• Nenhum resultado encontrado

➢ Quantificar insulina no soro dos animais para confirmar se a dieta induziu resistência à insulina (IR) seguido dos testes índice de Homa Beta e resistência à insulina.

➢ Realizar teste de predição metabólica usando o programa PICRUST

➢ Avaliar a concentração de AGCC e vitaminas tanto nas fezes quanto no soro do animal. ➢ Realizar (qPCR) de genes citocinas inflamatórias, hormônios e receptores do hospedeiro

localizados no tecido intestinal dos animas para tentar elucidar possíveis mecanismos que a dieta e o treinamento estão modulando a microbiota.

70

REFERÊNCIA

ACHESON, K. J. et al. Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. The American Journal of Clinical Nutrition, v. 48, n. 2, p. 240–247, 1 ago. 1988.

AMRANE, S.; LAGIER, J.-C. Metagenomic and clinical microbiology. Human Microbiome

Journal, v. 9, p. 1–6, 1 ago. 2018.

ARRIETA, M.-C. et al. The Intestinal Microbiome in Early Life: Health and Disease. Frontiers

in Immunology, v. 5, p. 427, 5 set. 2014.

BAG, S. et al. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples. Scientific Reports, v. 6, n. 1, p. 26775, 31 jul. 2016. BARBOSA DE QUEIROZ, K. et al. Physical activity prevents alterations in mitochondrial ultrastructure and glucometabolic parameters in a high-sugar diet model. PLOS ONE, v. 12, n. 2, p. e0172103, 15 fev. 2017.

BARRETO, M. L. et al. Detection of Mycoplasma pulmonis in laboratory rats. Brazilian

Journal of Microbiology, v. 33, n. 3, p. 260–264, set. 2002.

BARTON, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, v. 67, n. 4, p. 625–633, 1 abr. 2018.

BASARANOGLU, M.; BASARANOGLU, G.; BUGIANESI, E. Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary

surgery and nutrition, v. 4, n. 2, p. 109–16, abr. 2015.

BASESPACE. 16 Metagenoma App. [s.l: s.n.]. Disponível em: <https://support.illumina.com/content/dam/illumina-

support/documents/documentation/software_documentation/basespace/16s-metagenomics-user- guide-15055860-a.pdf>. Acesso em: 11 nov. 2018.

BERGER, W. H.; PARKER, F. L. Diversity of planktonic foraminifera in deep-sea sediments.

Science (New York, N.Y.), v. 168, n. 3937, p. 1345–7, 12 jun. 1970.

BERNARDIS, L. L. Prediction of carcass fat, water and lean body mass from Lee’s “nutritive ratio” in rats with hypothalamic obesity. Experientia, 1970.

71 CARCASS FAT CONTENT IN WEANLING AND ADULT FEMALE RATS WITH

HYPOTHALAMIC LESIONS. Journal of Endocrinology, v. 40, n. 4, p. 527–528, abr. 1968. BERTINO-GRIMALDI, D. et al. Bacterial community composition shifts in the gut of

Periplaneta americana fed on different lignocellulosic materials. SpringerPlus, v. 2, n. 1, p. 609, 15 nov. 2013.

BOONE, T. et al. Volume 20 Number 3 Editor-in-Chief JEPonline Swimming Exercise Did Not Ameliorate the Adverse Effects of High-Sugar Diet in Young Rats. 2017.

BOSCHINI, R. P.; GARCIA JÚNIOR, J. R. Regulação da expressão gênica das UCP2 e UCP3 pela restrição energética,jejum e exercício físico. Revista de Nutrição, v. 18, n. 6, p. 753–764, dez. 2005.

BRIONES, A.; COATS, E.; BRINKMAN, C. Should We Build “Obese” or “Lean” Anaerobic Digesters? PLoS ONE, v. 9, n. 5, p. e97252, 15 maio 2014.

BULL, M. J.; PLUMMER, N. T. Part 1: The Human Gut Microbiome in Health and Disease.

