• Nenhum resultado encontrado

192 Econometria São Paulo, Editora Hucitec.

No documento Capítulo 1. Introdução (páginas 192-197)

[66] ICHIHARA, J. A. (1998). Um Método de Seleção Heurística para a Programação de

Edifícios datados de Múltiplos Pavimentos. Tese engenharia de Produção UFSC.

Florianopolis SC.

[67] JANSEN, R.C. (1993). Interval Mapping of Multiple Quantitative Trait Locos. Genetics, 135:205-211.

[68] JANSEN, R.C. (1993). Maximum Likelihood in a Generalized Linear Finite Mixture Model by Using the EM Algorithm. Biometrics. 49:222—231.

[69] JANSEN, R.C. (1992). A General Mixture Model for Mapping Quantitative Trait Locos by Using Molecular Markers. Theoretical and Applied Genetics, 85:252-260.

[70] JANSEN, R.C.; STAM, P. (1994). High Resolution of Quantitative Trait Into Multiple Loci via Interval Mapping. Genetics, 136:1447—1455.

[71] JEFFREYS, H. (1955). The Present Positions in Probability Theory. British Journal for

Philosophy of Science, 5:275—289.

[72] JIANG, CHANGLIAN; ZENG, Z.B. (1995). Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Locos. Genetics, 140:1111—1127.

[73] KAO, C. H. (1995). Statistical Methods for Locating Positions And Analyzing Epistasis of

Multiple Quantitative Trait Genes Using Molecular Markers Informations. Dissertation,

Department of Statistics North Carolina State University.

[74] KAO, C.H.; ZENG, Z.B. (1997). General Formulas for the Obtaining the MLEs and the

Asymptotic Variance-Covariance Matrix in Mapping Quantitative Trait Locos when using EM Algorithm. Biometrics, 53:653-665.

[75] KAO, C.H.; ZENG, Z.B. (2002). Modeling Epistasis of Quantitative Trait Locos Using Cockerham’s Model. Genetics, 160:1243-1261.

[76] KAO, C.H.; ZENG, Z.B.; TEASDALE, R.D. (1999). Multiple Interval Mapping for Quantitative Trait Locos. Genetics, 152:1203-1216.

[77] KARLIN, S. (1984). Theoretical aspects of genetic map function in recombination process. In human population. Genetics the Pitsburgh Symposium edited by A Chakravarti, 209— 228, Van Nostrand Renhold, New York.

[78] KASS, R.; RAFTERY, AQ. (1995). Bayes Factors and Model Uncertainty. Journal of American

Statistical Association, 90:773—795.

[79] KELLER, E. ; LLYOD, E. (1992). Evolutionary Biology. Harvard Univ. Press.

[80] KEMPTHORNE, O. (1957). An Introduction to Genetic Statistics. Jonh Wiley & Sons Inc, New York.

[81] KOSAMBI, D. D. (1944). The Estimation of Map Distances From Recombination Values. Ann. Engen, 12:172—175.

193

[82] KULATHINAL, S. B.; KUULASMAA, K.; GASPARRA, D. (2002). Estimation of an Errors-in- Variables Regression Model When The Measurement Errors Vary vBetween The Observation.

Statistics in Medicine, 21:1089—1101.

[83] KUTNER, M. H.; NACHTSHEIM, C. J.; NETER, J.; LI, W. (2005). Applied Linear

Statistical Model. Mc GRaw Hill, New York, USA.

[84] LANDER, E. S.; BOLTSTEIN, D. (1989). Mapping Medelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics, 121:185—199.

[85] LANGE, K. (1997). Mathematical and Statistical Methods for Genetic Analysis.

[86] LANZA, M. A.; GUIMARÃES, C. T.; SCHUSTER, I. (2000). Aplicação de Marcadores moleculares no Melhoramento Genético. Informe Agropecuário, 21:97-108.

[87] LEE, M. (1995). DNA Markers in Plant Breeding Programs. Advances in Agronomy, 55:25—344.

[88] LEMONGE, A. C. C. (1999). Aplicação de Algoritmos Genéticos em Otimização

Estrutural. Tese de doutorado, COPPE/UFRJ, Rio de Janeiro, RJ.

[89] LI, JIAN. (2004). Development of Multiple Interval Mapping for Mapping QTL in Ordinal

Traits. Dissertation for doctor of Philosophy Genetics, Raleigh, NC.

[90] LINCON, S.; DALY, M.; LANDER, E. (1992). Constructing Genetic Maps with MAP-

MAKER/EXP 3.0. Terceira edição, Whitechead Institute Technical Rëport.

