• Nenhum resultado encontrado

3.1.4 Estudo das Propriedades Físico-Químicas

3.1.4.4 Espalhamento de Raios-X a Baixos Ângulos (SAXS)

O espalhamento de raios-X a baixos ângulos (SAXS) é um método analítico usado para investigar a estrutura de sistemas de partículas em relação aos tamanhos médios das partículas e suas conformações. A técnica de SAXS pode ser aplicada em diversas áreas para análises de materiais como polímeros em solução (Schnablegger e Singh, 2011).

Em um experimento de SAXS, os feixes de raios-X altamente colimado e monocromático com comprimento de onda entre 0,01 e 0,2 nm são espalhados elasticamente através de um sistema de partículas. As partículas que interagem com os raios-X enviam sinal para um detector, que mede a estrutura média de todas as partículas iluminadas do sistema, em um determinado ângulo  . A intensidade de espalhamento I (q) está relacionada com a diferença na densidade eletrônica entre diferentes partes de um sistema de partículas em estudo (Blazek e Gilbert, 2011; Schnablegger e Singh, 2011).

Os experimentos de espalhamento a baixos ângulos medem a intensidade de espalhamento em função do vetor de espalhamento (q), que é definido pela Equação 3.20 (Blazek e Gilbert, 2011):

...(3.20) Onde  é a metade do ângulo em que a radiação é espalhada e  é o comprimento de onda da radiação incidente.

O vetor de espalhamento na intensidade máxima do pico, qmax, está relacionado com o

comprimento de correlação ( ) ou distância entre cadeias de acordo com a Lei de Bragg ( 2 qmax ). Popa-Nita e colaboradores (2009) avaliaram quitosana com diferentes graus de acetilação (69%, 37%, 9% e 1,5%) em solução de acetato. Os autores observaram um deslocamento de qmax em direção aos valores mais altos de q com a diminuição do grau de

acetilação (Popa-Nita et al., 2009)

Boucard e colaboradores (2007) estudaram a gelificação da quitosana em solução aquosa ácida (13,7 g/L e GA = 46%) em contato com um gás amônia por SAXS. A estrutura

4

qsen

do polieletrólito foi caracterizada pela posição da sua intensidade máxima. O pico do efeito polieletrolítico dos géis estudados desapareceu completamente em pH acima de 6,5, devido à neutralização dos grupos +

3

REFERÊNCIAS BIBLIOGRÁFICAS

ABDEL-MOHSEN, A. M. et al. Biomedical Textiles Through Multifunctioalization of Cotton Fabrics Using Innovative Methoxypolyethylene Glycol-N-Chitosan Graft Copolymer. Journal of Polymers and the Environment, v. 20, n. 1, p. 104-116, 2012. ISSN 1566-2543. Disponível em: < http://dx.doi.org/10.1007/s10924-011-0356-7 >.

ALVES, K. S.; VIDAL, R. R. L. V.; BALABAN, R. C. Chitosan derivatives with thickening properties obtained by reductive alkylation. Materials Science and Engineering: C, v. 29, n. 2, p. 641-646, 3/1/ 2009. ISSN 0928-4931. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0928493108003445 >.

ALVES, N. M.; MANO, J. F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological

Macromolecules, v. 43, n. 5, p. 401-414, 2008. ISSN 0141-8130. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0141813008002080 >.

ARGÜELLES-MONAL, W. et al. Rheological study of the chitosan/glutaraldehyde chemical gel system. Polymer Gels and Networks, v. 6, n. 6, p. 429-440, 1998. ISSN 0966-7822. Disponível em: < http://www.sciencedirect.com/science/article/pii/S096678229800032X >. BARANY, S.; SZEPESSZENTGYÖRGYI, A. Flocculation of cellular suspensions by polyelectrolytes. Advances in Colloid and Interface Science, v. 111, n. 1–2, p. 117-129, 2004. ISSN 0001-8686. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0001868604000478 >.

