• Nenhum resultado encontrado

A proposta desse trabalho é analisar um novo acoplador óptico com circuito altamente integrado que tenha um desempenho satisfatório. Sendo esse o objetivo, fez- se uma revisão bibliográfica e colocou-se as mais relevantes neste trabalho. Feito isso, passou-se para as simulações. Essa etapa foi mais longa, pois cada análise feita demanda um processamento pesado, demorando quase um semestre para serem obtidos todos os resultados. O tempo de processamento do AG foi um ponto negativo, pois levou quase 1 mês para convergir um resultado para cada configuração do acoplador.

Diante dos testes realizados e dos resultados alcançados, atingiu-se o objetivo deste trabalho, ao ter-se um acoplamento e ao se comprovar a vantagem que o acoplador óptico micro-to-nano de tamanho reduzido apresenta um bom desempenho, apesar de ser menor que os outros acopladores ópticos já existentes. Isso permite pensar na fabricação desse dispositivo em trabalhos futuros. Além disso, a metodologia utilizada mostrou-se adequada nas análises necessárias para a estrutura.

Dessa maneira, o projeto contribui para o conhecimento na área de Dispositivos Fotônicos, por meio da análise de um novo acoplador óptico. Além de demonstrar a possibilidade de utilizar um método e um algoritmo em conjunto - AG e FEM -, pois o primeiro é para a otimização das soluções encontradas e o segundo é para ajudar nas análises da propagação da onda eletromagnética, sendo ambos fundamentais no desenvolvimento desta pesquisa.

Bibliografia

[1] C. Yeh, Applied Photonics, Michigan: Elsevier, 2012.

[2] R. S. Quimby, Photonics and Lasers: An Introduction, Worcester: JohnWiley & Sons, 2006.

[3] B. Filion, J. Lin, A. Nguyen, X. Zhang, S. LaRochelle e L. A. Rusch,

“Semiconductor Optical Amplifier Based Wavelength Conversion of Nyquist- 16QAM for Flex-grid Optical Networks,” ournal of Lightwave Technology, 04 04 2016.

[4] B. Sun e B. Li, “Laser Displacement Sensor in the Application of Aero-Engine Blade Measurement,” IEEE Sensors Journal, vol. 16, n. 5, pp. 1377 - 1384, 2016. [5] M. Shao, X. Qiao, X. Zhao, Y. Zhang e H. Fu, “Liquid Level Sensor Using Fiber

Bragg Grating Assisted by Multimode Fiber Core,” IEEE Sensors Journal, vol. 16, n. 8, pp. 2374 - 2379, 2016.

[6] S. Shimizu, S. Kinoshita, K. I. Kitayama e N. Wada, “0.73-W extremely low- power-consumption optical amplifier repeater for 10G-EPON systems,” em 2014 The European Conference on Optical Communication (ECOC), Cannes, 2014.

[7] S. Suzuki, S. Shimizu, K. Jyokura, Y. Sano, T. Yamazaki, M. Inoue, T. Sato e A. Fujita, “Electrical characteristics of ultraminiature active optical cable connector for PCB,” em IEEE Electrical Design of Advanced Packaging Systems Symposium (EDAPS), Nara, 2013.

[8] Y. S. Lu, H. Xu, H. Gao, C. M. Hsieh, B. Zhang, H. Sun e G. Barbastathis, “Design and fabrication of dielectric nanostructured bending adaptor for optical

frequencies,” em 2012 International Conference on Optical MEMS and Nanophotonics (OMN), Banff, 2012.

[9] A. Duduś, R. Blue, M. Zagnoni, G. Stewart e D. Uttamchandani, “Modeling and Characterization of an Electrowetting-Based Single-Mode Fiber Variable Optical Attenuator,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, n. 4, 2015.

[10] Y.-L. Sun, S.-M. Sun, B.-Y. Zheng, Z.-S. Hou, P. Wang, X.-L. Zhang, W.-F. Dong, L. Zhang, Q.-D. Chen, L.-M. Tong e H.-B. Sun, “Protein-Based Multi-Mode Interference Optical Micro-Splitters,” IEEE PHOTONICS TECHNOLOGY

[11] Y. Yang, H. Li, K. Song e W. Jin, “1 × N Fiber Optic Coupler Based on a

Polyhedral Gradient-Index Lens,” Journal of Lightwave Technology, vol. 33, n. 12, pp. 2685-2689, 2015.

[12] S. Ellis, A. Crouzier, J. Bland-Hawthorn e J. Lawrence, “Potential applications of ring resonators for astronomical,” em IQEC/CLEO Pacific Rim 2011, Sydney, 2011.

[13] H. Ishihara, Y. Mashiko, K. Goi, K. Ogawa, T.-Y. Liow, X. Tu, G.-Q. Lo e D.-L. Kwong, “Small-footprint 128-Gb/s DP-QPSK Silicon Optical Modulator in Ceramic-based Metal Package with Low Optical Coupling Loss,” em 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IACC), Kyoto, 2015.

[14] D. L. Lee, Electromagnetic Principles of Integrated Optics, New York: JohnWiley & Sons, 1986.