Integrative medicine (Encinitas, Calif.), v. 13, n. 6, p. 17–22, dez. 2014.

BURKHOLDER, P. R.; MCVEIGH, I. Synthesis of Vitamins by Intestinal

BacteriaProceedings of the National Academy of Sciences of the United States of AmericaNational Academy of Sciences, , 1942. Disponível em:

<https://www.jstor.org/stable/87753>. Acesso em: 5 dez. 2018

BUYKEN, A. E. et al. Association between carbohydrate quality and inflammatory markers: systematic review of observational and interventional studies. The American Journal of

Clinical Nutrition, v. 99, n. 4, p. 813–833, 1 abr. 2014.

CAMILLO SILVEIRA CASTELLO BRANCO, A. DA et al. Parâmetros Bioquímicos e Hematológicos de Ratos Wistar e Camundongos Swiss do Biotério Professor Thomas George Biochemical and Hematological Parameters of Wistar Rats and Swiss Mice in the Professor Thomas George Animal Laboratory. PESQUISA Research, v. 15, n. 2, 2011.

CAMILO, E. et al. Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology, v. 110, n. 4, p. 991–998, 1 abr. 1996.

CAMPBELL, S. C.; WISNIEWSKI, P. J. Exercise is a Novel Promoter of Intestinal Health and Microbial Diversity. Exercise and Sport Sciences Reviews, v. 45, n. 1, p. 41–47, jan. 2017. CANI, P. D. et al. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced

72 1470 LP-1481, 1 jun. 2008.

CANI, P. D. et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes, v. 3, n. 4, p. 279–288, 14 jul. 2012. CARMO, A. O. Apostila de Hematologia ClínicaUNIP, , 2014. Disponível em:

<http://adm.online.unip.br/img_ead_dp/59344.pdf>. Acesso em: 5 nov. 2018

CERF-BENSUSSAN, N.; GABORIAU-ROUTHIAU, V. The immune system and the gut microbiota: friends or foes? Nature Reviews Immunology, v. 10, n. 10, p. 735–744, 24 out. 2010.

CHÍRICO, M. T. T. et al. Tobacco-Free Cigarette Smoke Exposure Induces Anxiety and Panic- Related Behaviours in Male Wistar Rats. Scientific Reports, v. 8, n. 1, p. 4943, 21 dez. 2018. CHO, I.; BLASER, M. J. The human microbiome: at the interface of health and disease. Nature

Reviews Genetics, v. 13, n. 4, p. 260–270, 13 abr. 2012a.

CHO, I.; BLASER, M. J. The human microbiome: at the interface of health and disease. Nature

Reviews Genetics, v. 13, n. 4, p. 260–270, 13 abr. 2012b.

CORREA, C. S. et al. High-volume resistance training reduces postprandial lipaemia in

postmenopausal women. Journal of Sports Sciences, v. 33, n. 18, p. 1890–1901, 8 nov. 2015. CORTEZ, R. V. et al. Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surgery for Obesity and Related

Diseases, v. 14, n. 11, p. 1748–1754, 1 nov. 2018.

COX-YORK, K. A. et al. Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats. Physiological Reports, v. 3, n. 8, p. e12488, 1 ago. 2015. CRINO, M. et al. The Influence on Population Weight Gain and Obesity of the Macronutrient Composition and Energy Density of the Food Supply. Current Obesity Reports, v. 4, n. 1, p. 1– 10, 14 mar. 2015.

CRONIN, O. et al. Gut Microbes Exercise and the microbiota Exercise and the microbiota. 2015. DANIELA BRĂSLAŞU, E. et al. NORMAL BLOOD GLUCOSE IN WHITE WISTAR

RAT AND ITS CHANGES FOLLOWING ANESTHESIA. [s.l: s.n.]. Disponível em:

<https://www.usab-tm.ro/vol7MV/23_vol7.pdf>. Acesso em: 29 nov. 2018.

