• Nenhum resultado encontrado

R A Macêdo, V M Fonseca, C Alves Junior Influência da Microestrutura do Titânio na Resposta Celular de Pre-Osteoblastos

Conclusões e Sugestões

H. R A Macêdo, V M Fonseca, C Alves Junior Influência da Microestrutura do Titânio na Resposta Celular de Pre-Osteoblastos

MC3T3-E1. 21º Congresso Brasileiro de Engenharia Biomédica. p. 237-240 (2008) ISBN: 978-85-60064-13-7

H. R. A. Macêdo; M. O. C. Macêdo; M. W. D. Mendes; J. C. Sá; R. A. Brito; C. Alves Junior. Physico-chemical properties of titanium surfaces thermically treated in different conditions. 18º CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais. p.6174-6183 (2008).

REFERÊNCIAS

AHMED, T.; RACK, H. J. Phase transformations during cooling in α+β titanium alloys. Materials Science and Engineering: A, v. 243, n. 1-2, p. 206-211, 1998.

ALBREKTSSON, T. Surface roughness of intraoral dental implant fixtures. Dent Implantol Update, v.9, n.10, p.73-77, 1998.

ALVES JR, C.; et al. Nitriding of titanium disks and industrial dental implants using hollow cathode discharge. Surface and Coatings Technology, 194, 2, 2005, 196-202

ALTANKOV, G.; GROTH, T. Reorganization of substratum-bou fibronectin on hydrophilic and hidrophobic materials is related to biocompatibility. Journal of Material Science: Materials in Medicine, v.5, p. 732-737, 1994.

AMARANTE, E.S.; LIMA, L.A. Otimização das superfícias dos implantes: plasma de titânio e jateamento com areia condicionado por ácido - estado atual. Pesqui Odontol Bras. [online], v. 15, n. 2, p. 166-173, 2001.

ANSELME, K. Osteoblast adhesion on biomaterials. Biomaterials, v. 21, n. 7, p. 667-681, 2000a.

ANSELME, K.; BIGERELLE, M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomaterialia, v. 1, n. 2, p. 211-222, 2005.

ANSELME, K.; et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness. Journal of Biomedical Materials Research, v. 49, p. 155-166, 2000b.

ANSELME, K. et al. The relative influence of the topography and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour. Biomaterials, v. 21, n. 15, p. 1567-1577, 2000c.

BAO, G.; SURESH, S. Cell and molecular mechanics of biological materials. Nature Matererials, v. 2, p. 715–725, 2003.

BHATTACHARJEE, A. et al. Effect of β grain size on stress induced martensitic transformation in β solution treated Ti-10V-2Fe-3Al alloy. Scripta Materialia, v. 53, n. 2, p. 195-200, 2005.

BHATTACHARYYA, D. et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy. Acta Materialia, v. 51, n. 16, p. 4679-4691, 2003.

BORGIOLI, F. et al. Air treatment of pure titanium by furnace and glow- discharge processes. Surface and Coatings Technology, v. 141, n. 1, p. 103- 107, 2001.

BOYAN, B. D. et al. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, v. 17, n. 2, p. 137-146, 1996.

BOYER, R. R. Titanium and Titanium Alloys - Metallography and Microstructure. ASM International. v.9, p. 458-475, 1985.

BROOKS, C. R., Heat treatment, Structure and properties of Nonferrours alloys, ASM, 1982.

CHESMEL, K. et al. Cellular responses to chemical and morphologic aspects of biomaterial surfaces. II. The biosynthetic and migratory response of bone cell populations. Journal of Biomedical Materials Research, v. 29, n. 9, p. 1101- 1110, 1995.

COLLINGS, E. W.. The Physical Metallurgy of titanium Alloys. Ohio: American Society for Metals. Metals Park,. p.261, 1984.

DONACHIE, M. J. Titanium: A Technical Guide. ASM International, 1988.

EISENBARTH, E. et al. Cell orientation and cytoskeleton organisation on ground titanium surfaces. Biomolecular Engineering, v. 19, n. 2-6, p. 233-237, 2002a.

EISENBARTH, E. et al. Interactions between cells and titanium surfaces. Biomolecular Engineering, v. 19, n. 2-6, p. 243-249, 2002b.

ELLINGSEN, J.E. Surface configurations of dental implants. Periodontology 2000, v. 17, p 36-46, 1998.

FLOWER, H. M. Microstructural development in relation to hot working of titanium alloys. Materials Science and Technology, v. 6, n. 11, p. 1082-1092, 1990.

FROES, F. H.; BOMBERGER, H. B. The beta titanium alloys. Journal of Metals, v. 37, p. 28-37, 1985.

GALI, D. et al. In vitro osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on poly-L-lysine-treated titanium-6- aluminium-4-vanadium. Journal of Biomedical Materials Research A, v. 97A, n. 2, 2011.

GARCÍA, A. J.; et al. Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. Biomaterials, v. 18, n. 16, p. 1091-1098, 1997.

