• Nenhum resultado encontrado

O trabalho aqui apresentado mostra que a adição da GA, um polissacarídeo neutro não gelificante, a soluções de IPSL, modifica o mecanismo de gelificação induzido termicamente das PSL, bem como as propriedades viscoelásticas dos géis, reflectindo-se consequentemente na microestrutura dos géis finais. A extensão destas alterações depende da massa molecular da GA e da razão IPSL/GA.

A presença da GA apresenta um efeito positivo na formação de géis de IPSL, a pH neutro, podendo ser, provavelmente explicado pela ocorrência de interacções segregativas entre os dois biopolímeros.

Os resultados obtidos por microscopia confocal de varrimento laser sugerem a existência de separação de fases entre a GA e o IPSL, excepto para os sistemas contendo a fracção de GA de menor massa molecular (GA 960). Regra geral, a matriz proteica forma uma fase contínua que acomoda as cadeias de polissacarídeo, as quais preenchem os espaços vazios da rede proteica. A pH 7, os géis de IPSL apresentam uma microestrutura particulada, resultante da associação de moléculas de pequeno diâmetro, e possuem espaços capilares vazios de dimensão reduzida (Tavares e Lopes da Silva, 2003). Consequentemente, o aprisionamento de cadeias de GA, com propriedades distintas, nomeadamente, quanto ao seu tamanho no interior da matriz proteica, desencadeia diferentes efeitos a nível das propriedades viscoelásticas dos géis finais.

A consequência da segregação dos biopolímeros e da concentração local de cada componente, para o comportamento reológico dos géis, consiste essencialmente, na obtenção de géis mais rígidos, e na diminuição da concentração crítica de gelificação. Contudo, a extensão destes efeitos é dependente da massa molecular e da concentração da GA aplicada nos sistemas mistos. Para a GA com massa molecular e em concentração mais elevada verifica-se que o gel final obtido possui carácter viscoso mais acentuado e extensa separação de fases, com formação de uma fase contínua rica em polissacarídeo. Provavelmente, para elevadas concentrações de GA de elevada massa molecular, o efeito será prejudicial à formação de um gel com elevada elasticidade e grau de perfeição da rede tridimensional, podendo mesmo prever-se que a gelificação seria inibida caso se conseguisse atingir valores mais elevados de polissacarídeo.

Do ponto de vista prático, estes resultados mostram que uma gama variada de propriedades (reológicas e microestruturais) pode ser obtida alterando a massa molecular do polissacarídeo inserido num sistema misto IPSL/GA, possibilitando obter diferentes texturas e microestruturas com potencial aplicação em diferentes áreas.

Aguilera, J.M. (1995). Gelation of Whey Proteins. Food Technology, 49: 83-89.

Allain, A-F., Paquin, P. & Subirade, M. (1999). Relationships between conformation of β-lactoglobulin in solution and gel states as revealed by attenuated total reflection Fourier transform infrared spectroscopy. International Journal of Biological

Macromolecules, 29: 337-344.

Alting, A.C. (2003). Cold gelation of globular proteins. Tese de Doutoramento. Wageningen University.

Alves, M.M., Garnier, C., Lefebvre, J. & Gonçalves, M.P. (2001). Microstructure and flow behaviour of liquid water-gelatin-locust bean gum systems. Food

Hydrocolloids, 15:117-125.

Andrade, C.T., Azero, E.G. Luciano, L. & Gonçalves, M.P. (2000). Rheological properties of mixtures of kappa-carrageenan from Hyprea musciformis and galactomannan from Cassia javanica. International Journal of Biological Macromolecules, 27: 349-353.

Baptista, J.A.B., Tavares, J.F.P. & Jerónimo, M.S.L. (1998). Proteínas do lactosoro- poluição ou mais valia. Determinação da sua capacidade de gelificação. Açoreana, 8(4): 545-557.

Beer, M.U., Wood, P.J. & Weisz, J. (1999). A simple and rapid method for evaluation of Mark-Houwink-Sakurada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusion chromatography: application to guar galactomannan. Carbohydrate

Polymers, 39: 377-380.

Belloque, J. & Smith, G.M. (1998). Thermal denaturation of β-lactoglobulin. A 1H NMR study. Journal of Agricultural and Food Chemistry, 46: 1805-1813.

Beveridge, T., Jones, L. & Tung, M. (1984). Progel and gel formation and reversibility of whey, soybean and albumen gels. Journal of Agricultural and Food Chemistry, 32: 307-312.

Blakeney, A.B., Harris, P.J., Henry, R.J. & Stone, B.A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 113: 291-299.