BELICIU, C. M.; MORARU, C. I. The effect of protein concentration and heat treatment temperature on micellar casein–soy protein mixtures. Food Hydrocolloids, v. 25, n. 6, p. 1448-1460, 8// 2011. ISSN 0268-005X. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0268005X11000282 >.

BENTLEY, M. D.; ROBERTS, M. J.; HARRIS, J. M. Reductive amination using

poly(ethylene glycol) acetaldehyde hydrate generated in situ: Applications to chitosan and lysozyme. Journal of Pharmaceutical Sciences, v. 87, n. 11, p. 1446-1449, 1998. ISSN 1520-6017. Disponível em: < http://dx.doi.org/10.1021/js980064w >.

BHATTARAI, N. et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Journal of Controlled Release, v. 103, n. 3, p. 609-624, 2005. ISSN 0168-3659. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0168365904006418 >.

BLAGODATSKIKH, I. et al. Short chain chitosan solutions: self-assembly and aggregates disruption effects. Journal of Polymer Research, v. 20, n. 2, p. 1-10, 2013. ISSN 1022-9760. Disponível em: < http://dx.doi.org/10.1007/s10965-013-0073-0 >.

BLAZEK, J.; GILBERT, E. P. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydrate Polymers, v. 85, n. 2, p. 281-293, 5/6/ 2011. ISSN 0144-8617. Disponível em: <

BOUCARD, N. et al. Polyelectrolyte Microstructure in Chitosan Aqueous and Alcohol Solutions. Biomacromolecules, v. 8, n. 4, p. 1209-1217, 2007/04/01 2007. ISSN 1525-7797. Disponível em: < http://dx.doi.org/10.1021/bm060911m >.

BRATSKAYA, S. et al. Enhanced flocculation of oil-in-water emulsions by hydrophobically modified chitosan derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 275, n. 1–3, p. 168-176, 2006. ISSN 0927-7757. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0927775705007041 >.

BRUGNEROTTO, J. et al. An infrared investigation in relation with chitin and chitosan characterization. Polymer, v. 42, n. 8, p. 3569-3580, 2001. ISSN 0032-3861. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0032386100007138 >.

BUSCHMANN, M. D. et al. Chitosans for delivery of nucleic acids. Advanced Drug Delivery Reviews, v. 65, n. 9, p. 1234-1270, 8// 2013. ISSN 0169-409X. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0169409X13001592 >.

CAMINO, N. A.; SÁNCHEZ, C. C.; PATINO, J. M. R.; PILOSOF.; A. M. R.

Hydroxypropylmethylcellulose at the oil–water interface. Part I. Bulk behaviour and dynamic adsorption as affected by pH. Food Hydrocolloids, v. 25, n. 1, p. 1-11, 2011. ISSN 0268- 005X. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0268005X10000858 >.

CAMPANA-FILHO, S. P.; BRITO, D.; CURTI, E.; ABREU, F. R.; CARDOSO, M. B.; BATTISTI, M. V.; SIM, P. C.; GOY, R. C.; SIGNINI, R. E.; LAVALL, R. L. Extração, estruturas e propriedades de α- e β-quitina. Quimica Nova, v. 30, n. 3, p. 644-650, 2007. ISSN 0100-4042. Disponível em:

<http://www.scielo.br/pdf/qn/v30n3/25.pdf>.

CAMPANA-FILHO, S. P.; SIGNINI, R. Efeito de aditivos na desacetilação de quitina. Polímeros: Ciência e Tecnologia, v. 11, n. 4, p. 169-173, 2001. ISSN 0104-1428. Disponível em: <http://www.scielo.br/pdf/po/v11n4/8977.pdf>.

CANELLA, K. M. N. D. C.; GARCIA, R. B. Caracterização de quitosana por Cromatografia de Permeação em Gel - Influência do método de preparação e do solvente. Química Nova, v. 24, p. 13-17, 2001. ISSN 0100-4042.

CASETTARI, L. et al. PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science, v. 37, n. 5, p. 659-685, 2012. ISSN 0079-6700. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0079670011001249 >.