GRONTHOS, S. et al. Integrin expression and function on human osteoblast- like cells. Journal of Bone and Mineral Research, v. 12, n. 8, p. 1189-1197, 1997.

GROSDIDIER, T.; PHILIPPE, M. J. Deformation induced martensite and superelasticity in a β-metastable titanium alloy. Materials Science and Engineering: A, v. 291, n. 1-2, p. 218-223, 2000.

HALLAB, N. J. et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Engineering, v. 7, n. 2, p. 55-71, 2001.

HEALY, K. E. et al. Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials, v. 17, n. 2, p. 195- 208, 1996.

HUANG, H.-H. et al. Effect of surface roughness of ground titanium on initial cell adhesion. Biomolecular Engineering, v. 21, n. 3-5, p. 93-97, 2004.

HUGHES, D. E. et al. Integrin expression in human bone. Journal of Bone Mineral Research, v. 8, p. 527-533, 1993.

HUNTER, A. et al. Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials, v. 16, n. 4, p. 287-295, 1995.

JOSHI, V. A. Titanium Alloys: An Atlas of Structures and Fracture Features. 2006. 227

KAO, Y. L. et al. A study on the hardness variation of α- and β-pure titanium with different grain sizes. Materials Science and Engineering: A, v. 398, n. 1- 2, p. 93-98, 2005.

KASEMO, B. Biological surface science. Surface Science, v. 500, n. 1-3, p. 656-677, 2002.

KIESWETTER, K. et al. Surface roughness modulates the local production of growth factors and cytokines by osteoblast-likeMG-63 cells. Journal of Biomedical Matererial Research A, v. 32, p. 55–63, 1996.

KIM, H.-S. et al. Stress-induced martensitic transformation of metastable β- titanium alloy. Materials Science and Engineering: A, v. 449-451, n. 0, p. 322- 325, 2007.

LEE, T. M.; et al. Attachment and proliferation of neonatal rat calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the alloy. Biomaterials, v. 25, n. 1, p. 23-32, 2004.

LIN, C. et al. Analysis of the effect of alloy elements on martensitic transformation in titanium alloy with the use of valence electron structure parameters. Materials Chemistry and Physics, v. 125, n. 3, p. 411-417, 2011.

LIU, X.; et al. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, v. 47, n. 3-4, p. 49-121, 2004.

LONG, M.; RACK, H. J. Titanium alloys in total replacement – a materials science perspective. Biomaterials, v. 19, p. 1621-1639, 1998.

LÜTJERING, G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Materials Science and Engineering: A, v. 243, n. 1-2, p. 32-45, 1998.

LÜTJERING, G.; WILLIANS, J. C. Titanium. 2st. Germany, Springer. 2007. MACDONALD, D. E. et al. Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials, v. 23, n. 4, p. 1269-1279, 2002.

MACÊDO, H.R.A. et al. Etudo da Resposta Biológica no Ti-cp Tratado Termicamente. Revista Brasileira de Inovação Tecnológica em Saúde. v.1, n.1, p. 4-12, 2011

MACÊDO, H.R.A, Efeito do Tratamento Térmico do Titânio sobre a Proliferação de Células Pré-Osteoblásticas. 2008. (Mestrado). Ciência e Engenharia de Materiais, Universidade Federal do Rio Grande do Norte.

MARGEVICIUS, R. W.; COTTON, J. D. Stress-Assisted Transformation in Ti-60 Wt Pct Ta Alloys. Metallurgical and Materials Transactions, v. 29A, p. 139, 1998.

MITSUO, N. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, v. 243, n. 1-2, p. 231-236, 1998.

MOREIRA, M. F.; LEBRÃO, S. M. G. Tratamentos térmicos dos aços.

Disponivel em:

http://www.dalmolim.com.br/educaçãomateriais/biblimat/tratterm2.

Acessado em 19/03/2010.

MUSTAFA, K. et al. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clinical Oral Implants Research, v. 12, p. 515–525, 2001.

MYRDYCZ, A. et al. Cells under stress: a non-destructive evaluation of adhesion by ultrasounds. Biomolecular Engineering, v. 19, n. 2-6, p. 219-225, 2002.

NISHIO, K. et al. The effect of alkali- and heat-treated titanium and apatite- formed titanium on osteoblastic differentiation of bone marrow cells. Journal of Biomedical Materials Research, v. 52, p. 652–661, 2000.

OUCHI, C.; et al. Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α+β titanium alloy. Materials Science and Engineering: A, v. 263, n. 2, p. 132-136, 1999.

PAZOS, L.; et al. Effect of surface treatments on the fatigue life of titanium for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, v. 3, n. 6, p. 416-424, 2010.

PINTO, G.R.R. Caracterização de Ligas a Base de Titânio Com Adição de Nb. Zr, Pd Para Finalidades Bimédicas. 2005. 81 (mestrado). Engenharia Metalúgica e de Materiais, Universidade Federal do Rio de Janeiro.

PONSONNET, L. et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C, v. 23, n. 4, p. 551-560, 2003.