Boye, J.I. & Alli, I. (2000). Thermal denaturation of mixtures of α-lactalbumin and β- lactoglobulin: a differential scanning calorimetric study. Food Research

Boye, J.I., Alli, I., Ismail, A.A., Gibbs, B.F. & Konishi, Y. (1995). Factors affecting molecular characteristics of whey protein gelation. International Dairy Journal, 5: 337-353.

Bryant, C.M. & McClements, D.J. (1998). Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends in

Food Science & Technology, 9: 143-151.

Bryant, C.M. & McClements, D.J. (2000). Influence of xanthan gum on physical characteristics of heat-denatured whey protein solutions and gels. Food

Hydrocolloids, 14: 383-390.

Calvo, M.M., Leaver, J. & Banks, J.M. (1993). Influence of other whey proteins on the heat-induced aggregation of α-lactalbumin. International Dairy Journal, 3: 719- 727.

Catsimpoolas, N. & Meyer, E.W. (1970). Gelation phenomena of soybean globulins: protein-protein interactions. Cereal Chemistry, 47:559-570.

Chambon, F., Petrovic, Z.S., Macknight, W.J & Winter, H.H. (1986). Rheology of model polyurethanes at the gel point. Macromolecules, 19: 2146-2149.

Cheng, Y. & Prud’ homme, R.K. (2000). Enzymatic degradation of guar and substituted guar galactomannans. Biomacromolecules, 1: 782-788.

Cheng, Y., Brown, K.M. & Prud’ homme, R.K. (2002). Preparation and characterization of molecular weight fractions of guar galactomannans using acid and enzymatic hydrolysis. International Journal of Biological Macromolecules, 31: 29-35.

Clark, A.H. (1991). Structural and mechanical properties of biopolymer gels. Em Ed. Dickinson, E., Food Polymers, Gels and Colloids, (pp. 322-338) Royal Society of Chemistry, Cambridge.

Clark, A.H. (1998). Gelation of globular proteins. Em Hill, S.E., Ledward, D.A. & J.R. Mitchell (Eds.), Functional properties of food macromolecules (pp.77-142). Maryland: Aspen Publishers.

Daas, P. J. H., Schols, H. A. & de Jongh, H. H. J. (2000). Carbohydrate Research, 329: 609-619.

De Kruif, C.G. & Tuinier, R. (2001). Polysaccharide protein interactions. Food

Hydrocolloids, 15: 555-563.

Dea, B.- C.- M. & Morrison, A. (1975). Chemistry and interactions of seed galactomannnans. Advance in Carbohydrate Chemistry & Biochemistry, 31: 241- 315.

Doublier, J.-L, Garnier, C., Renard, D. & Sanchez, C. (2000). Protein-polysaccharide interactions. Current Opinion in Colloid & Interface Science, 5: 202-214.

Eleya, M.M.O. & Turgeon, S.L. (2000a). The effects of pH on the rheology of β- lactoglobulin/κ-carrageenan mixed gels. Food Hydrocolloids, 14: 245-251.

Eleya, M.M.O. & Turgeon, S.L. (2000b). Rheology of κ-carrageenan and β- lactoglobulin mixed gels. Food Hydrocolloids, 14: 29-40.

Fernandes, P.B. (1995). Influence of galactomannan on the structure and thermal behaviour of xanthan/galactomannan mixtures. Journal of Food Engineering, 24: 269-283.

Food and Nutrition Board – National Research Council (1981) Food Chemicals Codex, Natonal Academy Press, Washington, DC.

Garnier, C., Schorsch, C. & Doublier, J-L. (1995). Phase separation in dextran/locust bean gum mixtures. Carbohydrate Polymers, 28: 313-317.

Gonçalves, M.P., Torres, D., Andrade, C.T., Azer, E.G. & Lefebvre, J. (2004). Rheological study of the effect of Cassia javanica galactomannans on the heat-set gelation of a whey protein isolate at pH 7. Food Hydrocolloids, 18: 181-189.

Gosal, W.S. & Ross-Murphy, S.B. (2000). Globular protein gelation. Current Opinion

in Colloid & Interface Science, 5: 188-194.

Grinberg, V.Y., Grinberg, N.V., Bikbov, T.M., T.K. & Mashkevich, A.Y. (1992). Thermotropic gelation of food proteins. Food Hydrocolloids, 6: 69-96.

Hemar, Y., Tamehana, M., Munro, P.A. & Singh, H. (2001). Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum. Food Hydrocolloids, 15:565-574.

Hermansson, A.M. (1994). Microstructure of protein gels related to functionality. Em

Protein structure-function relationships in foods (pp. 22-42). Blackie Academic &

Professional, London.