CHEN, X.-G.; PARK, H.-J. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers, v. 53, n. 4, p. 355-359, 2003. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861703000511 >.

CHEN, M.-C. et al. Chitosan: Its Applications in Drug-Eluting Devices. In: JAYAKUMAR, R.;PRABAHARAN, M., et al (Ed.). Chitosan for Biomaterials I: Springer Berlin

Heidelberg, v.243, 2011. cap. 116, p.185-230. (Advances in Polymer Science). ISBN 978-3- 642-23113-1.

CHEN, W. et al. Effect of the ionic strength of the media on the aggregation behaviors of high molecule weight chitosan. Journal of Polymer Research, v. 18, n. 6, p. 1385-1395, 2011. ISSN 1022-9760. Disponível em: < http://dx.doi.org/10.1007/s10965-010-9543-9 >. CHIU, Y.-L. et al. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility. Biomaterials, v. 30, n. 28, p. 4877-4888, 2009. ISSN 0142-9612. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0142961209005778 >.

CHO, J. et al. Viscoelastic properties of chitosan solutions: Effect of concentration and ionic strength. Journal of Food Engineering, v. 74, n. 4, p. 500-515, 2006. ISSN 0260-8774. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0260877405001901 >. CRAVEIRO, A. A.; CRAVEIRO, A. C.; QUEIROZ, D. C. Quitosana: a fibra do futuro. Fortaleza, Padetec, 1999.

DELPECH, M. C.; COUTINHO, F. M. B.; HABIBE, M. E. S. Viscometry study of ethylene– cyclic olefin copolymers. Polymer Testing, v. 21, n. 4, p. 411-415, 2002. ISSN 0142-9418. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0142941801001040 >. DESBRIÈRES, J.; MARTINEZ, C.; RINAUDO, M. Hydrophobic derivatives of chitosan: Characterization and rheological behaviour. International Journal of Biological

Macromolecules, v. 19, n. 1, p. 21-28, 1996. ISSN 0141-8130. Disponível em: < http://www.sciencedirect.com/science/article/pii/0141813096010951 >.

DESBRIERES, J. Viscosity of Semiflexible Chitosan Solutions: Influence of Concentration, Temperature, and Role of Intermolecular Interactions. Biomacromolecules, v. 3, n. 2, p. 342- 349, 2002. ISSN 1525-7797. Disponível em: < http://dx.doi.org/10.1021/bm010151+ >. ______. Autoassociative natural polymer derivatives: the alkylchitosans. Rheological behaviour and temperature stability. Polymer, v. 45, n. 10, p. 3285-3295. 2004. ISSN 0032- 3861. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0032386104002599 >.

DOMARD, A. A perspective on 30 years research on chitin and chitosan. Carbohydrate Polymers, v. 84, n. 2, p. 696-703, 2011. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S014486171000367X >.

DONATI, I. et al. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials, v. 26, n. 9, p. 987-998, 2005. ISSN 0142-9612. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0142961204003606 >.

DOS SANTOS, K. S. C. R. et al. 32 Factorial design and response surface analysis

optimization of N-carboxybutylchitosan synthesis. Carbohydrate Polymers, v. 59, n. 1, p. 37-42, 2005. ISSN 0144-8617. Disponível em: <

DU, J.; HSIEH, Y.-L. PEGylation of chitosan for improved solubility and fiber formation via electrospinning. Cellulose, v. 14, n. 6, p. 543-552, 2007. ISSN 0969-0239. Disponível em: < http://dx.doi.org/10.1007/s10570-007-9122-3 >.

FERNANDEZ-MEGIA, E. et al. Optimal routine conditions for the determination of the degree of acetylation of chitosan by 1H-NMR. Carbohydrate Polymers, v. 61, n. 2, p. 155- 161, 2005. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861705001517 >.

FERREIRA, E. E. et al. Reologia de Suspensões Minerais: uma revisão. REM: Revista Escola de Minas, v. 58, n. 1, p. 5, 2005. ISSN 0370-4467. Disponível em: <

http://www.scielo.br/pdf/rem/v58n1/a14v58n1.pdf >.

