• Nenhum resultado encontrado

Diante dos experimentos realizados no presente trabalho, é possível constatar que o encapsulamento foi eficiente em proteger e liberar o ITT na condição almejada. Em relação à digestibilidade, os produtos de digestão do EQPI, presentes na fase intestinal, provavelmente condicionaram a bioatividade apresentada.

Desta forma, os resultados obtidos apontam para a potencialização do ITT, após encapsulado, diante do seu efeito hipoglicemiante in vivo, considerando a redução das concentrações de glicemia de jejum, aumento de HDL-c e reparo do tecido pancreático, tornando-se um possível candidato para atuar, concomitantemente, a uma dieta nutricionalmente adequada para o tratamento de doenças como obesidade, DM e SM. Vale destacar ainda, que a associação dos resultados encontrados são inéditos, já que não há relatos efeitos conjuntos sobre componentes do perfil lipídico e glicemia para inibidores de tripsina.

REFERÊNCIAS

1. Schramm JMA, Oliveira AF, Leite IC, Valente JG, Gadelha AMJ; Portela MC, Campos MR. Transição epidemiológica e o estudo de carga de doença no Brasil. Ciênc. Saúde Coletiva. 2004; 9(4): 897-908

2. Sempértegui F. et al. Metabolic syndrome in elderly living in marginal peri- urban communities in Quito, Ecuador. Public Health Nutrition. 2011; 14 (5): 758-67. 3. Housseinpour-niazi S, et al. Inverse association between fruit, legume, and cereal fiber and the risk of metabolic syndrome: Tehrn Lipid and Glucose study. Diabetes Research and Clinical Practice. 2011; 94 (2): 276-83.

4. Song, S et al. Carbohydrate intake and refined-grain consumption in the Korean adult population. Journal of the Academy of Nutrition and Dietetics. 2014;114 (1): 54- 62.

5. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2019 American Diabetes Association Diabetes Care. Jan 2019; 42 (1): 90- 102.

6. Garvey WT, Mechanick JI, Brett EM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016; 22(3): 201–203.

7. Jensen MD, Ryan DH, Apovian CM, et al. AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2013; 63: 2985–3023.

8. Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2015;100:342–62.

9. Verlazquez A, Apovian CM. Pharmacological management of obesity. Minerva Endocrinol 2018. Sep; 43(3): 356-366

10. Bahmani M, Eftekhari Z, Saki K, Fazeli-Moghadam E, Jelodari M, Rafieian- Kopaei M. Obesity phytotherapy: review of native herbs used in traditional medicine for obesity. J Evid Based Complementary Altern. Med. 2016;21(3):228–234.

11. Li S, Liu L, He G, Wu J. Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food Funct. 2018; 9(1):42-52.

12. Choudhury H, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine. Jul 2018; 8 (3): 361-376.

13. Castro RJS, Domingues MAF, Ohara A, Okuro PK, Santos JG, Brexó RP, Sato HH. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structur. 2017 (14): 17-29.

14. Ozorio, L, Silva LP, Prates MV, Blosh Jr C, Takeiti CY, Gomes DM, Santos JES, Deliza L, Brígida AI, Furtado A, Silva CM, Cabral LMC. Whey hydrolysate-based ingredient with dual functionality: From production to consumer's evaluation. . Food Research International .2019;122: 123–128.

15. Kohda, N, Inoue, S, Noda, T, Saito, T. Effects of a chitosan intake on the fecal excretion of dioxins and fat in rats. Biosci. Biotechnol. Biochem. 2012; 76: 1544 - 1548. 16. Jae‐Young J, Pyo‐Jam P, Bokyung K, Se‐Kwon K. Antihypertensive activity of chitin derivatives. Biopolymers. 2006; 83 (3): 250- 254.

17. Yemişci M, Gürsoy-Özdemir Y, Caban S, Bodur E, Çapan Y, Dalkara, T. Transport of a Caspase Inhibitor Across the Blood–Brain Barrier by Chitosan Nanoparticles. Nanomedicine - Cancer, Diabetes, and Cardiovascular, Central Nervous System, Pulmonary and Inflammatory Diseases. 2012: 253–269.