Holt, C., McPhail, D., Nylander, T., Otte, J., Ipsen, R., Bauer, R., Ogendal, L., Olieman, K., de Kruif, K., Léonil, J., Mollé, D., Hery, G., Maubois, J.L., Pérez, M.D., Puyol, P., Calvo, C., Bury, S.M. & Chatterton, D. (1999). Some physico-chemical properties of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. International Journal of Food Science and Technology, 34: 587-602.

Ibanoglu, E. (2005). Effect of hydrocolloids on the thermal denaturation of proteins.

Ikeda, S. & Foegeding, E.A. (1999). Dynamic viscoelastic properties of thermally induced whey protein isolate gels with added lecithin. Food Hydrocolloids, 13: 245- 254.

Ikeda, S. (2003). Heat-induced gelation of whey proteins observed by rheology, atomic force microscopy, and Raman scattering spectroscopy. Food Hydrocolloids, 17: 399-406.

Jost, R., Baechler, R. & Masson, G. (1986). Heat-induced of oil-in-water emulsions stabilized by whey protein. Journal of Food Science, 51: 440-449.

Ju, Z.Y. & Kilara, A. (1998). Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt and acidulant. Journal of Agricultural Food

Chemistry, 46: 1830-1835.

Kazmierski, M. & Corredig,M. (2003). Characterization of soluble aggregates from whey protein isolate. Food Hydrocolloids, 17, 685-692.

Kella, N.K.D. & Kinsella, J.E. (1988). Enhanced thermodynamic stability of β- lactoglobulin at low pH: a possible mechanism. Biochemistry Journal, 255:113-120. Kinsella, J. E. (1989). Protein Modifications: Effects on functional properties and digestibility. Em Barth, C. A. & Schimme, E (Ed), Milk Proteins - Nutritional, Clinical, Functional and Technological Aspects (pp. 179-191). Springer - Verlag, New York.

Kuhn, P.R. & Foegeding, E.A. (1991). Mineral salt effects on whey protein gelation.

Journal of Agricultural and Food Chemistry, 39: 1013- 1016.

Langton, M. & Hermansson, A.M. (1992). Fine-stranded and particulate gels of β- lactoglobulin and whey proteins at varying pH. Food Hydrocolloids, 5: 523-539. Lapasin, R. & Pricl, S. (1999). Rheology of industrial polysaccharides: Theory and

applications. (pp 312-325), Gaithersburg, MD: Aspen Publishers.

Lazaridou, A, Biliaderis, C.G. & Izydorczyk, M.S. (2000). Structural characteristics and rheological properties of locust bean galactomannans: a comparison of samples from different carob tree populations. Journal of the Science of Food and

Agriculture, 81: 68-75.

Lazaridou, A., Biliaderis, C.G. & Kontogiorgos, V. (2003). Molecular weight effects on solution rheology of pullulan and mechanical properties of its films. Carbohydrate

Polymers, 52: 151-166.

Lopes da Silva, J.A & Gonçalves, M.P. (1990). Studies on a purification method for locust bean gum by precipitation with isopropanol. Food Hydrocolloids, 4: 277-287.

Lopes da Silva, J.A., Cardoso, S.M., Tavares, C. & Monteiro, S.R. (2004). Reologia de Biopolímeros: Dispersões e géis. Em Melo, J.S., Moreno, M.J., Burrows, H.D. & Gil, M.H. (Eds.), Química de Polímeros (pp.571-590). Imprensa de Coimbra: Coimbra, Portugal.

Lopes da Silva, J.A., Gonçalves, M.P., Doublier, J.L. & Axelos, M.AV. (1996). Effect of galactomannans on the viscoelastic behaviour of pectin/calcium networks.

Polymer Gels and Networks, 4: 65-83.

Lopes da Silva, J.A., Rao, M.A. & Fu, J-T. (1998). Rheology of structure development and loss during gelation and melting, Em M.A. Rao & R.W.Hartel (Eds).

Phase/state transitions in food, (pp 111-157), Marcel Dekker, Inc., Nova Iorque.

Lowe, L.L., Foegeding, E.A. & Daubert, C.R. (2003). Rheological properties of fine- stranded whey protein isolate gels, Food Hydrocolloids, 17: 515-522.

Manoj, P., Kapasis, S. & Hember, M.W.H. (1997). Sequence-dependent kinetic trapping of biphasic structures in maltodextrin-whey protein gels. Carbohydrate

Polymers, 32: 141-153.

Matsumura, Y. & Mori, T. (1982). Gelation. Em Mitchell, J.R. & Ledward, D.A. (Eds)

Methods of testing protein functionality, (pp.77-109). Elsevier Applied Science,

London.