[91] LINDEN, R. (2006). Algoritmos Genéticos: Uma Importante Ferramenta da Inteligência

Computacional. BRASPORT, Rio de Janeiro – RJ.

[92] LIU, B. H. (1998). Genomics: Linkage, Mapping and QTL Analysis. Boca Raton, Florida, USA, CRC Press.

[93] LYNCH, M.; WALSH, B. (1998). Genetics and Analysis of Quantitatives Traits. Sinauer Associates.

[94] MAIA, J. A. R.; LOPES, V. P.; SEABRA, A.; GARGANTA, R. (2003). Efeitos genéticos e do envolvimento dos níveis de actividade física e aptidão física associada à saúde. Um estudo em gêmeos dos 6 aos 12 anos de idade do Arquipelago dos Açores (Portugal). R. Brás. Cl. E Mov, 11(4):37-44.

[95] MALLOWS, C. L. (1973). Some Comments on Cp. Technometrics, 15:661-675.

[96] MAO, Y.; DA, Y. (2005). Statistical Power for Detecting Epistasis QTL Effects Under F2

Designer, Gent. Sel. Evol., 37:129—150.

[97] MATIOLI, S. R. (2001). Conceitos Básicos em Genética Quantitativa, visto em http://adi- 38.bio.ib.usp.br/QTL2001/conceitos.html no dia 06/08/2007.

[98] MENG, X. L.; RUBIN, D. B. (1993). Maximum Likelihood Estimation via the ECM Algorithm: a General Framework. Biometrika, 80:262—268.

[99] MILLER, A. J. (1996). Subset Selection in Regression. Chapman and Hall, New York. [100] MITCHELL, M. (1996). An Introduction Genetics Algorithms, Primeira edição, MIT Press,

194

Cambridge, USA.

[101] MONTGOMERY, D. C. (1984) Design and Analysis of Experiments. Second Edition, Jonh Wiley & Sons, New York.

[102] MOORE, J. A. (1986). Science as Way of Knowing-Genetics. Amer Zol, 26:583-747. [103] MOORE, J. H. (2005). A global view of epistasis. Nature Genetics, 37:13—14. [104] MOORE, J. H.; WILLIAMS, S. M. (2005). Traveling the Conceptual Divide Between Biological and Statistical Epistasis System’s Biology and a More Modern Synthesid. Problems and paradigms, BioEsays, 27:637—646.

[105] MORGAN, T. H. (1919). Cromossome and Heredity. American Naturalist, 44:194. [106] MORGAN, T. H. (1928). The Theory of Genes. New Yale University Press.

[107] MORRIS, A.; WHITTAKER, J. (1999). Generalization of the Extended Transmission Disequilibrium Test in Two Unliked Disease Locos. Genet Epidemiol., 17(Suppl I): 5661— 5666.

[108] NAKAMICHI, R.; UKAI, Y.; KISHINO, H. (2001). Detection of Closely Linked Multiple Quantitative Trait Loci Using a Genetic Algorithm. Genetics, 158:463—475. [109] OTT, J. (1991). Analysis of Human Genetics Linkage. Baltimore, The Jonhs Hopkins University Press.

[110] PACHECO, M. A. C. (2006). Algoritmos Genéticos: Princípios e Aplicações, disponível em www.ica.ele.puc-rio.br em 15 de janeiro de 2006.

[111] PAPPA, G. L. (2002). Seleção de Atributos Utilizando Algoritmos Genéticos

Multiobjetivos. Dissertação de Mestrado, PUC-PR, Curitiba - PR.

[112] PAULINO, C. D; TURKMAN, A. A.; MURTEIRA, B. J. F. (2003). Estatística

Bayesiana. Fundação Calouste Gulbenkian, Lisboa, Portugal.

[113] PEARSON, K. (1896). Mathematical Contributions to the Theory of Evolution – III. Regression, Heredity and Panmixia. Philosophical Transactions of the Royal Society A, 187:253—318.

[114] PEARSON, K. (1897). Mathematical Contributions to the Theory of Evolution – on a Form of Spuriouscorrelation Which May Arise When Indices Are Used in Measurement of Organs. Proc. Royal Societ., London, 60:489—498.

[115] PEARSON, K. (1900). Mathematical Contributions to the Theory of Evolution VII. On the correlation of Characters not Quantitatively Measurable. Phil. Trans. Royal Society London

A, 190;1—47.