GOROCHOVCEVA, N. et al. Chitosan–N-poly(ethylene glycol) brush copolymers:

Synthesis and adsorption on silica surface. European Polymer Journal, v. 41, n. 11, p. 2653- 2662, 2005. ISSN 0014-3057. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S001430570500220X >.

HEINECK, M. E.; CARDOSO, M. B.; GIACOMELLI, F. C.; SILVEIRA, N. P. Evidences of amylose coil-to-helix transition in stored dilute solutions. Polymer, v. 49, n. 20, p. 4386- 4392, 2008. ISSN 0032-3861. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S003238610800654X >.

HIEMENZ, P. C.; RAJAGOPALAN, R. Principles of Colloid and Surface Chemistry. 3. ed. rev. e ampl. Nova York: Marcel Dekker, 1997. p. 650.

HOVEN, V. P. et al. Surface-charged chitosan: Preparation and protein adsorption. Carbohydrate Polymers, v. 68, n. 1, p. 44-53, 2007. ISSN 0144-8617. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0144861706003523 >.

HU, Y. et al. Preparation and characterization of poly(ethylene glycol)-g-chitosan with water- and organosolubility. Carbohydrate Polymers, v. 61, n. 4, p. 472-479, 2005. ISSN 0144- 8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861705002705 >.

JEONG, Y.-I. et al. Preparation and spectroscopic characterization of methoxy poly(ethylene glycol)-grafted water-soluble chitosan. Carbohydrate Research, v. 343, n. 2, p. 282-289, 2008. ISSN 0008-6215. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0008621507004624 >.

JIANG, X.; CHEN, L.; ZHONG, W. A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydrate Polymers, v. 54, n. 4, p. 457-463, 2003. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861703002522 >.

KASAAI, M. R. Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydrate Polymers, v. 68, n. 3, p. 477-488, 2007. ISSN

0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861706005728 >.

KHACHATOORIAN, R. et al. Biopolymer plugging effect: laboratory-pressurized pumping flow studies. Journal of Petroleum Science and Engineering, v. 38, n. 1–2, p. 13-21, 2003. ISSN 0920-4105. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0920410503000196 >.

KJØNIKSEN, A.-L. et al. Modified polysaccharides for use in enhanced oil recovery applications. European Polymer Journal, v. 44, n. 4, p. 959-967, 2008. ISSN 0014-3057. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0014305708000499 >. KORCHAGINA, E. V.; PHILIPPOVA, O. E. Multichain Aggregates in Dilute Solutions of Associating Polyelectrolyte Keeping a Constant Size at the Increase in the Chain Length of Individual Macromolecules. Biomacromolecules, v. 11, n. 12, p. 3457-3466, 2010. ISSN 1525-7797. Disponível em: < http://dx.doi.org/10.1021/bm100990u >.

KUBOTA, N. et al. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydrate Research, v. 324, n. 4, p. 268-274, 2000. ISSN 0008-6215. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0008621599002633 >.

KULICKE, W.-M.; CLASEN, C. Viscosimetry of polymers and polyelectrolytes Berlin: Springer, 2004.

KULIKOV, S. et al. Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydrate Polymers, v. 87, n. 1, p. 545-550, 2012. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861711006965 >.

KUMAR, M. N. V. R. A review of chitin and chitosan applications. Reactive and Functional Polymers, v. 46, n. 1, p. 1-27, 11// 2000. ISSN 1381-5148. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S1381514800000389 >.

KUMIRSKA, J.; WEINHOLD, M. X.; THÖMING, J.; STEPNOWSKI, P. Biomedical activity of chitin/chitosan Based Materials—Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation. Polymers, v. 3, n. 4, p. 1875-1901, 2011. ISSN 2073-4360. Disponível em: <http://www.mdpi.com/2073-4360/3/4/1875 >. KURITA, K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science, v. 26, n. 9, p. 1921-1971, 2001. ISSN 0079-6700. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0079670001000077 >.