McCleary, B.V., Amado, R., Waibel, R. & Neukon, H. (1981). Effect of galactose content on the solution and interaction properties of guar and carob galactomannans.

Carbohydrate Research, 92: 269-285.

McClements, D.J. (1999). Emulsion Rheology. Em Food Emulsions: Principles, Practice and Techniques. (pp. 235-266), CRC Press, England.

Morr, C. V. (1989). Whey Proteins: Manufacture. Em Fox, P. F., (Ed), Developments in

Dairy Chemistry, Vol. 4.(pp. 245-284). Elsevier Science Publishers Lda., England.

Morr, C. V. (1992). Improving the texture and functionality of whey protein concentrate. Food Technology, Vol.3, 110-113.

Morris, E.R., Cutler, A.N., Ross-Murphy, S.B. & Rees, D.A. (1981). Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions.

Carbohydrate Polymers, 1: 5-21.

Mor-Rosenberg, Y., Shoemaker, C.F. & Rosenberg, M. (2004). Mechanical properties of composite gels consisting of fractionated whey proteins and fractionated milk fat.

Food Hydrocolloids, 18: 153-166.

Mulvihill, D.M. & Kinsella, J.E. (1987). Gelation characteristics of whey proteins and β-lactoglobulin. Food Technology, 41: 190-201.

Neukom, H. (1989). Galactomannans: Properties and Applications. Lebensmittrl.-

Wissenschaft und-Technologie, 22: 41-45.

Olsson, C., Langton, M. & Hermansson, A-M. (2002). Dynamic measurements of β- lactoglobulin structures during aggregation, gel formation and gel break-up in mixed biopolymer systems. Food Hydrocolloids, 16: 477-488.

Olsson, C., Stading, M. & Hermansson, A.M. (2000). Rheological influence of non- gelling amylopectins on beta-lactoglobulin gel structures. Food Hydrocolloids, 14: 473-483.

Pai, V.B. & Khan, S.A. (2002). Gelation and rheology of xanthan/enzyme-modified guar blends. Carbohydrate Polymers, 49: 207-216.

Perissutti, G.E., Bresolin, T.M.B. & Ganter, J.L.M.S. (2002). Interaction between the galactomannan from Mimosa scabrella and milk proteins. Food Hydrocolloids, 16: 403-417.

Puyol, P., Pérez, M.D. & Horne, D.S. (2001). Heat-induced gelation of whey protein isolates (WPI): effect of NaCl and protein concentration. Food Hydrocolloids, 15: 233- 237.

Rayment, P., Ross-Murphy, S.B. & Ellis, P.R. (1995). Rheological properties of guar galactomannan and rice starch mixtures-I. Steady shear measurements.

Carbohydrate Polymers, 28: 121-130.

Relkin, P. (1998). Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of β-lactoglobulin: their role in heat-induced sol-gel state transition. International Journal of Biological Macromolecules, 22: 59-66. Renard, D. & Lefebvre, J. (1992). Gelation of globular proteins: effect of pH and ionic

strength on the critical concentration for gel formation. A simple model and its application to β-lactoglobulin heat induced gelation. International Journal of

Biological Macromolecules, 14:287-291.

Richardson, P.H., Willmer, J. & Foster, T.J. (1998). Dilute solution properties of guar and locust bean gum in sucrose solution. Food Hydrocolloids, 12: 339-348.

Rojas, S.A., Goff, H.D., Senaratne, V., Dalgleish, D.G. & Flores, A. (1997). Gelation of comercial fractions of β-lactoglobulin and α-lactalbumin. International Dairy

Journal, 7:79-85.

Ross-Murphy, S.B. (1991). The estimation of junction zone size from gel time measurements. Carbohydrate Polymers, 14: 281:294.

Rutten, A.A.C.M., Bouwan, W.G. & Leeden, M.C. (2002). β-lactoglobulin as an ideal random polymer coil. Colloids and Surfaces A, 210: 243-252.

Samant, S.K., Singhal, R.S., Kulkarni, P.R. & Rege, D.V. (1993). Protein- polysaccharide interactions: a new approach in food formulations. International

Journal of Food Science and Technology, 28: 547-562.

Schmidt, R. H. (1981). Gelation and coagulation. Em Cherry, J. P. (Ed), Protein

Functionality in Foods (pp.131- 153). ACS Symposium Series 147, USA.

Schorsch, C., Garnier, C. & Doublier, J-L. (1997). Viscoelastic properties of xanthan/galactomannan mixtures: comparison of guar gum with locust bean gum.

Carbohydrate Polymers, 34: 165-175.