[116] PEREIRA, A. C.; KRIEGER, J. E. (2001). Biologia e Genética Molecular Aplicados ao Diagnóstico e Tratamento da Hipertensão, Novos Paradigmas, Antigos Problemas. Ver. Brás. de Hipertensão, 8:105—113.

[117] POONI, H. S.; TREHAME, A. J. (1994). The Role of Epistasis and Background Genotype in the Expression of Heterosis. Heredity, 72:628-635

195

[118] PROVINE, W. B. (1971). The Origins of Theoretical Population Genetics. Chicago. Univ., Chicago Press.

[119] R Development Core Team (2006). R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-

0, URL http://www.r-project.org/.

[120] RAFTERY, A. C. (1995). Bayesian Model Selection in Social Research. Sociological Methodology, 25:111—163.

[121] RAMALHO, M. A. P.; SANTOS, J. B.; PINTO, C. A. B. P. (2004). Genética na

Agropecuária, Terceira edição, UFLA, Lavras - MG.

[122] RAMOS, P. S. (2002). Sistema Automático de Geração de Horários para a UFLA

Utilizando Algoritmo Genético. Trabalho de Conclusão de Curso, TCC-UFLA.

[123] RAO, D. C.; MORTON, N. E.; LINDSTEN, J. HULTEN, M.; YEE, S. (1977). A Mapping Function for Man. Human Heredity, 27:99—104.

[124] REBAI, A.; GOFFINET. B.; MANOIN, B. (1995). Comparing Power of Different

Methods for QTL Detection. Biometrics, 51(1):87—99.

[125] RUSSEL, S. J.; NORVIG, P. (2004). Inteligência Artificial, Segunda edição, Elsevier Editora, Rio de Janeiro-RJ.

[126] SAKAMOTO, Y.; ISHIGORU, M.; KITAMURA, G. (1986). Akaike Information

criterion Statistics, TOKYO, KTK, Scientific Publisher.

[127] SATAGOPAN, J. M., et al. (1996). A Bayesian Approach to Detect Quantitative Triat Locos Using Markov Chain Monte Carlo. Genetics, 144:805—816.

[128] SAX, K. (1923). The Association of Size Differences With Seed-coat Pattern and Pigmentation in Phaseolus Vulgaris. Genetics, 8: 552—560.

[129] SCHORK, NICOLAS J.; KRIEGER, JOSE E.; TROLLIET, MARIA R.; FRANCHINI, KLEBER G.; KOIKE, GEORGE; KRIEGER, EDUARDO M.; LANDER, ERICS S.; DZAV, VICTROR J.; JACOB, HOWARD J. (1995). A biometrical Genome Search in Rats Reveals the Multigenic Basis of Blood Pressure Variation. Genome Research, 5:164—172.

[130] SCHUSTER, I.; CRUZ, C. D. (2004). Estatística Genômica Aplicada a Populações

Derivadas de Cruzamentos Controlados. Editora UFV, Viçosa MG.

[131] SCHWARTZ, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6:461—464.

[132] SEN, S.; CHURCHILL, G. A. (2001). A Statistical Framework for Quantitative Trait Mapping. Genetics 159:371—387.

[133] SILLAMPAA, MIKKO J.; ARJAS, E. (1998). Bayesian Mapping for Multiple

Quantitative Trait Loci from Incomplete Inbred Line Cross data. Genetics, 148:1373— 1388.

196

[134] SILLAMPAA, MIKKO J.; ARJAS, E. (1999). Bayesian Mapping of Multiple Quantitative Trait Loci from Incomplete Outbred Offspring Data. Genetics, 151:1605—1619.

[135] SILLAMPAA, MIKKO J.; CONRADER, JUKKA (2000). Model Choice in Gene Mapping: what and why. Trends in Genetics, 18:301-307.

[136] SILLAMPAA, MIKKO J.; CORANDER, JUKKA (2002). Model Choice in Gene

Mapping:What and Why. Elsevier Science Ltd; http://tig.trends.com.

[137] SILVA, E. E. (2001a). Otimização de Estrutura do Concreto Armado Utilizando

Algoritmos Genéticos. Dissertação de Mestrado, POLI-USP, São Paulo - SP.

[138] SILVA, H. D. (2001b). Aspectos Biométricos da Detecção de QTL’s em Espécies

Cultivadas. Tese de Doutorado, ESALQ-USP, Piracicaba-SP, São Paulo - SP.

[139] SILVA, J. P. (2007). Uma Abordagem Bayesiana para o Mapeamento de QTL’s Utilizando

o Método MCMC com Saltos Reversíveis. Dissertação de Mestrado, ESALQ-USP,

Piracicaba-SP.

