.org/cgi/doi/10.1073/pnas.0700609104> Acesso em: 08 de agosto de 2016.

ROSS, J.R.H.; KEULEN, A.N.J.; HEGARTY, M.E.S.; SESHAN, K.; The catalytic conversion of natural gas to useful products. Catalysis Today, v. 30, p. 193-199, 1996. http://dx.doi.org/10.1016/0920-5861(96)00035-1

SARKAR, B.; GOYAK, R.; PENDEM, C.; SASAKI, T.; BAL, R. Highly nanodispersed Gd-doped Ni/ZSM-5 catalyst for enhanced carbon-resistant dry reforming of

methane. Journal of Molecular Catalysis A: Chemical, v. 424, p. 17-26, 2016. http://dx.doi.org/10.1016/j.molcata.2016.08.006

SCHOLZ, W.H. Processes for industrial production of hydrogen and associated environmental effects. Gas Separation & Purification, v. 7, p. 131-139, 1993. http://dx.doi.org/10.1016/0950-4214(93)80001-D

SONG, X.; DONG, X.; YIN, S.; WANG, M.; LI, M.; WANG, HA. Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation

method for the dry reforming of methane. Applied Catalysis A: General, v. 526, p. 132–138, 2016. http://dx.doi.org/10.1016/j.apcata.2016.07.024

SUTTHIUMPORN, K.; MANEERUNG, T.; KATHIRASER, Y.; KAWI, S. CO2 dry-

reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe):

Roles of lattice oxygen on CeH activation and carbon suppression. International Journal of Hydrogen Energy, v. 37, p. 11195-11207, 2012.

http://dx.doi.org/10.1016/j.ijhydene.2012.04.059

TSANG, S.C.; CLARIDGE, J.B.; GREEN, M.L.H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today, v. 23, p. 3–15, 1995.

http://dx.doi.org/10.1016/0920-5861(94)00080-L

VALDERRAMA, G.; GOLDWASSER, M.R.; NAVARRO, C.U.; TATIBOUËT, J.M.; BARRAULT, J.; BATIOT-DUPEYRAT, C.; MARTÍNEZ, F. Dry reforming of methane over Ni perovskite type oxides. Catalysis Today, v. 107-108, p. 785-791, 2005. http://dx.doi.org/10.1016/j.cattod.2005.07.010

VALDERRAMA, G.; KIENNEMANN, A.; GOLDWASSER, M.R. La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of

methane. International Journal of Hydrogen Energy, v. 39, p. 4917-4925, 2014. http://dx.doi.org/10.1016/j.jpowsour.2009.10.004

WANG, N.; YU, X.; WANG, Y.; CHU, W.; LIU, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on

mesoporous SBA-15, MCM-41 and silica carrier. Catalysis Today, v. 212, p. 98–107, 2013. http://dx.doi.org/10.1016/j.cattod.2012.07.022

WANG, Z.; CAO, X.M.; ZHU, J.; HU, P. Activity and coke formation of nickel and nickel carbide in dry reforming: a deactivation scheme from density functional theory. Journal of Catalysis, v. 311, p. 469-480, 2014.

http://dx.doi.org/10.1016/j.jcat.2013.12.015

YI, N.; CAO, Y.; SU, Y.; DAI, W.-L.; HE, H.-Y.; FAN, K.-N. Nanocrystalline LaCoO3

perovskite particles confined in SBA-15 silica as a new efficient catalyst for hydrocarbon oxidation. Journal of Catalysis, v. 230, p. 249–253, 2005. http://dx.doi.org/10.1016/j.jcat.2004.11.042

52

ZHANG, Q.; LI, Z.; WANG, G.; LI, H. Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China. Applied Energy, v. 162, p. 1385- 1398, 2016. http://dx.doi.org/10.1016/j.apenergy.2015.06.058

Documentos relacionados