• Nenhum resultado encontrado

Capítulo 2 Otimização da produção de celulases e xilanase pelo fungo da

4. Conclusões

Neste estudo, a concentração de forrageira, concentração de peptona, concentração de sulfato de zinco e o tempo de cultivo de P. sanguineus para a produção de FPase, endoglicanase, celobiase e xilanase foram otimizadas, obtendo- se aumentos nas atividades de 4,1, 3,2, 19,5 e 17,2 vezes, respectivamente. Estas enzimas foram então caracterizadas em relação à temperatura e pH, apresentando, de forma geral, maiores atividades em temperaturas entre 45 – 65 °C e em valores de alta termoestabilidade, com t1/2 de 15 e 14,6 h, respectivamente. Já o t1/2 da celobiase foi de 3,1 h. O potencial do extrato otimizado produzido por P. sanguineus em hidrolizar o bagaço de cana pré-tratado com solução alcalina foi avaliado. O maior rendimento de conversão em glicose obtido foi de 25,5 %, quando utilizou-se suplementação com celobiase comercial na proporção de 10:5 (FPase : celobiase). Logo, o extrato enzimático produzido por P. sanguineus mostrou carcterísticas compatíveis com o processo de sacarificação de biomassas lignocelulósicas, contudo,

75 maiores estudos ainda devem ser relizados visando maiores rendimentos de conversão.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ADAV, S.S., RAVINDRAN, A., SZE, S.K. Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass. Journal of proteomics. 75:1493-1504, 2012.

ALMEIDA, Maíra Nicolau, Caracterização de celulases e hemicelulases dos fungos Acremoniumn zea e Acremonium sp. Dissertação: Programa de Pós-

graduação em Bioquímica agrícola. Universidade Federal de Viçosa, 2009.

ALVIRA, P., NEGRO, M.J., BALLESTEROS, M. Effect of endoxylanase and -L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresource Technology. 102: 4552–4558, 2011.

ANDERSON, W.F., DIEN, B.S., BRANDON, S.K., PETERSON, J.D. Assessment of Bermuda grass and bunch grasses as feedstock for conversion to ethanol. Appl. Biochem. Biotechnol. 145 (1): 13–21, 2010.

BALDRIAN, P., VALASKOVA, V. Degradation of cellulose by

basidiomycetous fungi. FEMS Microbiology Reviews. 32: 501-521, 2008.

BALLESTEROS, M., OLIVA, J. M., NEGRO, M. J., MANZANARES, P., BALLESTEROS, I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry. 39: 1843-1848, 2004.

BERLIN A., MAXIMENKO V., GILKES N., SADDLER J. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering. 97: 287-296, 2007.

CANILHA, L.; MILAGRES, A.M.F.; SILVA, J.B.A.; FELIPE, M.G.A.; ROCHA, G.J.M.; FERRAZ, A.; CARVALHO, W. Sacarificação da biomassa lignocelulósica através de pré-hidrólise ácida seguida por hidrólise enzimática: uma estratégia de “desconstrução” da fibra vegetal. Revista Analytica, nº44, 2010.

76 CHANDRA, M.S., VISWANATH, B., REDDY, B.R. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian Journal of Microbiology. 47: 323-328, 2007.

COUTO, L. C., COUTO, L., Watzlawick, L. F., CÂMARA, D. Vias de valorização energética da biomassa. Biomassa & Energia. 1: 71-92, 2004.

DUFF, S. J. B., MURRAY, W. D. Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technolqy. 55: l-33, 1996.

ELISASHVILI, V., KACHLISHVILI, E., PENNINCKX, M. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology. 35: 1531-1538, 2008.

FAGA, B. A., WILKINS, M. R., BANAT, I. M. Ethanol production through simultaneous saccharification and fermentation of switchgrass using Saccharomyces

cerevisiae D5A and thermotolerant Kluyveromyces marxianus IMB strains.

Bioresource Technology. 101: 2273-2279, 2010.

FALKOSKI, D.L., GUIMARÃES, V.M., ALMEIDA, M.N., ALFENAS, A.C., COLODETTE, J.L., de REZENDE, S.T. Chrysoporthe cubensis: a new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresource Technology 2013.

FALKOSKI, D.L., GUIMARÃES, V.M., ALMEIDA, M.N., ALFENAS, A.C., COLODETTE, J.L., de REZENDE, S.T. Characterization of cellulolytic extract from Pycnoporus sanguineus PF-2 and its application in biomass saccharification. Applied Biochemistry and Biotechnology. 166: 1586-1603, 2012.

GAO J, WENG H, ZHU D, YUAN M, GUAN F, Xi Y. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal

Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresource

Technology. 99: 7623-7629, 2008.