POONDLA, N. et al. A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti–6Al–4V. Journal of Alloys and Compounds, v. 486, n. 1-2, p. 162-167, 2009.

PRASAD, Y. V. R. K.; SESHACHARYULU, T. Processing maps for hot working of titanium alloys. Materials Science and Engineering: A, v. 243, n. 1-2, p. 82- 88, 1998.

PULEO, D. A.; NANCI, A. Understanding and controlling the bone–implant interface. Biomaterials, v. 20, n. 23-24, p. 2311-2321, 1999.

QAZI, J. I. et al. Kinetics of martensite decomposition in Ti–6Al–4V–xH alloys. Materials Science and Engineering: A, v. 359, n. 1-2, p. 137-149, 2003.

RAJENDRA, R. D.; NARENDRA, V. B. The mechanism of adhesion and printability of plasma processed PET films. Materials Research Innovations, v. 7, p. 283–290, 2003.

REDEY, S. A. et al. Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies. Journal of Biomedical Materials Research, v 45, n. 2, p. 140-147, 1999.

REZANIA, A. et al. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. Journal of Biomedical Materials Research, v. 37, p. 9-19, 1997.

ROCHA, S. S. et al. Vickers Hardness of Cast Commercially Pure Titanium and Ti-6Al-4V Alloy Submitted to Heat Treatments. Brazilian Dental Journal, v. 17, n. 2, p. 126-129, 2006.

RUPP, F. et al. Enhancing surface free energy and hydrophilicity through chemical modification of microstuctured titanium implant surfaces. Journal of Biomedical Materials Research A, v. 76A, p. 323–334, 2006.

RUPP, F. et al. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials, v. 25, n. 7-8, p. 1429- 1438, 2004.

SÁ, J.C. Efeito da Modificação de Superfícies de Titânio Tratadas pos Plasma na Proliferação de Células-Tronco Vizando Aplicações Odontologicas. 2009. (Doutorado). Ciência e Engenharia de Materiais, Universidade Federal do Rio Grande do Norte.

SCHNEIDER, G.; BURRIDGE, K. Formation of Focal Adhesions by Osteoblasts Adhering to Different Substrata. Experimental Cell Research, v. 214, n. 1, p. 264-269, 1994. ISSN 0014-4827.

SILVA, M. A. M. et al. Surface modification of Ti implants by plasma oxidation in hollow cathode discharge. Surface and Coatings Technology, v. 200, n. 8, p. 2618-2626, 2006.

SPENCER, N. D.; TEXTOR, M. Surface Modification, Surface Analysis, and Biomaterials. Laboratory for Surface Science and Technlogy, 2007.

SUH, J. Y. et al. Effect of hydrothermally treated anodic oxide films on osteoblast attachment and proliferation. Biomaterials, v. 24, p. 347–355, 2003.

TEIXEIRA, J. D. C. et al. Transformation kinetics and microstructures of Ti17 titanium alloy during continuous cooling. Materials Science and Engineering: A, v. 448, n. 1-2, p. 135-145, 2007.

THOMAS, C. H. et al. The role of vitronectin in the attachment and spatial distribution of bone-derived cells on materials with patterned surface chemistry. Journal of Biomedical Materials Research, v. 37, p. 81-93, 1997.

THOUMINE, O, et all. Critical Centrifugal forces induce adhesion rupture or structural reorganization in cultures cells. Cell Motility and the Cytoskeleton, v. 33, p. 276-287, 1996.

TROTA FILHO, J. Modificação Superficial de Titânio para Produção de Implantes. 2007. (Mestrado). Engenharia Metalúgica e de Materiais, Universidade Federal do Rio de Janeiro.

VAZ. A.P. Morfologia dos revestimentos de Titânio. 2007 (Mestrado). Engenharia Mecânica, Universidade Federal do Paraná.

VILLARS, P. Pearson Handbook. 1997.

WALBOOMERS, X. F.; AL, E. Attachment of fibroblasts on smooth and microgrooved polystyrene. Journal of Biomedical Materials Research, v. 46, p. 212–220, 1999.

WEBB, K.; et al. Relative importance of surface wettabillity and charged functional groups on NIH 3T3 fibroblasts attachment, spreading, and cytosqueletal organisation. Journal of Biomedical Materials Research, v. 241, p. 422– 430, 1998.

WINKELMANN, M. et al. Chemically patterned, metal oxide based surfaces produced by photolithographic techniques for studying protein– and cell–surface

interactions I: Microfabrication and surface characterization. Biomaterials, v. 24, n. 7, p. 1133-1145, 2003.

YAMAMOTO, A. et al. A new technique for direct measurement of the shear force necessary to detach a cell from a material. Biomaterials, v. 19, n. 7-9, p. 871-879, 1998.

ZHANG, L. C. et al. Journal of Materials Science, v. 40, p. 2833, 2005.

ZHU, X. et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials, v. 25, n. 18, p. 4087-4103, 2004.

Documentos relacionados