KURITA, K. et al. N-Alkylation of chitin and some characteristics of the novel derivatives. Polymer Bulletin, v. 48, n. 2, p. 159-166, 2002. ISSN 0170-0839. Disponível em: <

http://dx.doi.org/10.1007/s00289-002-0015-1 >.

KURITA, Y.; ISOGAI, A. Reductive N-alkylation of chitosan with acetone and levulinic acid in aqueous media. International Journal of Biological Macromolecules, v. 47, n. 2, p. 184- 189, 8/1/ 2010. ISSN 0141-8130.

LAVERTU, M. et al. A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, v. 32, n. 6, p. 1149-1158, 2003. ISSN 0731-7085. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0731708503001559 >.

LIM, J.; YEAP, S. P.; CHE, H. X.; LOW, S. C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters, v. 8, n. 1, p. 381, 2013. ISSN 1931- 7573 (Print) 1556-276x. Disponível em: <http://www.nanoscalereslett.com/content/pdf/1556- 276X-8-381.pdf>.

LIU, C.-G.; CHEN, X.-G.; PARK, H.-J. Self-assembled nanoparticles based on linoleic-acid modified chitosan: Stability and adsorption of trypsin. Carbohydrate Polymers, v. 62, n. 3, p. 293-298, 12/1/ 2005. ISSN 0144-8617.

LIU, D. et al. Determination of the degree of acetylation of chitosan by UV

spectrophotometry using dual standards. Carbohydrate Research, v. 341, n. 6, p. 782-785, 2006. ISSN 0008-6215. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0008621506000127 >.

LIU, L. et al. Synthesis and self-assembly of chitosan-based copolymer with a pair of

hydrophobic/hydrophilic grafts of polycaprolactone and poly(ethylene glycol). Carbohydrate Polymers, v. 75, n. 3, p. 401-407, 2009. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861708003445 >.

LU, S. et al. Preparation of water-soluble chitosan. Journal of Applied Polymer Science, v. 91, n. 6, p. 3497-3503, 2004. ISSN 1097-4628. Disponível em: <

http://dx.doi.org/10.1002/app.13537 >.

LUCAS, E. F.; SOARES, B. G.; MONTEIRO, E. Caracterização de Polímeros – Determinação de Peso Molecular e Análise Térmica. Rio de Janeiro, e-papers: 2001. LUCAS, E. F. et al. Polymer science applied to petroleum production. Pure and Applied Chemistry, v. 81, p. 473, 2009. ISSN 00334545. Disponível em: <

http://go.galegroup.com/ps/i.do?id=GALE >.

MAI-NGAM, K. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents. Colloids and Surfaces B: Biointerfaces, v. 49, n. 2, p. 117-125, 5/1/ 2006. ISSN 0927-7765.

MONTEIRO JR, O. A. C.; AIROLDI, C. Some studies of crosslinking chitosan

glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, v. 26, n. 2–3, p. 119-128, 1999. ISSN 0141-8130. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0141813099000689 >.

MOURYA, V. K.; INAMDAR, N. N. Chitosan-modifications and applications: Opportunities galore. Reactive and Functional Polymers, v. 68, n. 6, p. 1013-1051, 2008. ISSN 1381- 5148. Disponível em: <

MUSLIM, T. et al. Synthesis and bioactivities of poly(ethylene glycol)–chitosan hybrids. Carbohydrate Polymers, v. 46, n. 4, p. 323-330, 2001. ISSN 0144-8617. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0144861700003313 >.

NGIMHUANG, J. et al. Synthesis of a novel polymeric surfactant by reductive N-alkylation of chitosan with 3-O-dodecyl-d-glucose. Polymer, v. 45, n. 3, p. 837-841, 2004. ISSN 0032- 3861. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0032386103011017 >.