18. Serquiz AC, Machado RJA, Serquiz, RP, Lima, VCO, Carvalho FMC; Carneiro MAA, Maciel BLL, Uchôa AF, Santos, EA, Morais AHA. Supplementation with a new trypsin inhibitor from peanut is associated with reduced fasting glucose, weight control, and increased plasma CCK secretion in an animal model. J Enzyme Inhib Med Chem. Feb.2016 (29):1-9.

19. Ribeiro JANC; Serquiz, AC; Silva, PFS; Barbosa, PBBM; Sampaio, TBB; Junior, RFA; Oliveira, AS; Machado, RJA; Maciel, BLL; Uchôa, AF; Santos, EA; Morais, AHA. Trypsin inhibitor from tamarindus indica L. seeds reduces weight gain and food consumption and increases plasmatic cholecystokinin levels. Clinics 2015; 70(2):136-43.

20. Carvalho FMC, Lima VCO, Costa, IS; Medeiros AF, Serquiz, AC, Lima, MCJS, Serquiz, RP, Maciel BLL, Uchôa AF, Santos EA, Morais AHA. A Trypsin Inhibitor from Tamarind Reduces Food Intake and Improves Inflammatory Status in

Rats with Metabolic Syndrome Regardless of Weight Loss. Nutrients. 2016, 8 (544): 1- 14.

21. Li S, Liu L, He G, Wu J. Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food Funct. 2018; 9(1):42-52.

22. Clayton R, Ohagen A, Nicol F, Del Vecchio AM, Jonckers THM, Goethals, O.,Hertogs, K.. Sustained and specific in vitro inhibition of HIV-1 replication by a protease inhibitor encapsulated in gp120-targeted liposomes. Antiviral Research. 2009. 84(2): 142–149.

23. Rao JP; Geckeler KE. Polymer nanoparticles: Preparation techniques and size- control parameters. Progress in Polymer Science. 2011; 36(7): 887-913.

24. Yousuf B, Gul K, Wani AA, Singh, P. (2015). Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Critical Reviews in Food Science and Nutrition. 2015; 56(13): 2223–2230.

25. Chatterton DEW, Smithers , Roupas P, Brodkorb, A. Bioactivity of β- lactoglobulin and α-lactalbumin—Technological implications for processing. International Dairy Journal. 2006; 16(11): 1229–1240.

26. Divya, K., Jisha, M. S. Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters. 2017; 16(1): 101–112.

27. Queiroz, JLC et al. Chitosan-whey protein nanoparticles improve encapsulation efficiency and stability of a trypsin inhibitor isolated from Tamarindus indica L. Food Hydrocolloids. 2018; 84: 247–256.

28. Costa ROA. Avaliação da citotoxicidade e toxicidade subaguda do Inibidor de Tripsina de sementes de Tamarindo (Tamarindus L. indica L.) nanoencapsulado. Dissertação (Mestrado em Biquímica). Natal. Cenrtro de Biociências.Universidade Federal do Rio Grande do Norte, 2019, 75f.

29. Buettner R, Schölmerich J, Bollheimer C. High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents. Obesity. 2007; 15 (4): 798 -808. 30. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiological Reviews. 2013; 93 (1): 359-404.

31. Giorgino F, Laviola L, Eriksson JW. Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 2005;183:13-30.

32. Centers for Disease Control and Prevention – CDC. Fruit and vegetable consumption among adults – United States 2005. MMWR Morb Mortal Wkly. 2007; 56(10): 213-217.

33. Wardle J, Haase AM, Steptoe A, Nillapun M, Jonwutiwes K, Bellisle F. Gender differences in food choice: the contribution of health beliefs and dieting. Ann Behav Med. 2004; 27: 107-116.

34. Augustin LSA, Kendall CWC, JenkinsDJA, Willet WC, Astrup A, Barclay AW,et al. Glycemic index, glycemic load and glycemic response: An International Scientific Consensus Summit from the International Carbohydrate Quality Consortium (ICQC). Nutrition Metabolism and Cardiovascular Diseases. 2015;25: 795-810.

35. Parks EJ. Dietary carbohydrate’s effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations. Br J Nutr 2002;87( 2): 247-253. 36. Chen H, Simar D, Lambert K, Mercier J, Morris MJ. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 2008;149(11): 5348-56.

37. Parhofer KG. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes Metab J. 2015;39(5):353-62.

38. Wolever TM, Bolgnesi C. Source and amount of carbohydrate affect postprandial glucose and insulin in normal subjects. J Nutr 1996; 126: 2798-806.