DAVENPORT, E. R. et al. Seasonal Variation in Human Gut Microbiome Composition. PLoS

ONE, v. 9, n. 3, p. e90731, 11 mar. 2014.

73 the phylum Synergistetes. FEMS Microbiology Ecology, v. 80, n. 3, p. 671–684, 1 jun. 2012. DAVIS, H. C. Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?

Irish Journal of Medical Science (1971 -), 16 out. 2017.

DE FILIPPO, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of

the United States of America, v. 107, n. 33, p. 14691–6, 17 ago. 2010.

DE LIMA, D. C. et al. The enhanced hyperglycemic response to hemorrhage hypotension in obese rats is related to an impaired baroreflex. Metabolic Brain Disease, v. 23, n. 4, p. 361–373, 3 dez. 2008.

DE QUEIROZ, K. B. et al. Endurance training blocks uncoupling protein 1 up-regulation in brown adipose tissue while increasing uncoupling protein 3 in the muscle tissue of rats fed with a high-sugar diet. Nutrition Research, v. 32, n. 9, p. 709–717, 1 set. 2012.

DE QUEIROZ, K. B. et al. Molecular mechanism driving retroperitoneal adipocyte hypertrophy and hyperplasia in response to a high-sugar diet. Molecular Nutrition & Food Research, v. 58, n. 12, p. 2331–2341, 1 dez. 2014.

DEKANEY, C. M. et al. Bacterial-dependent up-regulation of intestinal bile acid binding protein and transport is FXR-mediated following ileo-cecal resection. Surgery, v. 144, n. 2, p. 174–81, ago. 2008.

DELZENNE, N. M.; CANI, P. D. Interaction Between Obesity and the Gut Microbiota: Relevance in Nutrition. Annual Review of Nutrition, v. 31, n. 1, p. 15–31, 21 ago. 2011. DELZENNE, N. M.; NEYRINCK, A. M.; CANI, P. D. Modulation of the gut microbiota by nutrients with prebiotic properties: consequences for host health in the context of obesity and metabolic syndrome. Microbial Cell Factories, v. 10, n. Suppl 1, p. S10, 30 ago. 2011. DEN BESTEN, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, v. 54, n. 9, p. 2325–2340, set. 2013.

DENOU, E. et al. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American Journal of

Physiology-Endocrinology and Metabolism, v. 310, n. 11, p. E982–E993, jun. 2016a.

DENOU, E. et al. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American Journal of

74

Physiology-Endocrinology and Metabolism, v. 310, n. 11, p. E982–E993, jun. 2016b.

DEVARAJ, S.; HEMARAJATA, P.; VERSALOVIC, J. The Human Gut Microbiome and Body Metabolism: Implications for Obesity and Diabetes. Clinical Chemistry, v. 59, n. 4, p. 617–628, 1 abr. 2013.

DINICOLANTONIO, J. J.; BERGER, A. Added sugars drive nutrient and energy deficit in obesity: a new paradigm. Open heart, v. 3, n. 2, p. e000469, 2016.

DOMINGUEZ-BELLO, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National

Academy of Sciences of the United States of America, v. 107, n. 26, p. 11971–5, 29 jun. 2010.

DOMINGUEZ-BELLO, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nature medicine, v. 22, n. 3, p. 250–3, mar. 2016. DONG, D. et al. Consumption Of Specific Foods And Beverages And Excess Weight Gain Among Children And Adolescents. Health Affairs, v. 34, n. 11, p. 1940–1948, nov. 2015. DONG, T. S.; GUPTA, A. Influence of Early Life, Diet, and the Environment on the Microbiome. Clinical Gastroenterology and Hepatology, 7 set. 2018.

DUBROVSKY, A.; KITTS, C. L. Effect of the Specific Carbohydrate Diet on the Microbiome of a Primary Sclerosing Cholangitis and Ulcerative Colitis Patient. Cureus, v. 10, n. 2, p. e2177, 9 fev. 2018.