[15] X. Wang, W. Shi, R. Vafaei, N. A. F. Jaeger e L. Chrostowski, “Uniform and Sampled Bragg Grating in SOI Strip Waveguide With Sidewall Corrugations,” IEEE Photonics Letters, vol. 23, n. 5, pp. 290 - 292, 2011.

[16] M. Hochberg, T. Baehr-Jones, C. Walker, J. Witzens, L. C. Gunn e A. Schererr, “Segmented Waveguides in Thin Silicon-on-Insulator,” Journal of the Optical Society of America B, vol. 22, n. 7, pp. 1493-1497, 2005.

[17] J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen e M. Lipson, “Low Loss Etchless Silicon Photonic Waveguides,” Optics Express, vol. 17, n. 6, pp. 4752-4757, 2009.

[18] P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore e T. J. Hall, “Subwavelength Grating Periodic Strustures in Silicon-on-Insulator a New Type of Microphotonic Waveguide,” Optics Express, vol. 18, n. 19, pp. 20251-20262, 2010.

[19] I. Molina-Fernandez, R. Halir, A. Ortega-Moñux, L. Zavargo-Peche, S. R. García, A. Maese-Novo, D. Perez-Galacho, G. Wanguemert-Perez, P. Cheben e D.-X. Xu, “New Concepts in Silicon Component Design Using Subwavelength Structures,” Proceedings of the SPIE, vol. 8266, n. 6, p. 82660E, 2012.

[20] M. D. Petroff, “Multicavity optical couplers,” em International Electron Devices Meeting , Washington, 1966.

[21] M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos e M. V. Andrés, “Experimental Investigation of Fused Biconical Fiber Couplers for Measuring Refractive Index Changes in Aqueous Solutions,” IEEE Sensors

Journal, vol. 16, n. 1, pp. 132-136, 2016.

[22] M. Tokushima, J. Ushida, T. Uemura e K. Kurata, “High-Efficiency Folded Shallow-Grating Coupler with Minimal Back Reflection toward Isolator-Free Optical Integration,” em European Conference on Optical Communication (ECOC), 2015.

[23] C. J. Oton, “Long-working-distance grating coupler for integrated optical devices,” IEEE Photonics Journal, vol. 8, n. 1, 2016.

[24] D. F. Daniel C. Lee1*, C.-C. Kung, J. Fong, W. Qian, X. Zheng, J. E.

Cunningham, A. V. Krishnamoorthy e M. Asghari, “Monolithic Chip-to-chip WDM Optical Proximity Coupler Utilizing Echelle Grating

Multiplexer/Demultiplexer Integrated with Micro Mirrors Built on SOI Platform,” em IEEE Photonics Society Summer Topical Meeting Series, 2010.

[25] H. Wei, Y. Zhu e S. Krishnaswamy, “Optofluidic Photonic Crystal Fiber Coupler for Measuring the Refractive Index of Liquids,” IEEE Photonics Technology Letters, vol. 28, n. 1, pp. 103-106, 2016.

[26] L. Wang, Y. Liu, F. Li e Z. Zhao, “Source Location Techniques in Plate-like Structures based on Fiber Coupler Sensors,” em IEEE International Ultrasonics Symposium Proceedings, 2015.

[27] H. Terae, B.-K. Nguyen, T. Takahata, E. Iwase, K. Matsumoto e I. Shimoyama, “Tapered waveguide by liquid for a coupler of optical fibers to MEMS devices,” em IEEE 21º International Conference on Micro Electro Mechanical Systems, 2008.

[28] P. P. Sahu, “Theoretical Investigation of All optical switch based on compact surface plasmonic two mode interference coupler,” Journal of Lightwave Technology, vol. PP, n. 99, p. 1, 2016.

[29] K. Shang, S. Pathak, G. Liu e S. Yoo, “Ultra-Low Loss Vertical Optical Couplers for 3D Photonic Integrated Circuits,” em Optical Fiber Communications

Conference and Exhibition (OFC), 2015.

[30] J. Cardenas, “High Coupling Efficiency Etched Facet Tapers in Silicon

Waveguides,” IEEE Photonics Technology Letters, vol. 26, n. 23, pp. 2380 - 2382, 2014.

[31] S. J. McNab, “Ultra-Low Loss Photonic Integrated Circuit With Membrane Type Photonic Crystal Waveguides,” Optics Express, vol. 11, n. 22, pp. 2927-2939, 2003.

[32] D. K. Cheng, Field and Waves Eletromagnetics, Washignton: 1989, Addison- Wesley.

[33] S. L. Chuang, Physics of Optoelectronics Devices, New York: JohnWiley & Sons, 2009.

[34] J. Bures, Guided Optics: Optical Fibers and All-fiber Components., Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2009.

[35] S. K. Raghuwanshi e S. Talabattula, “Analytical approximation solutions for 3-D optical waveguides: Review,” Indian J.l Phys., pp. 127-151, 27 May 2008. [36] H. Nishihara, M. Haruna e T. Suhara, Optical Integrated Circuits, New York:

McGraw Hill, 1989.