GHOSE, T.K. Measurement of cellulase activities. Pure & Applied Chemistry. 59: 257 – 268, 1987.

77 GUOWEIA, S., MAN, H., SHIKAI, W., HE, C. Effect of some factors on Production of cellulase by Trichoderma reesei HY07. Procedia Environmental Sciences. 8: 357-361, 2011.

HIDENO, A., INOUE, H., TSUKAHARA, K., YANO, S., FANG, X., ENDO, T., et al. Production and characterization of cellulases and hemicellulases by

Acremonium cellulolyticus using rice straw subjected to various pretreatments as the

carbon source. Enzyme and Microbial Technology. 48: 162-168, 2011.

HU, J., ARANTES, V., PRIBOWO, A., SADDLER, J.N. The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnology for Biofuels. 6:112, 2013.

JUHASZ, T., SZENGYEL, Z., RECZEY, K., SIIKA-AHO, M., VIIKARI, L. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry. 40: 3519-3525, 2005.

JUODEIKIENE, G., BASINSKIENE, L., VIDMANTIENE, D., MAKARAVICIUS, T., BARTKIENE, E., SCHOLS, H. The use of β-xylanase for increasing the efficiency of biocatalytic conversion of crop residues to bioethanol. Catalysis Today. 167: 113–121, 2011.

KARBOUNE, S., GERAERT, P-A., KERMASHA, S. Characterization of selected cellulolytic activities of multi-enzymatic complex system from Penicillium

funiculosum. Journal of Agricultural and Food Chemistry. 56: 903-909, 2008.

KUMAR, P., BARRETT, D.M., DELWICHE, M.J., STROEVE, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research. 48: 3713-3729, 2009.

MCILVAINE, T. A buffer solution for colorimetric comparison. Journal of Biological Chemistry.49: 183-186, 1921.

MENON, V. and RAO, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science. 1-29, 2012.

MILLER, G.L.Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31:426-428, 1959.

78 MONovel perspectives for evolving enzyme cocktailsfor lignocellulose hydrolysis in biorefineries. Sustainable Chemical Processes. 1:15, 2013.

PARK, I., KIM, I., KANG, K., SOHN, H., RHEE, I., JIN, I., JANG, H. Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Process Biochemistry. 45: 487-492, 2010.

RAKOTOARIVONINA, H., HERMANT, B., MONTHE, N., RÉMOND, C. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus denpends on the composition of biomass used for growth. Microbial Ceel Factories.11:159-170, 2012.

SAHA, B. C. Hemicellulose bioconversion. Journal of Industrial

Microbiology and Biotechnology, Hampshire, v.30, p.271-291, 2003.

SANTOS, V. T. O., ESTEVES, P. J., MILAGRES, A. M. F., CARVALHO, W. Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. Journal of Industrial Microbiology and Biotechnology. 1-10, 2010.

SELIG, M.J., KNOSHAUG, E.P., ADNEY, W.S., HIMMEL, M.E., DECKER, S.R. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresource Technology. 99: 4997–5005, 2008.

SHAH, A. R.; MADAMWAR, D. Xylanase production by a newly isolated

Aspergillus foetidus strain and its characterization. Process Biochemistry. 40: 1763-

1771, 2005.

SINGHANIA, R.R., SUKUMARAM, R.K., PATEL, A.K., LARROCHE, C., PANDEY, A. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology. 46: 541-549, 2010.

SUN, Y., CHENG, J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology. 96: 1599–1606, 2005.

79 TEOH, Y.P. and MASHITAH, M.D. Cellulase production by Pycnoporus

sanguineus on oil palm residues through pretreatment and optimization study.

Journal of Applied Sciences. 10 (12): 1036-1043, 2010.

TAPPI. Technical Association of the Pulp and Paper Industry. Tappi Standard Methods (T-222 om-98). Atlanta, 1999.

WANG, W., YUAN, T., WANG, K., CUI, B., DAI, Y. Statistical optimization of cellulase production by the brown rot fungi, Fomitopsis palustris, and its application in the enzymatic hydrolysis of LHW-pretreated woody biomass. Process Biochemistry. 47: 2552–2556, 2012.

YAMASHITA, Y., SASAKI, C., NAKAMURA, Y. Effective enzyme saccharification and ethanol production from Japanese cedar using various pretreatment methods. Journal of Bioscience and Bioengineering. 110: 79-86, 2010.

ZHANG, Z., DONALDSON, A.A., MA, X. Advancements and future directions in enzyme technology for biomass conversion. Biotechnology Advance. 30: 913-919, 2012.

ZHAO, J., XIA, L. Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Processing Technology. 90: 1193-1197, 2009.

80

Documentos relacionados