[140] STURT, E. (1876). A Mapping Function for Human Chromosomes. Ann Hum Genetic Lond, 40:147.

[141] TANKSLEY, S. D. (1993). Mapping. Annual Reviews of Genetic, 27:205—233.

[142] THIERENS, D.; GOLDBERG, D. (1994). Convergence Models of genetics Algorithms Selections Schemes. In PPSN III, 866:119—129.

[143] THODAY, J. M. (1961). Location of Polygenes. Nature, 191:368—370.

[144] THOMPSON, J. R.; CARTER, R. L. (2007). Na Overview of Normal Theory Structural Measurement Error Models. International Statistical Review, 75(2):183—198.

[145] TICONA, W. G. C. (2003). Aplicação de Algoritmos Genéticos Multi-objetivos para

alinhamento de seqüencias Biológicas. Dissertação de Mestrado, ICMC-USP, São Carlos-

SP.

[146] TIMÓTEO, G. T. S. (2002). Desenvolvimento de um Algoritmo Genético para a

Resolução do Time Tabling. Trabalho de Conclusão de Curso,. TCC – UFLA, Lavras - MG.

[147] TIWARI, H.; ELSTON, R. C. (1998). Restrictions on Components of Variance for Epistatic Models. Theor. Popul. Biol., 54:161—174.

[148] TOLEDO, E. R. (2006). Mapeamento de QTL’s Utilizando as Abordagens Clássicas e

Bayesiana. Dissertação de mestrado, ESALQ-USP, Piracicaba-SP.

197

[150] VIANA, J. M. S.; CRUZ, C. D.; BARROS, E. G.(2003). Genética. volume 1 –

Fundamentos, Segunda edição, Editora UFV, Viçosa – MG.

[151] WANG, S. (2000). Simulation Study on the Methods for Mapping Quantitative Trait Loci

in InbredLine Crosses. Tesis doctor Philosophy in Genetics and Plant Breeding, Zhejiang

University Hangzhou, Zhejiang, China.

[152] WANG, S.; BASTEN, C. J.; ZENG, Z-B. (2007). Windows QTL Cartographer V2.5.

Disponível no site http://statgen.ncsu.edu/qtlcart/WQTLCart.htm no dia 01/08/2007 [153] WERF, J. V. D.; KINGHORN, B.; GODDARD, M. (2003). Methods for QTL’s Analysis. Disponível no site http://www-personal.une.edu.au/~jvanderw/aabc_materialsp3.htm no dia 7/2/2006.

[154] WILSON, S. R. (2001). Epistasis and Its Possibles Effects on Transmission Disequilibrium Tests. Ann. Hum. Genet., 62:565—575.

[155] YAMANE, R. S. (2002). Marcadores Moleculares. Disponível no site http://www.ufv.br/dbg/trab2002/GMOL/GMOL003.htm no dia 3/8/2007.

[156] YI, N.; XU, S. (2002). Mapping Quantitative Trait Loci with Epistatic Effects. Genet Research 79:185—198.

[157] YI, N.; YANDELL, B. S.; CHURCHILL, G. A. ; ALLISON, D. B.; EISEN, E. J.; POMP D. (2005a). Bayesian Model Selection for Genome-Wide Epistatic Quantitative Trait Loci Analysis. Genetic, 170:1333—1344.

[158] YI, N.; YANDELL, B. S.; CHURCHILL, G. A.; ALLISON, D. B.; EISEN, E. J.; POMP, D. (2005b). Bayesian Model Selection for Genome-Wide Epistatic QTL Analysis.

Department of Biostatistics, The University of Alabama of Birmingham.

[159] XU, S.; ATCHLEY, R. W. (1995). A Random Model Approach to Interval Mapping of Quantitative Trait Loci. Genetics, 141:1189—1197.

[160] ZENG, Z.B. (1993). Theoretical Basis for Separation of Multiple Linked Gene Effects in Mapping Quantitative Trait Locos. Proceedings of the National Academic of Science of the

USA, 90:10972-10976.

[161] ZENG, Z.B. (2001). QTL Mapping, 46 Reunião Anual da Rbras, 9 SEAGRO, Piracicaba-SP.

[162] ZENG, Z.B. (1994). Precision Mapping of Quantitative Trait Locos. Genetics, 136:1457- 1466.

[163] ZENG, Z.B.; KAO, C. H.; BASTEM, C. J. (1999). Estimating the Genetic Architecture of Quantitative Trait. Genetic Research,,74:279—289.

No documento Capítulo 1. Introdução (páginas 192-197)