DURANTI, S. et al. Obesity and microbiota: an example of an intricate relationship. Genes &

nutrition, v. 12, p. 18, 2017.

EJTAHED, H.-S. et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: A systematic review. Microbial Pathogenesis, v. 116, p. 13–21, mar. 2018. ESPELAND, M. A. et al. Effects of Physical Activity Intervention on Physical and Cognitive Function in Sedentary Adults With and Without Diabetes. The Journals of Gerontology Series

A: Biological Sciences and Medical Sciences, v. 72, n. 6, p. glw179, 2 set. 2016.

EVANS, R. A. et al. Chronic fructose substitution for glucose or sucrose in food or beverages has little effect on fasting blood glucose, insulin, or triglycerides: a systematic review and meta- analysis. The American Journal of Clinical Nutrition, v. 106, n. 2, p. 519–529, ago. 2017. EVERARD, A.; CANI, P. D. Gut microbiota and GLP-1. Reviews in Endocrine and Metabolic

Disorders, v. 15, n. 3, p. 189–196, 1 set. 2014.

75 proliferation and induction of experimental colitis. The Journal of experimental medicine, v. 207, n. 6, p. 1321–32, 7 jun. 2010.

FERGUSON, R. M. W. et al. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). Journal of Applied

Microbiology, v. 109, n. 3, p. 851–862, 1 set. 2010.

FLEMER, B. et al. Fecal microbiota variation across the lifespan of the healthy laboratory rat.

Gut Microbes, v. 8, n. 5, p. 428–439, 3 set. 2017.

FLINT, H. J. et al. The role of the gut microbiota in nutrition and health. Nature Reviews

Gastroenterology & Hepatology, v. 9, n. 10, p. 577–589, 4 out. 2012.

FOR, S. O. P.; SAMPLES, F.; EXTRACTION, D. N. A. SOP FOR FECAL SAMPLES IHMS SOP 07 V1 : STANDARD OPERATING PROTOCOL FOR FECAL SAMPLES. 2015. GABORIAU-ROUTHIAU, V. et al. The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses. Immunity, v. 31, n. 4, p. 677–689, 16 out. 2009.

GERRITSEN, J. et al. Intestinal microbiota in human health and disease: the impact of probiotics. Genes & nutrition, v. 6, n. 3, p. 209–40, ago. 2011.

GHEZZI, A. et al. Metabolic syndrome markers in wistar rats of different ages. Diabetology &

Metabolic Syndrome, v. 4, n. 1, p. 16, 27 abr. 2012.

GILL, S. R. et al. Metagenomic Analysis of the Human Distal Gut Microbiome. Science, v. 312, n. 5778, p. 1355 LP-1359, 2 jun. 2006.

GOEDERT, J. J. et al. Diversity and Composition of the Adult Fecal Microbiome Associated with History of Cesarean Birth or Appendectomy: Analysis of the American Gut Project.

EBioMedicine, v. 1, n. 2–3, p. 167–172, 1 dez. 2014.

GOODRICH, J. K. et al. Cross-species comparisons of host genetic associations with the microbiome. Science, v. 352, n. 6285, p. 532 LP-535, 29 abr. 2016.

HALL, A. B.; TOLONEN, A. C.; XAVIER, R. J. Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics, v. 18, n. 11, p. 690–699, 21 ago. 2017. HARRISON, C. A.; TAREN, D. How poverty affects diet to shape the microbiota and chronic disease. Nature Reviews Immunology, v. 18, n. 4, p. 279–287, 7 nov. 2017.

HENDERSON, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, v. 5, n. 1, p.

76 14567, 9 nov. 2015.

HIGASHIKAWA, F. et al. Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: a randomized, double-blind, placebo-controlled clinical trial. European Journal of

Clinical Nutrition, v. 70, n. 5, p. 582–587, 9 maio 2016.