Semenova, M.G. & Savilova, L.B. (1998). The role of biopolymer structure in interactions between unlike biopolymers in aqueous medium. Food Hydrocolloids, 12: 65-75.

Smith, D.M. (1994). Protein interactions in gels : protein-protein interactions. Em Hetiarachchy, N.S., Ziegler, G.R. (Eds), Protein Functionality in Food systems, (pp. 209-223). Marcel Dekker, Nova Iorque.

Stading, M. & Hermanson, A.-M. (1990). Viscoelastic behaviour of β-lactoglobulin gel structures. Food Hydrocolloids, 4, 121-135.

Tang, B.Q., McCarthy, O.J. & Munro, P.A. (1993). Oscillatory rheological study of the gelation mechanism of whey protein concentrate solutions: effects of physicochemical variables on gel formation. Journal of Dairy Research, 60: 543- 555.

Tavares, C. & Lopes da Silva, J.A. (2003). Rheology of galactomannan-whey protein mixed systems. International Dairy Journal, 13: 699-706.

Tavares, C., Monteiro, S. R.; Moreno, N. & Lopes da Silva, J. A. (2005). Does the branching degree of galactomannans influence their effect on whey protein gelation? Colloids and surfaces A: Physicochemistry Engineering Aspects, 270, 213-219. Tayal, A., Kelly, R.M. & Khan, S.A. (1999a). Rheology and molecular weight changes

during enzymatic degradation of a water-soluble polymer. Macromolecules, 32: 294-300.

Tayal, A., Pai, V.B. & Khan, S.A. (1999b). Rheology and microstructural changes during enzymatic degradation of a guar-borax hydrogel. Macromolecules, 32: 5567- 5574.

Tolstoguzov, V. (2003). Some thermodynamic considerations in food formulation. Food

Hydrocolloids, 17: 1-23.

Tolstoguzov, V.B. (1991). Functional properties of food proteins and role protein- polysaccharide interaction. Food Hydrocolloids, 4: 429-468.

Totosaus, A., Montejano, J.G., Salazar, J.A. & Guerrero, I. (2002). A review of physical and chemical protein-gel induction. International Journal of Food Science and

Technology, 37: 589-601.

Townend, R., Winterbottom, R.J. & Timsheff, S.N. (1960). Molecular interactions in β- lactoglobulin below its isoelectric point. Journal of the American Chemistry Society, 82: 3161-3168.

Turgeon, S. & Beaulieu, M. (2001). Improvement and modification of whey protein gel texture using polysaccharides. Food Hydrocolloids, 15: 583-591.

Tziboula, A. & Horne, D.S. (1999). Influence of whey protein denaturation on κ- carrageenan gelation. Colloids and Surfaces B: Biointerfaces, 12:299-308.

Van de Velde, F., Weinbreck, F., Edelman, M.W., van der Linden, E. & Tromp, R.H. (2003). Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques. Colloids and Surfaces B:

Biointerfaces, 31: 159-168.

Verheul, M. & Roefs, S.P.F.M. (1998a). Structure of whey protein gels, studied by permeability, scanning electron microscopy and rheology. Food Hydrocolloids, 12: 17-24.

Verheul, M. & Roefs, S.P.F.M. (1998b). Structure of particulate whey protein gels: effect of NaCl concentration, pH, heating temperature, and protein composition.

Journal of Agricultural and Food Chemistry, 46: 4909-4916.

Visser, S. & Slangen, K.J. (1994). Reversed-phase HPLC separation of bovine milk protein genetic variants. Journal of chromatographic Science, 30: 466-471.

Wang, Q., Ellis, P.R., Ross-Murphy, S.B. & Burchard, W. (1997). Solution characteristics of the xyloglucan extracted from Detarium senegalense Gmelin.

Carbohydrate Polymers, 33: 115-124.

Wang,Q., Wood, P.J., Cui, W. & Ross-Murphy, S.B. (2001). The effect of autoclaving on the dispersibility and stability of three neutral polysaccharides in dilute aqueous solutions. Carbohydrate Polymers, 45:355-362.

Winter, H.H & Chambon, F. (1986). Analysis of linear viscoelasticity of a cross linking polymer at the gel point. Journal of Rheology, 30:367-382.

Winter, H.H. Morganelli, P. & Chambon, F. (1988). Stoichiometry effects on rheology of model polyurethanes at the gel point. Macromolecules, 2: 532-535.

Zayas, J.F. (1997). Gelling properties of proteins. Em Functionality of Proteins in Food. (pp. 310-366). Springer-Verlag, Berlin Heidelberg.

Ziegler, G.R. & Foegeding, E.A. (1990). The gelation of proteins. Advanced Food