39. Campbell GC, Senior AM, Bell-Anerson KS. Metabolic effects of high glycaemic index diets: a systematic review and meta-analysis of feeding studies in mice and rats. Nutrients. 2017; 9 (7): 1-20.

40. Turner R, Holman RR, Matthews D, Hockaday TR, Peto J. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism. 1979; 28: 1086-1096.

41. Ford ES; Giles WH.; Mokdad, AH. Increasing prevalence of the metabolic syndrome among U.S Adults. Diab Care. 2004; 27: 2444-2449.

42. Eckel, R H, Grundy S M; Zimmet, P. Z. The metabolic syndrome. Lancet. 2005; 365 (9468): 1415-1428.

43. Brasil. Estratégias para o cuidado da pessoa com doença crônica diabetes mellitus. caderno de atenção básica. Brasília, 2013: 162p.

44. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2019 American Diabetes Association Diabetes Care 2019 Jan; 42(1): 103- 123.

45. Marreiro, DN. Micronutrientes e resistência a insulina. in: Cozzolino, S. M. F. Biodisponibilidade de nutrientes. Manole. Barueri, São Paulo. 2012;4.

46. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and B-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28: 412-419. 47. King A; Bowe J. Animal models for diabetes: Understanding the pathogenesis and finding new treatments. 2016. 99: 1-10.

48. Choudhury H, Pandey M; Hua CK; Mun CS, Jing JK, Kong L; Ern, Liang Yee; Ashraf, Nik Ahmad; Kit, Soohg Wai; Yee, Tan Sin; Pichika, Mallikarjuna Rao; Gorain, Bapi; Kesharwani, Prashant. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of Traditional and Complementary Medicine. Jul 2018; 8 (3): 361-376.

49. Lombo B, et al. Prevalenciadel síndrome metabólico entre los pacientes que asisten al servicio Clínica de Hipertensión de la Fundación Santa Fe de Bogotá. Rev. Colomb. Cardiol. 2006:12, (7),120-563.

50. Faludi, André Arpad et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose – 2017. Arq. Bras. Cardiol. [online]. 2017.2(1):109.

51. Sas NNB; Moura EC. Fatores associados à carga de doenças da síndrome metabólica entre adultos brasileiros. Cad. Saúde Pública. 2010; 26 (9): 1853-62.

52. Paramjit K, et al. Lipoprotein Biomarkers and Risk of Cardiovascular Disease: A Laboratory Medicine Best Practices (LMBP) Systematic Review. The Journal of Applied Laboratory Medicine. Sep 2016; 1(2): 214–229.

53. Miranda, PJ. et al. Metabolic syndrome: definition, pathophysiology and mechanisms. American Heart Journal. 2005; 149 (1): 34-45.

54. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel

on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421.

55. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica (Abeso). Diretrizes Brasileiras de Obesidade. São Paulo. 2016; 4:188.

56. Mortera RR, Bains Y, Gugliucci A.Fructose at the crossroads of the metabolic syndrome and obesity epidemics. Front Biosci (Landmark Ed). Jan 2019; (24):186-211. 57. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta, JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease. 2017; 215–225

58. Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes 1998;22:1145-58. 23.

59. Grundy SM. Metabolic Syndrome Update. Trends in Cardiovascular Medicine. 2016.26, (4): 364-73.

60. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr. AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112:1796-808.

61. Cornier MA, Dabelea D,Hernandez L, Lindstrom RC, Steig, NR. Stob, et al.The metabolic syndrome Endocr Rev. 2008; 29 (7): 777-822.

62. Stamler J, Vaccaro O, Neaton JD, Wentworth D, for the Multiple Risk Factor Intervention Trial Research Group Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care, 1993; 16: 434 - 444.

63. Shah A, Mehta N, Reilly MP. Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J Parenter Enteral Nutr. 2008; 32 (6): 638-44.

64. Brown JF, Plutzky J. Peroxisome proliferato activated receptors as transcriptional npdal points and therapeutic targets, Circulation. 2007; 115 (4): 518-533. 65. Dambies, L.; Vincent, T.; Domard, A.; Guibal, E. Preparation of Chitosan Gel Beads by Ionotropic Molybdate Gelation. Biomacromolecules 2001; 2: 1198–1205. 66. Mohammed, M., Syeda, J., Wasan, K., & Wasan, E. (2017). An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 9(4), 53.