HILL, M. J. Intestinal flora and endogenous vitamin synthesis. European Journal of Cancer

Prevention, v. 6, p. S43–S45, mar. 1997.

HOOPER, L. V; LITTMAN, D. R.; MACPHERSON, A. J. Interactions between the microbiota and the immune system. Science (New York, N.Y.), v. 336, n. 6086, p. 1268–73, 8 jun. 2012. HOUGHTON, D. et al. Gut Microbiota and Lifestyle Interventions in NAFLD. International

journal of molecular sciences, v. 17, n. 4, p. 447, 25 mar. 2016.

HUITEMA, M. J. D.; SCHENK, G. J. Insights into the Mechanisms That May Clarify Obesity as a Risk Factor for Multiple Sclerosis. Current Neurology and Neuroscience Reports, v. 18, n. 4, p. 18, 10 abr. 2018.

ILLUMINA. IMPORTANT NOTICE This document provides information for an

application for 16S Metagenomic Sequencing Library Preparation Preparing 16S

Ribosomal RNA Gene Amplicons for the Illumina MiSeq System. [s.l: s.n.]. Disponível em:

<https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s- metagenomic-library-prep-guide-15044223-b.pdf>. Acesso em: 11 nov. 2018.

INSTITUTE OF MEDICINE (US) FOOD FORUM. The Human Microbiome, Diet, and

Health: Workshop Summary. Washington (DC): [s.n.].

JAKICIC, J. M. et al. Role of Physical Activity and Exercise in Treating Patients with Overweight and Obesity. Clinical chemistry, v. 64, n. 1, p. 99–107, 1 jan. 2018. JANDHYALA, S. M. et al. Role of the normal gut microbiota. World journal of

gastroenterology, v. 21, n. 29, p. 8787–803, 7 ago. 2015.

JASKUNAS, S. R.; LINDAHL, L.; NOMURA, M. Specialized transducing phages for ribosomal protein genes of Escherichia coli. Proceedings of the National Academy of Sciences, v. 72, n. 1, p. 6–10, 1 jan. 1975.

JOSEPH, A.-M.; ADHIHETTY, P. J.; LEEUWENBURGH, C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. The Journal of

physiology, v. 594, n. 18, p. 5105–23, 2016.

77

Blood Purification, v. 30, n. 4, p. 288–295, 2010.

KASAI, C. et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length

polymorphism and next-generation sequencing. BMC Gastroenterology, v. 15, n. 1, p. 100, 11 dez. 2015.

KAU, A. L. et al. Human nutrition, the gut microbiome and the immune system. Nature, v. 474, n. 7351, p. 327–36, 15 jun. 2011.

KEATING, S. E. et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity.

Journal of Hepatology, v. 63, n. 1, p. 174–182, jul. 2015.

KEMPPAINEN, K. M. et al. Early childhood gut microbiomes show strong geographic

differences among subjects at high risk for type 1 diabetes. Diabetes care, v. 38, n. 2, p. 329–32, 1 fev. 2015.

KHAN, M. J. et al. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of obesity, v. 2016, p. 7353642, 2016.

KIM, Y.; TRIOLO, M.; HOOD, D. A. Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle. Oxidative medicine and cellular longevity, v. 2017, p. 3165396, 2017.

KLINDWORTH, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, v. 41, n. 1, p. e1–e1, 1 jan. 2013.

KOCH, L. G.; BRITTON, S. L.; WISLØFF, U. A rat model system to study complex disease risks, fitness, aging, and longevity. Trends in cardiovascular medicine, v. 22, n. 2, p. 29–34, fev. 2012.

KOIKE, S.; KOBAYASHI, Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, v. 204, n. 2, p. 361–366, 1 nov. 2001. KRAUTKRAMER, K. A. et al. Metabolic programming of the epigenome: host and gut

microbial metabolite interactions with host chromatin. Translational research : the journal of

laboratory and clinical medicine, v. 189, p. 30–50, 2017.