[37] C. Ciminelli, D. D'Agostino, G. Carnicella, F. Dell'Olio, D. Conteduca, H. P. M. M. Ambrosius, M. K. Smit e M. N. Armenise, “A High-Q InP Resonant Angular Velocity Sensor for a Monolithically Integrated Optical Gyroscope,” IEEE Photonics Journal, vol. 8, n. 1, 2016.

[38] C. M. Serpa-Imbett e H. E. Hernandez-Figueroa, “Novel Bending Loss Reduction Technique for the TM mode in SOI-Based Waveguides,” IEEE Photonics

Technology Letters, vol. PP, n. 99, p. 1, 2016.

[39] J. Jim, The Finite Element Method in Electromagnetics, New York: JohnWiley & Sons, 2002.

[40] M. Mitchell, An Introduction to Genetic Algorithms, Boston: MIT Press, 1998. [41] R. Linden, Algoritmos Genéticos: Uma Importante Ferramenta da Inteligência

Computacional, Rio de Janeiro: Brasport, 2008.

[42] W. S. McCulloch e W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,” Bulletin of Mathematical Biology, vol. 5, pp. 115-133, 1943. [43] G. L. Pappa, “Algoritmos Bio-inspirados: Conceitos e Aplicações em Aprendizado

de Máquina,” [Online]. Available:

http://homepages.dcc.ufmg.br/~glpappa/cverao/CursoVerao-Parte1.pdf. [Acesso em 02 2015].

[44] C. H. d. S. Santos, “Computação Bio-Inspirada,” em Computação Bio-Inspirada e Paralela para a Análise de Estruturas Metamateriais em Microondas e Fotônica, Campinas, 2010, pp. 25-28.

em IEEE Systems Science and Cybernetics Conference, Washington, 1966. [46] D. O. Hebb, The Organization of Behavior, New York: Wiley & Sons, 1949. [47] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain,” Psychological Review, vol. 65, n. 6, p. 386–408, 1958. [48] O. Veligorskyi, R. Chakirov e Y. Vagapov, “Artificial neural network-based

maximum power point tracker for the photovoltaic application,” em 2015 1st International Conference on Networks and Intelligent Systems (INISCom), Tokyo, 2015.

[49] D. Dasgupta, Artificial Immune Systems and Their Applications, Springer-Verlag, 1998.

[50] H. Bersini e F. Varela, Hints for Adaptive Problem Solving Gleaned from Immune Networks, Springer Verlag, 1990.

[51] S. Forrest, A. Perelson, L. Allen e R. Cherukuri, “Self-Nonself Discrimination in a Computer,” em IEEE Symposium on Research in Security and Privacy, 1994. [52] E. B. Hunt, Artificial Intelligence, New York: Academic Press, 1975.

[53] J. H. Holland, Adaptation in Natural and Artificial Systems, Michigan: Univ. of Michigan Press, 1975.

[54] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Boston: Addison-Wesley Longman Publishing Co., 1989.

[55] A. J. F. V. Rooij, R. P. Johnson e L. C. Jain, Neural Network Training Using Genetic Algorithms, World Scientific Publising Co., 1996.

[56] M. Sahin e M. T. Ü. Atav, “Applications of Genetic Algorithm Initial Population Generation Methods,” Turk. J. Phys., vol. 20, pp. 253-275, 2006.

[57] R. R. Hill, “A Monte Carlo Study of Genetic Algorithm Initial Population Generation Methods,” em Winter Simulation Conference, 1999.

[58] L. Xinping e L. Ying, “Adaptive Genetic Algorithm Based on Population

Diversity,” em International Forum on Information Technology and Applications, 2009.

[59] A. M. Kuczapski, M. V. Micea, L. A. Maniu e V. I. Cretu, “Efficient Generation Of Near Optimal Initial Populations to Enhance Genetic Algorithms for Job-Shop Scheduling,” Information Technology and Control, vol. 39, n. 1, 2010.

[60] O. Roeva, S. Fidanova e M. Paprzycki, “Influence of the Population Size on the Genetic Algorithm Performance in Case of Cultivation Process Modeling,” em Federated Conference on Computer Science and Information Systems, 2013.

[61] S. Szénási, Z. Vámossy e M. Kozloyszky, “Preparing Initial Population of Genetic Algorithm for Region Growing Parameter Optimization,” em 4º IEEE

International Symposium on Logistics and Industrial Informatics, 2012.

[62] R. L. Haupt e S. E. Haupt, Practical Genetic Algorithms, New York: Wiley, 2004. [63] T. B. Ludermir, “Algoritmos Genéticos,” 2008. [Online]. Available:

http://www.slideplayer.com.br/slide/48747/. [Acesso em 02 2014].

[64] R. W. Clough, M. J. Turner, H. C. Martin e L. J. Topp, “Stiffness and deplection analysis of complex structures,” Journal of the Aeronaitical Sciences, vol. 23, n. 9, pp. 805-823, 1956.

[65] M. S. Gonçalves, “Parallel 3D Full-Time Domain Applied to Photonic Structures,” IET Optoeletronics, vol. 5, pp. 40-45, 2011.

Documentos relacionados