NYSTRÖM, B.; KJØNIKSEN, A.-L.; IVERSEN, C. Characterization of association

phenomena in aqueous systems of chitosan of different hydrophobicity. Advances in Colloid and Interface Science, v. 79, n. 2–3, p. 81-103, 1999. ISSN 0001-8686. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0001868698000694 >.

OUCHI, T.; NISHIZAWA, H.; OHYA, Y. Aggregation phenomenon of PEG-grafted chitosan in aqueous solution. Polymer, v. 39, n. 21, p. 5171-5175, 1998. ISSN 0032-3861. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0032386197100209 >.

PA, J.-H.; YU, T. L. Light Scattering Study of Chitosan in Acetic Acid Aqueous Solutions. Macromolecular Chemistry and Physics, v. 202, n. 7, p. 985-991, 2001. ISSN 1521-3935. Disponível em: < http://dx.doi.org/10.1002/1521-3935(20010401)202:7<985::AID-

MACP985>3.0.CO >.

PEESAN, M. et al. Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran. Carbohydrate Polymers, v. 64, n. 2, p. 175-183, 2006. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861705005485 >.

PHILIPPOVA, O. E. et al. Aggregation of some water-soluble derivatives of chitin in aqueous solutions: Role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydrate Polymers, v. 87, n. 1, p. 687-694, 2012. ISSN 0144-8617. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0144861711007272 >.

PHILIPPOVA, O. E.; KORCHAGINA, E. V. Chitosan and its hydrophobic derivatives: Preparation and aggregation in dilute aqueous solutions. Polymer Science Series A, v. 54, n. 7, p. 552-572, 2012. ISSN 0965-545X. Disponível em: <

http://dx.doi.org/10.1134/S0965545X12060107 >.

PILLAI, C. K. S.; PAUL, W.; SHARMA, C. P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, v. 34, n. 7, p. 641-678, 2009. ISSN 0079-6700. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0079670009000318 >.

POPA-NITA, S. et al. Continuum of Structural Organization from Chitosan Solutions to Derived Physical Forms. Biomacromolecules, v. 11, n. 1, p. 6-12, 2010. ISSN 1525-7797. Disponível em: < http://dx.doi.org/10.1021/bm9012138 >.

______. Structure of Natural Polyelectrolyte Solutions: Role of the Hydrophilic/Hydrophobic Interaction Balance. Langmuir, v. 25, n. 11, p. 6460-6468, 2009. ISSN 0743-7463.

Potencial zeta e estabilidade coloidal. Disponível em:

<http://www.instrutecnica.com/represen/bic/teoriazeta.html>

PRASHANTH, K. V. H.; THARANATHAN, R. N. Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science & Technology, v. 18, n. 3, p. 117-131, 3// 2007. ISSN 0924-2244. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0924224406003207 >.

PUJANA, M. A. et al. ―Water dispersible pH-responsive chitosan nanogels modified with biocompatible crosslinking-agents‖. Polymer, v. 53, n. 15, p. 3107-3116, 7/6/ 2012. ISSN 0032-3861. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0032386112004405 >.

QIN, C. et al. Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, v. 63, n. 3, p. 367-374, 2006. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861705004571 >.

QUN, G.; AJUN, W. Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydrate Polymers, v. 64, n. 1, p. 29-36, 2006. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861705005278 >.

RABEA, E. I. et al. Enhancement of fungicidal and insecticidal activity by reductive

alkylation of chitosan. Pest Management Science, v. 62, n. 9, p. 890-897, 2006. ISSN 1526- 4998.

______. In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi. European Polymer Journal, v. 45, n. 1, p. 237-245, 1// 2009. ISSN 0014- 3057.

RAMOS, V. M. et al. Poly(ethylene glycol)-crosslinked N-methylene phosphonic chitosan. Preparation and characterization. Carbohydrate Polymers, v. 64, n. 2, p. 328-336, 2006. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861705006284 >.

REIS, M. I. P.; SILVA, F. C.; ROMEIRO, G. A.; ROCHA, A. A.; FERREIRA, V. F. Deposição Mineral em Superfícies: Problemas e Oportunidades na Indústria do Petróleo. Revista Virtual da Química, v. 3, n. 1, p. 2-13, 2011. ISSN 1984-6835. Disponível em: <http://www.uff.br/RVQ/index.php/rvq/article/view/116/150>.