67. Lee HW, Park YS, Choi JW, Yi SY, Shin WS. Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-inducednoninsulin-dependent diabetes mellitus in rats. Biol. Pharm. Bull. 2003; (26): 1100-1103.

68. Mohammadpour Dounighi N, Eskandari R , Avadi MR , Zolfagharian H , Mir Mohammad Sadeghi A, Rezayat M. Preparation and in vitro characterization of chitosan nanoparticlescontaining. Mesobuthus eupeus scorpion venom as an antigen delivery system The Journal of Venomous Animals and Toxins including Tropical Diseases 2012; 18 (1): 44-52.

69. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci. 2008; 4(2):141–144.

70. Sowjanya NT, Dhivya R, Meenakshi K, & Vedhanayakisri K. A. Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Research Journal of Engineering and Technology. 2013; 4(4): 214-294.

71. Seo JHP, Hae-Soo K. Food Sci. Biotechnol Antidiabetic Activity of Nanopowdered Chitosan in db/db Mice MiHwa. Food Sci. Biotechnol. 2010; 19(5).1245-1250.

72. Zhang W, Zhang J, Jiang Q, Xia W, The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling, Carbohyd. Polym.2013. 95: 487–491.

73. AL-Zahraa M, Khalifa, Bazigha K, Abdul R. Optimized Mucoadhesive Coated Niosomes as a Sustained Oral Delivery System of Famotidine. AAPS PharmSciTech. November 2017; 18 (8): 3064–3075.

74. Sousa GTD, Lira FS, Rosa JC, Oliveira EP, Oyama LM, Santos RV. Pimentel GD, 2012. Dietary whey protein lessens several risk factors for metabolic diseases: A review. Lipids Health Dis. 2012(11): 1476-1511.

75. Bounous G. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment,. Anticancer Research, 2000 (20): 4785-4792.

76. Hayes A, Cribb PJ. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. A Hayes, PJ Cribb - Current Opinion in Clinical Nutrition e Metab Care, 2008: Jan;11(1):40-4.

77. McAllan L; Keane D; Schellekens H.; Roche HM; Korpela R; Cryan JF; Nilaweera KN. Whey protein isolate counteracts the effects of a high-fat diet on energy

intake and hypothalamic and adipose tissue expression of energy balance-related genes. British Journal of Nutrition 2013 (110): 2114–2126.

78. Petersen BL, Ward LS, Bastian ED, L JA, Campbell J, Vuksan V. A whey protein supplement decreases post-prandial glycemia Nutrition Journal 2009; 8:47. 79. Fook JMSLL, Macedo LLP, Moura GEDD, Teixeita FM, Oliveira AS, Queiroz AFS et al. A serine proteinase inhibitor from Tamatindus indica seeds and its effects on the release of human neutrophile elastase. Life Sci 2005. Mai;76 (25):2881-91.

80. Costa IS; Medeiros AF; Carvalho FMC, Lima VCO; Serquiz RP; Serquiz AC; Silbiger VN; Bortolin RH; Maciel BLL; Santos E, A, Morais AHA: Satietogenic Protein from Tamarind Seeds Decreases Food Intake, Leptin Plasma and Gene Expression in Obese Wistar Rats. Obes Facts 2018;11: 440-453.

81. Medeiros AF et al. Biochemical characterisation of a Kunitz-type inhibitor from Tamarindus indicaL. seeds and its efficacy in reducing plasma leptin in an experimental model of obesity, Journal of Enzyme Inhibition and Medicinal Chemistry, 2018; 33(1): 334-348.

82. Shahidi F, Han XQ. Encapsulation of food ingredientsCrit Rev Food Sci Nutr. 1993;33(6):501-47.

83. Chanphai P, Tajmir-Riahi HA. Trypsin and trypsin inhibitor bind PAMAM nanoparticles: Effect of hydrophobicity on protein–polymer conjugation. J Colloid Interface Sci. 2016; 24: 419-461.

84. Pagels RF, Prud'homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control. Relase. 2015; 219: 519-535.

85. European Food Safety Authority (EFSA). Guidance on risk assessment of the aplication of nanosciense and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA Journal. 2018; 16(7): 5327.