LEBLANC, J. G. et al. B-Group vitamin production by lactic acid bacteria - current knowledge and potential applications. Journal of Applied Microbiology, v. 111, n. 6, p. 1297–1309, 1 dez.

78 2011.

LEBLANC, J. G. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective.

Current Opinion in Biotechnology, v. 24, n. 2, p. 160–168, 1 abr. 2013.

LEE, H. et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, v. 9, n. 2, p. 155–165, 4 mar. 2018.

LEONG, K. S. W. et al. Antibiotics, gut microbiome and obesity. Clinical Endocrinology, 20 nov. 2017.

LEUNG, R. K.-K.; WU, Y.-K. Circulating microbial RNA and health. Scientific reports, v. 5, p. 16814, 18 nov. 2015.

LEY, R. E. Obesity and the human microbiome. Current Opinion in Gastroenterology, v. 26, n. 1, p. 5–11, jan. 2010.

LI, D. et al. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract. Scientific

Reports, v. 7, n. 1, p. 45840, 4 dez. 2017.

LIN, A. et al. Distinct Distal Gut Microbiome Diversity and Composition in Healthy Children from Bangladesh and the United States. PLoS ONE, v. 8, n. 1, p. e53838, 22 jan. 2013. LIRA, C. A. B. DE et al. Efeitos do exercício físico sobre o trato gastrintestinal. Revista

Brasileira de Medicina do Esporte, v. 14, n. 1, p. 64–67, fev. 2008.

LIU, T.-C. et al. Paneth cell defects in Crohn’s disease patients promote dysbiosis. JCI insight, v. 1, n. 8, p. e86907, 2016.

LIU, T.-W. et al. Physical Activity Differentially Affects the Cecal Microbiota of

Ovariectomized Female Rats Selectively Bred for High and Low Aerobic Capacity. PloS one, v. 10, n. 8, p. e0136150, 2015.

LUND, E. et al. Transfer RNA genes between 16S and 23S rRNA genes in rRNA transcription units of E. Coli. Cell, v. 7, n. 2, p. 165–177, fev. 1976.

LYNCH, S. V.; PEDERSEN, O. The Human Intestinal Microbiome in Health and Disease. New

England Journal of Medicine, v. 375, n. 24, p. 2369–2379, 15 dez. 2016.

MACHADO, M. V.; CORTEZ-PINTO, H. Non-alcoholic fatty liver disease: what the clinician needs to know. World journal of gastroenterology, v. 20, n. 36, p. 12956–80, 28 set. 2014. MAKI, K. C. et al. Replacement of Refined Starches and Added Sugars with Egg Protein and Unsaturated Fats Increases Insulin Sensitivity and Lowers Triglycerides in Overweight or Obese Adults with Elevated Triglycerides. The Journal of Nutrition, v. 147, n. 7, p. 1267–1274, 1 jul.

79 2017.

MALIK, V. S.; SCHULZE, M. B.; HU, F. B. Intake of sugar-sweetened beverages and weight gain: a systematic review. The American Journal of Clinical Nutrition, v. 84, n. 2, p. 274– 288, 1 ago. 2006.

MANDAL, S. et al. Fat and vitamin intakes during pregnancy have stronger relations with a pro- inflammatory maternal microbiota than does carbohydrate intake. Microbiome, v. 4, n. 1, p. 55, 19 dez. 2016.

MANG, C. S. et al. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor.

Physical therapy, v. 93, n. 12, p. 1707–16, dez. 2013.

MARCHANDIN, H. et al. Phylogeny, diversity and host specialization in the phylum

Synergistetes with emphasis on strains and clones of human origin. Research in Microbiology, v. 161, n. 2, p. 91–100, 1 mar. 2010.

MARDINOGLU, A. et al. An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metabolism, v. 27, n. 3, p. 559–571.e5, 6 mar. 2018.

MARKLE, J. G. M. et al. Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. Science, v. 339, n. 6123, p. 1084–1088, 1 mar. 2013.