RENBUTSU, E. et al. Synthesis of UV-curable chitosan derivatives and palladium (II) adsorption behavior on their UV-exposed films. Carbohydrate Polymers, v. 69, n. 4, p. 697- 706, 2007. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861707001166 >.

RENBUTSU, E. et al. Palladium adsorbing properties of UV-curable chitosan derivatives and surface analysis of chitosan-containing paint. International Journal of Biological Macromolecules, v. 43, n. 1, p. 62-68, 7/1/ 2008. ISSN 0141-8130.

RINAUDO, M.; PAVLOV, G.; DESBRIÈRES, J. Influence of acetic acid concentration on the solubilization of chitosan. Polymer, v. 40, n. 25, p. 7029-7032, 1999. ISSN 0032-3861. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0032386199000567 >. RINAUDO, M. et al. NMR investigation of chitosan derivatives formed by the reaction of chitosan with levulinic acid. Carbohydrate Polymers, v. 46, n. 4, p. 339-348, 2001. ISSN 0144-8617. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0144861700003337 >.

RINAUDO, M. Chitin and chitosan: Properties and applications. Progress in Polymer Science, v. 31, n. 7, p. 603-632, 2006. ISSN 0079-6700. Disponível em: <

http://www.sciencedirect.com/science/article/pii/S0079670006000530 >.

ROBLES, E. et al. Effects of the hydrophobization on chitosan–insulin nanoparticles

obtained by an alkylation reaction on chitosan. Journal of Applied Polymer Science, v. 129, n. 2, p. 822-834, 2013. ISSN 1097-4628. Disponível em: <

http://dx.doi.org/10.1002/app.38870 >.

SAJOMSANG, W. et al. Synthesis and characterization of N-aryl chitosan derivatives. International Journal of Biological Macromolecules, v. 43, n. 2, p. 79-87, 8/15/ 2008. ISSN 0141-8130.

SALEAH, A.; BASTA, A. Evaluation of some organic-based biopolymers as green inhibitors for calcium sulfate scales. The Environmentalist, v. 28, n. 4, p. 421-428, 2008. ISSN 0251- 1088. Disponível em: < http://dx.doi.org/10.1007/s10669-008-9163-7 >.

SANTOS, J. E. Preparação, caracterização e estudos termoanalíticos de bases de shiff biopoliméricas e seus complexos de cobre. 2004. Tese (Doutorado em Química Analítica). Universidade Federal de São Carlos, São Carlos, 2004.

SANTOS, J. E.; SOARES, J. P.; DOCKAL, E. R.; CAMPANA FILHO, S. P.;

CAVALHEIRO, E. T. G. Caracterização de quitosanas comerciais de diferentes origens. Polímeros, v. 13, n. 4, p. 242-249, 2003. ISSN 0104-1428. Disponível em:

<http://www.scielo.br/pdf/po/v13n4/19880.pdf>.

SASHIWA, H.; AIBA, S.-I. Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science, v. 29, n. 9, p. 887-908, 2004. ISSN 0079-6700. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0079670004000577 >.

SCHATZ, C. et al. Static Light Scattering Studies on Chitosan Solutionsμ  From

Macromolecular Chains to Colloidal Dispersions. Langmuir, v. 19, n. 23, p. 9896-9903, 2003. ISSN 0743-7463. Disponível em: < http://dx.doi.org/10.1021/la034410n >.

______. Typical Physicochemical Behaviors of Chitosan in Aqueous Solution.

Biomacromolecules, v. 4, n. 3, p. 641-648, 2003. ISSN 1525-7797. Disponível em: < http://dx.doi.org/10.1021/bm025724c >.

SCHNABLEGGER, H.; SINGH, Y. The SAXS Guide – Getting acquainted with the principles. Austria: Anton Paar, 2011.

Documentos relacionados