86. Chanphai P, Tajmir-Riahi HA. Chitosan nanoparticles conjugate with trypsin and trypsin inhibitor. Carbohydrate Polymers. 2016; 144: 346–352b.

87. Kumari R, Gupta S, Singh AR, Ferosekhan S, Kothari DC, Pal AK, et al.Chitosan Nanoencapsulated Exogenous Trypsin Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract. Chin W-C, editor. PLoS One. 2013; 8(9): 1-13.

88. Jackson LS, Lee K. Microencapsulation and the Food-Industry . Food Science and Technology-Lebensmittel-Wissenschaft & Technologie. 1991;24 (4) :289-297.

89. Fessi H, Puisieux JP, Devissaguet N, Ammoury N, Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics. 1989; 55: 1-4

90. Montasser I, Brianc ON, Lieto J, Fessi H. Methods of obtaining and mechanism forming polymeric nanoparticles. J. Pharm. Belg. 2000; 55: 155–167.

91. Galindo-Rodriguez S, Alléman E, Fessi, H, Doelker E. Physicochemical parameters associated with nanoparticle formation in the salting- out, emulsification- diffusion, and nanoprecipitation methods. Pharmaceutical Research. 2004; 21: 428- 1439.

92. Ribeiro HS, CHU B, Ichikawa. S, Nakajima. M. Preparation of nanodispersions containing β-carorene by solvent displacement method. Food Hydrocolloids. 2008; 22: 12-17.

93. Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J. Pharm. Sci. 2007; 96: 473–483.

94. Pinto Reis C, Neufeld RJ; Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles, Nanomedicine. 2006. 2. 8–21. 95. Chaudhry Q, Watkins R, Castle L. Nanotechnologies in the Food Arena: New Opportunities, New Questions, New Concerns. RSC Nanoscience & Nanotechnology. 2010; 14 (14).1-17.

96. Aichele CP, Venkataramani D, Smay JE, McCann MH, Richter S J, Khanzadeh- Moradillo M, Ley MT. A Comparison of Automated Scanning Electron Microscopy (ASEM) and Acoustic Attenuation Spectroscopy (AAS) for Particle Sizing. Colloids Surf. A Physiocm Eng Asp. 2015; 479: 46-51.

97. Allen T. Field scanning methods of particle size measurements. In: T. Allen, Powder sampling and particle size determination. Amsterdam: Elsevier, Chap 10. 2003: 524-608.

98. Stojanovic Z, Markovic, S. Determination of particle size distribuitions by laser diffraction. Technics – New Materials. 2012; 67: 11- 20.

99. Minekus M, et al. A standardised static in vitro digestion method suitable for food – an international consensus. Food & Function Function. 2014; 5 (6): 1113–1124. 100. Parada J, Aguilera, JM. Food microstructure affects the bioavailability of several nutrients. Journal of Food Science. 2007; 72(2): 21–32.

bioactive peptides from scallops (Chlamys farreri) protein by simulated gastrointestinal digestion. J Food Process Preserv. 2018;42; 1-10.

102. Guimarães MA, Mazaro R.. Principios éticos e Práticos do uso de Animais de Experimentação. São Paulo. UNIFESP (2004).

103. Novelli ELB, Diniz YS, Galhardi CM, Ebaid GMX, Rodrigues HG, Mani F, et al Antropometric Parameters and markers of obesity in rats. Lab Anim. 2007; 41: 111:119.

104. Nascimento AF, Sugizaki MM, Leopold OAF, Lima Leopoldo AP, Luvizoto RA, Nogueira CR et al A hypercaloric pellet diet induces obesity and comobidities in wistar rats. Arq Bra Endocrinol Metabol 2008; 52 (6): 968-74.

105. Nakanishi S, Serikawa T, Kuramoto, T. Slc: Wistar outbred rats show close genetic similarity with F344 inbred rats. Exp Anim. 2015. 64: 25-29.

106. Bortolin RC, Vargas AR, Gasparotto J, Chaves P R; Schnorr CE, Martinello Kd B, Silveira AK, Rabelo TK, Gelain DP; Moreira JCF. A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption International Journal of Obesity. 2018; 42 :525–534.

107. Hu FB. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids. 2003; 38:103-108.

108. Stephen B. Herbal Medicine in the United States: Review of Efficacy, Safety, and Regulation J Gen Intern Med. 2008; 23(6): 854–859.