MATHERON, C. et al. Simultaneous but differential metabolism of glucose and cellobiose in Fibrobacter succinogenes cells, studied by in vivo 13 C-NMR. Canadian Journal of

Microbiology, v. 42, n. 11, p. 1091–1099, nov. 1996.

MELL, B. et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat.

Physiological Genomics, v. 47, n. 6, p. 187–197, jun. 2015.

MICHEL, A. et al. Bacteriophage PhiX174’s ecological niche and the flexibility of its

Escherichia coli lipopolysaccharide receptor. Applied and environmental microbiology, v. 76, n. 21, p. 7310–3, nov. 2010.

MOCK, K. et al. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation. The Journal of Nutritional Biochemistry, v. 39, p. 32–39, 1 jan. 2017.

MORAES, A. C. F. DE et al. Microbiota intestinal e risco cardiometabólico: mecanismos e modulação dietética. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 58, n. 4, p.

80 317–327, jun. 2014.

MORALES MARROQUÍN, F. E. Exercise and Dietary Factors Affecting the Microbiota: Current Knowledge and Future Perspectives. Journal of Nutritional Health & Food

Engineering, v. 6, n. 3, 31 mar. 2017.

MORENO-INDIAS, I. et al. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. American journal of translational research, v. 8, n. 12, p. 5672–5684, 2016.

MORRIS, M. J. et al. Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neuroscience & Biobehavioral

Reviews, v. 58, p. 36–45, 1 nov. 2015.

MUELLER, E.; BLASER, M. Breast milk, formula, the microbiome and overweight. Nature

Reviews Endocrinology, v. 14, n. 9, p. 510–511, 18 set. 2018.

NEUMANN, A. P.; MCCORMICK, C. A.; SUEN, G. Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environmental Microbiology, v. 19, n. 9, p. 3768–3783, 1 set. 2017.

NGUYEN, T. L. A. et al. How informative is the mouse for human gut microbiota research?

Disease models & mechanisms, v. 8, n. 1, p. 1–16, 1 jan. 2015.

NICHOLSON, J. K. et al. Host-gut microbiota metabolic interactions. Science (New York,

N.Y.), v. 336, n. 6086, p. 1262–7, 8 jun. 2012.

NIH et al. GUIDE LABORATORY ANIMALS FOR THE CARE AND USE OF Eighth

Edition Committee for the Update of the Guide for the Care and Use of Laboratory

Animals Institute for Laboratory Animal Research Division on Earth and Life Studies. [s.l:

s.n.].

NOVELLI, E. L. B. et al. Anthropometrical parameters and markers of obesity in rats.

Laboratory Animals, v. 41, n. 1, p. 111–119, 23 jan. 2007.

O’KEEFE, S. J. D. et al. Products of the Colonic Microbiota Mediate the Effects of Diet on Colon Cancer Risk. The Journal of Nutrition, v. 139, n. 11, p. 2044–2048, 1 nov. 2009. OMER, E.; ATASSI, H. The Microbiome That Shapes Us: Can It Cause Obesity? Current

Gastroenterology Reports, v. 19, n. 12, p. 59, 27 dez. 2017.

OULAS, A. et al. Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinformatics and biology insights, v. 9, p. 75–88,

81 2015.

PANASEVICH, M. R. et al. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. British Journal of Nutrition, v. 113, n. 1, p. 125–133, 26 jan. 2015.

PANISSA, V. L. G. et al. Can short-term high-intensity intermittent training reduce adiposity?

Sport Sciences for Health, v. 12, n. 1, p. 99–104, 5 abr. 2016.

PARKS, E. J. et al. Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. The Journal of clinical investigation, v. 104, n. 8, p. 1087–96, 15 out. 1999.

PARKS, E. J. Effect of Dietary Carbohydrate on Triglyceride Metabolism in Humans. The

Journal of Nutrition, v. 131, n. 10, p. 2772S–2774S, 1 out. 2001.

Documentos relacionados