109. Wohlmuth, H, Oliver C, Nathan, P. J. A Review of the Status of Western Herbal Medicine in Australia. Journal of Herbal Pharmacotherapy.2002; 2(2): 33– 46.

110. Lima VCO; Piuvezam G, Maciel BLL; Morais AHA. Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders?, Journal of Enzyme Inhibition and Medicinal Chemistry, 2019. 34 (1), 405-419.

111. Kakade ML, Simons N, Liener I. An evaluation of natural vs synthetic substrates for measuring antitryptic activity of soy bean sample. Cereal Chemistry. 1969, 46:518- 526.

112. Laemmli, UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970: Aug 227 ( 52/7), 680-685.

113. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72: 248-254.

114. Luque-Alcaraz, A, Lizardi-Mendoza, J, Goycoolea F, Higuera-Ciapara I, & Argüelles-Monal W. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier. RSC Advances. 2016; (6):50–56.

115. Guide of Care and Use of Laboratory Animals. Committiee for de Update of the guide of the Care and Use of Laboratory Animals. Institute of Laboratory Animals Research. Division of Earth and Life Studies. The Nacional Academies Press 500 Fifith Street, NW,Lockbox 285, Washington, DC, 20055; 2011; (202): 334-3313.

116. Martins, L.B., Oliveira, M.C., Menezes-Garcia, Z., Rodrigues, D.F., Lana, J.P., Vieira, L.Q. et al.Paradoxical role of tumor of necrosis factor onmetabolic dysfunction and adipose tissue expansion in mice. Nutrition. 2012; (50):1-7.

117. Kim SW, Kim S, Tracy, JB, Jasanoff, A, Bawendi, M. G. Phosphine Oxide Polymer for Water-Soluble Nanoparticles. Journal of the American Chemical Society. 2005; 127(13): 4556–4557.

118. Zhang Y, Chen, Y, Westerhoff, P, Hristovski, K, & Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water. Water Research. 2007; 42(8-9): 2204–2212.

119. Samaele N, Amornpitoksuk, P, Suwanboon S. Mater Morphology and optical properties of ZnO particles modified by diblock copolymer. Materials Letters. 2010; 64(4): 500-502.

120. Sagiri, SS, Anis, A, Pal K. Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polymer-plastics technology and engineering. 2016; 55 (3): 291–311.

121. Wang, W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 1999; 185: 129-188

122. Chen F, Zhang ZR, Huang Y. Evaluation and modification of N˗trimethyl chitosan chloride nanoparticles as protein carriers. Int. J. Pharm.. 2007; 336: 166–173. 123. Kannel WB. Coronary heart disease risk factors in the elderly. Am J Geriatr Cardiol. 2002.11(2):101–7.

124. Rosenson, RS., Brewer, H. B., Ansell, B. J., Barter, P., Chapman, M. J., Heinecke, J. W., … Webb, N. R. (2015). Dysfunctional HDL and atherosclerotic cardiovascular disease. Nature Reviews Cardiology. 2015.13(1), 48–60.

125. Liu SH; Chang YH; Chiang MT. Chitosan Reduces Gluconeogenesis and Increases Glucose Uptake in Skeletal Muscle in Streptozotocin-Induced Diabetic Rats. J. Agric. Food Chem. 2010; 58 (9): 5795-5800.

126. Teff KL, Elliott SS, Tschop M. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab . 2004;89: 2963-2972.

127. Housseinpour-niazi S. et al. Inverse association between fruit, legume, and cereal fiber and the risk of metabolic syndrome: Tehrn Lipid and Glucose study. Diabetes Research and Clinical Practice. 2011; 94 (2): 276-83.

128. Bravata DM, et al. Two measures of insulin sensitivity provided similar information in US population. J Clin Epidemiol, v. 57, n. 11, p. 1214-7, 2004.

129. Oliveira EP, Lima MD, Souza A, Mirabeau LA. Síndrome Metabólica, seus fenótipos e resistência à insulina pelo HOMA-RI. Arquivos Brasileiros de Endocrinologia & Metabologia. 2007. 51(9), 1506-1515.

130. Lee HW; Park YS; Choi JW; YI S; Shin WS. Received Ja Antidiabetic Effects

Documentos relacionados